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Abstract

The aim of the present project is the design of optimal flight trajectories for an automomous aerial vehicle which is
expected to reach the desired locations in the operational environment expressed in terms of planned waypoints. The
navigation must be performed with the vehicle’s best effort, i.e. with the lowest cost. Hence, we want to minimize the input
energy, a function of the inputs for the mathematical model which describes the dynamics of the vehicle. The trajectory
must satisfy all the constraints and pass through all the planned waypoints. Assuming the vehicle as a point mass model,
the best solution has been investigated through a genetic algorithm search procedure. The optimisation problem has been
solved by modifying a micro-genetic algorithm software which was initially developed by D.L. Carroll. Between all the
possible trajectories we select the more “realistic” connections among the waypoints. First of all, we have left out the
trajectories with discontinuity in the derivatives as these are not feasible by the real aircraft. The polynomial spline is a
suitable candidate to solve our problem. The algorithm splits the trajectory in sub-trajectories which join a sequence of
three waypoints. Starting from the first three waypoints, the following sub-trajectories are superimposed keeping the first
waypoint coincident with the last of the previous sub-trajectory. The sequence of polynomials is initialized assuming that
jumps in the direction of flight are avoided pointing the heading angle in the presumed direction of flight. The optimal
trajectory is a trade-off amongst three factors: the required energy cost, the minimum distance from the required waypoint
and the feasibility of the trajectory. Results obtained with this optimization procedure are presented.
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1 Introduction

In the present paper, a mission design application for the
MicroHawk micro aerial vehicle is discussed. The Micro-
Hawk [1] [2] [3] concept was designed within a European
Union funded project (Micro Aerial Vehicles for Multi Pur-
pose Remote Monitoring and Sensing Project), by a research
group at Politecnico di Torino. It is a micro/mini aerial ve-
hicle for multi purpose monitoring and sensing. It is a fixed
wing, tailless integrated wing-body configuration controlled
by two trailing edge movable elevons, powered by a DC motor
and tractor propeller Fig.1. The configuration has been fitted
out with a circular fusulage that locates all subsystems on a
modular slide. The standard configuration is equipped with
a micro camera to support a basic reconnaissance mission.
Different versions have been developed and tested, charac-
terized by different size and weight. The MH600 is charac-
terized by a 600 mm wingspan and a bare platform weight of
400 g. Its design has been mainly adjusted for higher payload
weight fraction and larger internal volumes. The MH600 ver-
sion can achieve autonomous flight and it locates onboard a
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Figure 1: The MicroHawk configuration.

commercial small size autopilot without exceeding wing load-
ing limitations for hand launch.

The capability and the roles of UAVs are evolving, and re-
quire new concepts for their control. A significant aspect of
this control problem is optimizing the trajectory from the
starting point to its final destination. Moreover, online tra-
jectory generation for flight control application is important



in engineering applications with unmanned aerial vehicles to
provide feasible flight control in complex flight situations.

In general, the solution of the optimal control problem
with high dimensional space is hard to compute. This prob-
lem is complicated by the fact that the space of possible
control action is large. Two well-known methods that have
been applied to this problem are Probabilistic Road Maps [4]
(PRMs) and Rapidly-exploring Random Trees [5] (RRTs).
These methods reduce the dimensionality of the problem by
sampling the possible actions, but the resulting trajectories
are generally not optimal. Another approach to the optimal
trajectory problem consists of applying the Model Predictive
Control (MPC). MPC refers to a class of algorithms that
compute a sequence of manipulated variable adjustments in
order to optimize the future behavior of a system [6]. The
main idea of MPC is to choose the control action by repeat-
edly solving, on-line, an optimal control problem. This aims
to minimizing a performance criterion over a future horizon,
possibly subjected to constraints on the manipulated inputs
and outputs, where the future behavior is computed accord-
ing to a model of the system. An important advantage of
MPC is its ability to handle input and state constraints for
large scale multivariable plants [7] [8]. Murray [9] has been
investigating techniques for generating state and input tra-
jectories which satisfy the equations of motion and trade off
tracking performance for inertial stability, using differential
flatness. Stochastic search is an alternative strategy that can
bypass some limitations of the mentioned methods. The ge-
netic algorithms belong to this last family of solvers, as the
random choice of the possible solution is combined with cri-
teria for the direction of search which derive from natural
evolution of species. This technique is considered global and
robust in terms of search over the space of solutions. The
genetic algorithm [10] operates on the principle of the sur-
vival of the fittest. A constant-size population of individuals,
each of them is represented by a fixed number of parameters
which are coded in binary form (chromosomes), encode pos-
sible solutions of a given problem. An initial population of
individuals (possible solutions) is generated at random. The
allowable range of variation for each parameter is given. In
every evolutionary step, known as a generation, the individ-
uals of the current population (or family) are decoded and
evaluated. FEach possible solution is analyzed by a fitness
function which decides whether it will contribute to the next
generation of solutions. Once the new population has been
selected, chromosomes are ready for crossover and mutation.
The crossover operator combines the features of two parents
to create new solutions. Crossover allows an improvement in
the species in terms of evolution of new solutions at random
on each parent and then, complementary fractions from the
two parents are linked together to form a new chromosome.
The mutation operator alters a copy of a chromosome rein-
troducing values that might have been lost or creating totally
new features. One or more locations are selected on the chro-
mosome and replaced with new randomly generated values.
The three operators are implemented iteratively. Each iter-
ation produces a new population of solutions (generation).
The genetic algorithm continues to apply the operators and

