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1 Introduction

The family of processes commonly referred to as 1/fα occur in many fields of applica-

tions [1]. Examples range from geophysical [2] and economical [3] signals to noise in

electronic circuits [4]. An extensive collection of references can be found in [5]. The abil-

ity to model these processes with few significant parameters is therefore of great interest.

This is not a trivial task, because of the long range correlations in the signals and their

intrinsic non-stationarity.

Approaches based on the self-similarity of the curves obtained by plotting the graph

of a realization of the process have been investigated [6]. The basic parameter is the

fractal dimension D [7], which quantifies the degree of irregularity of the graph[8]. For a

curve in the plane, D can range from 1 to 2 [8, 9]. It can be shown that D is related to

the spectral slope through α = 5 − 2D [10]. Another common quantity associated with

1/fα processes is the parameter H [11], defined as the scaling exponent for the so-called

structure functions (see section 2). The relationship with the fractal dimension D = 2−H

is well known.

It has been shown in [12] that the relationship between fractal dimension and spectral

slope holds only in an approximate sense when considering a bandlimited fractal process.

High and low frequency cutoffs are necessary to limit the total energy of the process, and

are indeed intrinsic in finite length sampled time series. They introduce correcting terms

in the fractal exponent, that depend on the particular scale being considered.

This work deals with a generalization of the model proposed in [12]. The fractal

characterization of a process at the output of a linear system is sought for. This is a prob-

lem commonly encountered in various applications, because most data are made available

through a measurement process that involves some kind of filtering. This additional pro-

cessing is sometimes designed, but often unwanted and spurious. The measured data can

often be modeled as the output of a generic linear system. The dependence of the fractal

dimension on a quite general kind of linear system will be investigated. The model of the
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output process is based on an approximation of the transfer function of the system with

an arbitrary number of power law decay segments and is outlined in section 2. The fractal

exponent H(T ) is estimated in the proper scaling range for the general case by means of

asymptotic expansions (section 3). Section 4 illustrates the validity of the derived expres-

sions comparing the behavior of H(T ) with numerical estimates, while section 5 is devoted

to the discussion of the results.

2 The fractal model

Let us recall that the fractal dimension of a signal xt is a real number D = 2−H, where

H is defined as the scaling exponent of the structure function

σ2
T = 〈(xt − xt−T )

2〉 ∼ T 2H . (1)

If the power spectrum Px(f) of the process is known, the structure function σT can be

evaluated [13] as

σ2
T = 4

∫ ∞

0
Px(f) sin

2(πfT )df. (2)

A typical fractal signal is characterized by a spectrum with a power-law decay in frequency,

Px(f) ∼ f−α. The total energy of such a process, however, is infinite. This is the main

reason why a bandlimited model for a fractal process has been considered in [13]. On

the other hand, the presence of low and high frequency cutoffs introduces [12] a series

of correcting terms on the scaling exponent H. It becomes then necessary to define a

scale-dependent exponent

H(T ) =
T

2σ2
T

d

dT
σ2
T (3)

to account for these corrections. The scale-dependent fractal dimension can be defined

accordingly as D(T ) = 2−H(T ).

The reader is referred to [12] for the derivation of asymptotic expansions of H(T ) for

a simple bandlimited fractal process. The aim of this paper is to provide a generalization
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for those results. We will refer to the situation where a fractal signal xt is fed to a generic

linear system, characterized by its frequency-domain transfer function G(f). The output

yt is the process that will be investigated. The power spectrum of the output signal can

be immediately related to the power spectrum of the input through

Py(f) = |G(f)|
2Px(f). (4)

The model for the process yt under investigation is fairly general. It is assumed that

Py(f) is partitioned with an arbitrary number of frequency intervals with a uniform power

law decay. Both the linear system and the input contribute according to Eq. (4) to this

frequency behavior. The general form for |G(f)|2 that is used here is an approximation of

the transfer function for a linear system whose dynamics is described by a set of ordinary

differential equations with constant coefficients. These systems typically describe electric

‘lumped’ circuits and are characterized by rational transfer functions with a finite number

of zeros and poles. When the frequencies of two adjacent singularities (either zeros or poles)

are sufficiently far apart, the transfer function modulus squared can be approximated by

a power law with integer even slope. This approximation is quite accurate even close

to the singularities. A generic fractal process xt has the same kind of behavior, with a

single or multiple power law decay. The slope does not need to be an integer but can be

any real number. When combining the transfer function with the input power spectrum

according to Eq. (4), we obtain a function Py(f) that can be approximated by a number

of power law decay intervals with arbitrary slope, separated by break points. These break

points can be due either to zeros and poles of G(f) or to breaks already present in Px(f)

(see e.g. [12]). This consideration can be further generalized assuming that the input of

our system is white noise, and the transfer function is characterized by arbitrary slopes,

without the constraint of being integer numbers. In summary, the basic model considered
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in this paper is

Py(f) =

(

f

f0

)−α0

, f < f0

= Ck

(

f

fk−1

)−αk

, fk−1 ≤ f < fk, 1 < k < kmax, (5)

and is plotted in Fig. 1. We indicated with {fk, k = 0, .., kmax − 1} the frequencies where Figure 1

the slope changes and with αk the logarithmic slopes. These can be any real number.

It is assumed that adjacent slopes are different and that α0 < 1 to insure a total finite

energy. The last frequency break point fkmak
can be set to infinity. In this case, we must

set also αkmax
> 1. Otherwise αkmax

can be any number because the spectrum is assumed

identically zero for f > fkmax
. The constants Ck insure that the spectrum is a continuous

function of the frequency, and are expressed by

Ck =
k−1
∏

i=1

(

fi
fi−1

)−αi

. (6)

It should be noted that a linear system introduces also frequency-dependent phase

shifts on the output signal. However, when the input is white noise (or any fractal process),

the phase can be assumed to be a random variable uniformly distributed in [0, 2π], and

any slowly varying phase shift due to arg{G(f)} is negligible on the output.

The process yt can be characterized by the exponent H(T ) only when the scale T is

such that

1

fk
¿ T ¿

1

fk−1

. (7)

This condition automatically insures that the two frequencies fk−1 and fk are well sepa-

rated. The nominal value of H(T ) in this range is (see [12] and references therein)

H(T ) =



























0, αk < 1,

1
2
(αk − 1), αk ∈ [1, 3],

1, αk > 3.

(8)
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We will show in section 3 that the expressions in Eq. 8 are true only in an approximate

sense, because the form of Py(f) outside the interval [fk−1, fk] introduces scale-dependent

corrections. Asymptotic expansions for these corrections are also explicitly derived. The

case that was studied in [12] can be found as a particular case setting kmax = 2, k = 1,

α0 = 0, and α2 →∞.

3 Derivation of the scaling exponent

This section is devoted to the analytical derivation of the scaling exponent H(T ) from

the model of the spectrum Py(f) in Eq. (5). This will be done evaluating the structure

function σ2
T defined in Eq. (2) and then using Eq. (3). Without loss of generality we will

restrict the analysis to those scales T satisfying Eq. (7). Different scaling regimes can be

selected by changing the parameter k. It is necessary that the closest break frequencies

are sufficiently separated to be able to model the process as a fractal. If this condition is

satisfied the following approximations can be made without further restrictions.

It will be shown that H(T ) depends mainly on the slope αk in the frequency band

[fk−1, fk]. The low and high frequency bands are responsible for the scale dependence of

the fractal dimension of the process. It is convenient then to split the structure function

σ2
T into three basic contributions for low, intermediate, and high frequency, and to apply

Eq. (2) separately. We have

σ2
T = (σ

2
T )LF + (σ

2
T )MF + (σ

2
T )HF , (9)

where

(σ2
T )LF = 4

∫ fk−1

0
Py(f) sin

2(πfT )df, (10)

(σ2
T )MF = 4

∫ fk

fk−1

Py(f) sin
2(πfT )df, (11)

(σ2
T )HF = 4

∫ fkmax

fk

Py(f) sin
2(πfT )df. (12)

6



These three contributions will now be examined in detail.

Let us consider first the low frequency contribution. Substituting the explicit expres-

sion for the spectrum we have

(σ2
T )LF = 4

∫ f0

0

(

f

f0

)−α0

sin2(πfT )df

+ 4
k−1
∑

m=1

Cm

∫ fm

fm−1

(

f

fm−1

)−αm

sin2(πfT )df, (13)

where πfmT ¿ 1 ∀m. The integrals can then be approximated by expanding the sine

function for small values of its argument. The final result, obtained with a fourth order

expansion, is

(σ2
T )LF '

k−1
∑

m=1

fm−1Cm(αm−1 − αm)

[

(2πfm−1T )
2

(3− αm−1)(3− αm)
−

(2πfm−1T )
4

12(5− αm−1)(5− αm)

]

+ fk−1Ck

[

(2πfk−1T )
2

(3− αk−1)
−
(2πfk−1T )

4

12(5− αk−1)

]

. (14)

This expression is valid for αm 6= 3, 5 ∀m < k. It can be shown that if αp → 3 with p < k

the two singular terms in Eq. (14) containing (3− αp) in the denominator cancel out and

should be substituted with the expression

fp−1Cp(2πfp−1T )
2

[

αp−1 − αp+1

(3− αp−1)(3− αp+1)
+ log

(

fp
fp−1

)]

. (15)

This expression is not singular because the slopes αp−1 and αp+1 are different from αp = 3

according to the assumptions made in section 2. The same argument can be applied if

αp = 5. Without loss of generality we will suppose in the following not to be in these

particular cases.

Let us consider now the high frequency contribution, expressed by

(σ2
T )HF = 4

kmax
∑

m=k+1

Cm

∫ fm

fm−1

(

f

fm−1

)−αm

sin2(πfT )df, (16)

7



where πfm−1T À 1 ∀m. We can split each integral into two parts using the identity

2 sin2 ξ = 1− cos(2ξ). The constant part with respect to T can be evaluated immediately.

The other part can be approximated by integrating by parts keeping the cosine as the

integral factor. This operation has the effect of lowering the exponent by one for each

integration. After two steps we obtain the complete expression

(σ2
T )HF ' −2fkCk+1

[

1

1− αk
−
sin(2πfkT )

(2πfkT )
+ αk+1

cos(2πfkT )

(2πfkT )2

]

(17)

+ 2
kmax
∑

m=k+2

fm−1Cm(αm−1 − αm)

[

1

(1− αm−1)(1− αm)
+
cos(2πfm−1T )

(2πfm−1T )2

]

+ 2fkmax
Ckmax+1

[

1

1− αkmax

−
sin(2πfkmax

T )

2πfkmax
T

+ αkmax

cos(2πfkmax
T )

(2πfkmax
T )2

]

,

valid when fkmax
< ∞ and αm 6= 1 ∀m ≥ k. If fkmax

= ∞ we have Ckmax+1 = 0, and

the last term in the preceding expression disappears. If αp = 1 for some p > k we can

proceed as indicated above. Taking the two terms with (1− αp) at the denominator and

combining them, a cancellation of the singularity occurs, and the resulting expression to

be substituted into Eq. (17) reads

2fp−1Cp

[

αp−1 − αp+1

(1− αp−1)(1− αp+1)
+ log

(

fp
fp−1

)]

. (18)

The last contribution to be considered is (σ2
T )MF . This is the main term, which is

responsible for the asymptotic fractal scaling of the process. We will investigate first the

case αk ∈ (1, 3), that corresponds to a non-integer value of the fractal dimension. In

this range the integral converges when the integration interval is set to (0,∞) and can be

evaluated in a closed form, while the contributions due to the finiteness of the integration

interval can be approximated separately and subtracted. Using the results in [12] we

obtain

(σ2
T )MF ' −2fk−1CkΓ(1− αk) sin

(

αkπ

2

)

(2πfk−1T )
αk−1
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− fk−1Ck

[

(2πfk−1T )
2

3− αk
−
(2πfk−1T )

4

12(5− αk)

]

(19)

+ 2fkCk+1

[

1

1− αk
−
sin(2πfkT )

(2πfkT )
+ αk

cos(2πfkT )

(2πfkT )2

]

.

Finally, combining Eqs. (14), (17) and (19), we obtain the complete expression for the

approximate structure function

σ2
T '

k
∑

m=1

fm−1Cm(αm−1 − αm)

[

(2πfm−1T )
2

(3− αm−1)(3− αm)
−

(2πfm−1T )
4

12(5− αm−1)(5− αm)

]

− 2fk−1CkΓ(1− αk) sin

(

αkπ

2

)

(2πfk−1T )
αk−1 (20)

+ 2
kmax
∑

m=k+1

fm−1Cm(αm−1 − αm)

[

1

(1− αm−1)(1− αm)
+
cos(2πfm−1T )

(2πfm−1T )2

]

+ 2fkmax
Ckmax+1

[

1

1− αkmax

−
sin(2πfkmax

T )

2πfkmax
T

+ αkmax

cos(2πfkmax
T )

(2πfkmax
T )2

]

.

The modifications that are necessary when αm = 1, 3 and 5 for m 6= k have already been

discussed. The cases αk = 1, 3 will be analyzed in the following paragraphs. Also, the

singularity of the Γ function for αk = 2 is only apparent due to a cancellation with the

zero of the sine function in the same factor (see [12]).

Combining now Eqs. (20) and (3) we can evaluate the scaling exponent H(T ) for

1 < αk < 3. The result is

H(T ) '
αk − 1

2
+
N(T )

σ2
T

, (21)

where

N(T ) =
k
∑

m=1

fm−1Cm(αm−1 − αm)

[

(3− αk)(2πfm−1T )
2

2(3− αm−1)(3− αm)
−
(5− αk)(2πfm−1T )

4

24(5− αm−1)(5− αm)

]

+
kmax
∑

m=k+1

fm−1Cm(αm−1 − αm)

[

1− αk
(1− αm−1)(1− αm)

−
sin(2πfm−1T )

(2πfm−1T )

]

(22)

+ fkmax
Ckmax+1

[

αk − 1

αkmax
− 1
− cos(2πfkmax

T ) + (αk − αkmax
)
sin(2πfkmax

T )

2πfkmax
T

]

.

This expression is valid for αm 6= 1, 3, 5 ∀m 6= k. These particular cases can be treated in
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the same way as above.

The asymptotic behavior of H(T ) can be found by reducing the influence of the low

and high frequency break points. It is sufficient to set

2πfk−1T → 0, (23)

fk−1

fk
→ 0, (24)

because fm−1 < fm ∀m. If αk ∈ (1, 3) the scale dependent correction in Eq. (21) vanishes,

and the fractal exponent assumes the nominal value H(T ) ' 1
2
(αk − 1).

Let us consider now the cases αk = 1 and αk = 3. It can be easily shown with

series expansions that the singularities in σ2
T cancel out. The structure functions are,

respectively, expressed by

σ2
T |αk→3 '

k−1
∑

m=1

fm−1Cm(αm−1 − αm)

[

(2πfm−1T )
2

(3− αm−1)(3− αm)
−

(2πfm−1T )
4

12(5− αm−1)(5− αm)

]

+ fk−1Ck

[

1

3− αk−1

+Ψ(3)− log(2πfk−1T )

]

(2πfk−1T )
2

− fk−1Ck
αk−1 − αk

12(5− αk−1)(5− αk)
(2πfk−1T )

4 (25)

+ 2
kmax
∑

m=k+1

fm−1Cm(αm−1 − αm)

[

1

(1− αm−1)(1− αm)
+
cos(2πfm−1T )

(2πfm−1T )2

]

+ 2fkmax
Ckmax+1

[

1

1− αkmax

−
sin(2πfkmax

T )

2πfkmax
T

+ αkmax

cos(2πfkmax
T )

(2πfkmax
T )2

]

and

σ2
T |αk→1 '

k
∑

m=1

fm−1Cm(αm−1 − αm)

[

(2πfm−1T )
2

(3− αm−1)(3− αm)
−

(2πfm−1T )
4

12(5− αm−1)(5− αm)

]

− 2fkCk+1

[

1

1− αk+1

+Ψ(1)− log(2πfkT )− (1− αk+1)
cos(2πfkT )

(2πfkT )2

]

(26)

+ 2
kmax
∑

m=k+2

fm−1Cm(αm−1 − αm)

[

1

(1− αm−1)(1− αm)
+
cos(2πfm−1T )

(2πfm−1T )2

]

+ 2fkmax
Ckmax+1

[

1

1− αkmax

−
sin(2πfkmax

T )

2πfkmax
T

+ αkmax

cos(2πfkmax
T )

(2πfkmax
T )2

]

,

10



where Ψ(z) = d ln Γ(z)/dz [14]. The function N(T ) is easily evaluated from the previous

expressions using the above procedure. When the conditions (23) and (24) are imposed,

the fractal exponents tend to their nominal values H(T )|αk=1 → 0 and H(T )|αk=3 → 1.

The last two cases to be considered are αk < 1 and αk > 3. According to Eq. (8) the

scaling exponent saturates to 0 for αk < 1 and to 1 for αk > 3. The application of the

procedure described above allows the derivation of the scale dependent corrections and the

proof of the validity for the asymptotic values. The details will not be shown here for the

sake of conciseness. Moreover, the application of the fractal geometry to processes with

a sharp frequency decay (a smooth curve) or an almost flat spectrum (a quasi-stationary

process) is not justified. The fractal dimension would lose its utility in the quantification

of the variations of the curve and its scaling behavior. We will proceed to the next section,

where the expressions derived for αk ∈ (1, 3) are applied to the analysis of some simple

linear filters.

4 Examples

This section presents some numerical examples that illustrate how the asymptotic expan-

sions for H(T ) can be used to model the process at the output of a linear system. The

input signal xt will be the simple bandlimited fractal process already considered in [12].

Its power spectrum is characterized by a single power law decay f−α, limited by two low

and high frequency cutoffs. The low frequency cutoff is due to the finite length of the

series, and the high frequency one is due to sampling. In particular, we will consider a

process with N = 32768 samples and sampling time Tc = 1/N s. Therefore, the frequency

cutoffs are f0 = 1 Hz and fmax = N/2 Hz. These parameters will not change throughout

this section.

Four different linear systems will be considered: a first order lowpass filter, a first order

highpass filter, a second order bandpass filter, and a fourth order bandpass filter with two

resonance peaks. The exponent H(T ) will be evaluated both with the expansions derived
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in section 3 and numerically, using its definition (see section 2). The numerical estimates

are obtained by generating a number Nr = 20 of independent realizations of the process yt

with the prescribed power spectrum, calculating H(T ) for each realization and averaging

the results over the different realizations. The behavior of Py(f) for f < f0 will be always

assumed flat, setting α0 = 0.

Let us consider first a simple lowpass filter with a single pole, located in fp = 4096 Hz.

Its transfer function modulus squared is approximately flat for f < fp and decays as f
−2

for f > fp. The set of frequency breaks and slopes of the output process yt are then

expressed by

{fi}
Kmax

i=0 = {f0, fp, fmax}, (27)

{αi}
Kmax

i=0 = {0, α, α+ 2}, (28)

where Kmax = 2 and the scaling range k = 1 is such that 1/fp << T << 1/f0. The

exponent H(T ) is plotted in Fig. 2 for different values of α ranging from 1 to 3. Figure 2

Let us take now a highpass filter with a single pole in fp = 16 Hz. The transfer function

modulus squared is now flat for f > fp and grows as f
2 for f < fp. The set of frequency

breaks and slopes of yt are

{fi}
Kmax

i=0 = {f0, fp, fmax}, (29)

{αi}
Kmax

i=0 = {0, α− 2, α}, (30)

where Kmax = 2 and the scaling range k = 2 is such that 1/fmax << T << 1/fp. The

exponent H(T ) is reported in Fig. 3. Figure 3

The third system is a bandpass filter with two single poles in fL = 8 Hz and fH =

4096 Hz. The transfer function modulus squared is flat for fL < f < fH , growing as f
2

for f < fL and decaying as f
−2 for f > fH . The set of frequency breaks and slopes of yt
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are in this case

{fi}
Kmax

i=0 = {f0, fL, fH , fmax}, (31)

{αi}
Kmax

i=0 = {0, α− 2, α, α+ 2}, (32)

where Kmax = 3 and the scaling range k = 2 is such that 1/fH << T << 1/fL. Figure 4

shows the behavior of H(T ). An excellent agreement can be noted between the asymptotic Figure 4

expansions and the numerical estimates of H(T ) for all the processes described above.

The last system that will be considered shows the effect of resonance peaks in the

transfer function |G(f)|2. This situation is typically due to pairs of complex poles with

a dumping factor close to 0. Even if the frequency behavior is more complex than in

the previous systems, it can be approximated with a piecewise linear curve (in logarithmic

axes). The approximation error decreases with the number of segments. Consequently, the

asymptotic expansions derived in section 3 can also be employed to model the corrections

to the fractal scaling due to resonance peaks in the transfer function. As an example,

the fractal process xt described above is passed through a bandpass filter with transfer

function plotted in Fig. 5. The cutoff frequencies are fL = 8 Hz and fH = 4096 Hz, while Figure 5

the resonance peaks are 6 dB above the passing band gain. The exponent H(T ) has been

evaluated like in the previous cases and is plotted in Fig. 6. It should be noted that the Figure 6

peaks induce oscillations in the exponent H(T ) at the resonance frequencies. The small

discrepancies for large T and α are due to the limited order of approximations of (σ2
T )LF .

These approximations could be improved with the same procedure followed in section 3

using higher order expansions.

5 Conclusions

We have presented an analytical approach for the analysis of the interaction between fractal

processes and linear systems. The fractal modeling is based upon an approximation of

the power spectrum of the process at the system output. The basic assumption is that
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the spectrum is made of an arbitrary number of power law decay segments, with at least

one well defined scaling range. This means that two of the break frequencies where a

discontinuity of the logarithmic slope is located are well separated. The scale dependent

fractal exponent H(T ) has been investigated within this scaling range using asymptotic

expansions, which have been validated with numerical estimates.

The main result of this paper is that the nominal fractal scaling holds only in an

approximate sense, because of the non-uniformity of the logarithmic slope of the power

spectrum. The expansions derived in section 3 include a series of correcting terms that

account for this effect and are scale-dependent. These corrections become less important

as the scaling range widens.

A quantitative analysis of the plots reported in this work, however, suggests that these

corrections are quite significant even when evaluated at scales T far from the limits of the

scaling range. Therefore, the use of a fractal exponent to characterize processes measured

at the output of a linear system, or in general having a power spectrum with more than a

single power law decay, can be misleading. The strong dependence on the scale T shows

that the points (lnT, lnσT ) do not lie on a straight line, and the definition itself of a

scaling exponent could be questionable.
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Figure Captions

Figure 1: Power spectrum Py(f) of the process under investigation. The slope in each

frequency band [fk−1, fk] is indicated with αk. Both axes are logarithmically spaced.

Figure 2: Behavior of H(T ) for a single pole lowpass filter. The asymptotic expansions

(continuous line) and the numerical estimates (circles) are reported for five different values

of α. The dotted lines are one standard deviation apart from the mean.

Figure 3: Behavior of H(T ) for a single pole highpass filter. The asymptotic expansions

(continuous line) and the numerical estimates (circles) are reported for five different values

of α. The dotted lines are one standard deviation apart from the mean.

Figure 4: Behavior of H(T ) for a bandpass filter with two single poles. The asymp-

totic expansions (continuous line) and the numerical estimates (circles) are reported for

five different values of α. The dotted lines are one standard deviation apart from the mean.

Figure 5: Transfer function modulus squared of a bandpass filter with two resonance peaks.

Figure 6: Behavior of H(T ) for the output of the system in Fig. 5. The asymptotic

expansions (continuous line) and the numerical estimates (circles) are reported for five

different values of α. The dotted lines are one standard deviation apart from the mean.
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