evolve generations of solutions until a near-optimum solution
is found or the maximum number of possible generations is
produced. Note that, differently from classical search meth-
ods, the transition rules from one solution to a new solution
in the search space are not given in a deterministic form but
using probabilistic operators. Besides, differently from the
natural case, the size of the new population is kept constant
and each new generation is expected to increase the aver-
age fitness. As a final remark, the genetic algorithms have
demonstrated a high capability in the search of optimal so-
lutions but they are not well suited for real time application.

2 Mathematical Model
2.1 Point-Mass Model

The mathematical model used to describe the vehicle
dynamics is a three-dimensional point-mass model written
in wind axes frame. The equation are:
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In (1) x,y, h are the coordinates of the Centre of Gravity
(CQG) of the aircraft and they are usually referred to as North
range, cross range and altitude, respectively. Angles are de-
fined as: ¢ is the bank angle, x is the heading angle and
v is the flight-path angle. T, is the engine thrust, D is the
aerodynamic drag, m the aircraft mass, g the acceleration of
gravity. The ground-speed velocity V' is assumed to be equal
to the airspeed (wind is neglected). The bank angle ¢, the

engine thrust T, and the load factor n = — are the control
m

variables for the aircraft. Hence, the input vector w is:
u = [d)v T, n] (2)

System (1), complemented with constraints on applicable
inputs, form the basis for aircraft trajectory optimization.
Constraints are usually written in terms of state variables
and controls.

Some constraints are set on aircraft state and control
variables like n,T,,¢. During the navigation, limitations
are applied on the flight-path angle in both climbing and
descending trajectories and on upper and lower bounds for
airspeed V and climb angle 7. A preliminary study of the
aircraft response to inputs has been conducted to investigate
the platform general behavior. The platform (MH600) reacts
to changes in terms of n and ¢ with sensible trajectory
variations. This means that - in the trajectory design - little
variations of input variables must be taken into account
for accurate tracking (number of bits/chromosome). Initial



and final conditions for the aircraft state variables are also
specified as a prerequisite for the design process.

2.2 Micro-Genetic Algorithm y-GA

The genetic solver adopted for the trajectory optimization is
a Fortran version of the driver described by D.L. Carroll [11].
The code initializes a random sample of individuals with
different parameters to be optimized using the genetic
algorithm (GA) approach. The selection scheme used is a
tournament selection with a shuffling technique for choosing
random pairs for mating. The routine includes binary coding
for the individuals, jump mutation, creep mutation and
the option for single-point or uniform crossover. Niching,
elitism and an option for the number of children per pair
of parents are available. The solution using a micro GA
is also possible. This last switch significantly reduced the
number of function evaluations and demonstrated faster
convergence average to near-optimal region [11] [12]. Note
that average population fitness values are not meaningful
with a micro-GA because of the start-restart nature of the
micro-GA evolution process. Many numerical experiments
were performed in Carroll [11] [12] in order to tune the
search algorithm adopted and, as a result, the suggest set-up
is partially extended for the present application. The code
is set for maximum population size of five individuals, 48
bits per individual and three parameters (i.e. 16 binary bits
per parameter and 2'® possible solutions per parameter).
Niching and creep mutation are enabled and one child per
pair of parents is considered. Table 1 provides summary of
the value of the parameters set in the input file.

Irestrt is set to O for a new GA run, otherwise equal to 1
for a restart continuation of a GA run. Microga is imposed
equal to 1 for micro-GA operation (this will automatically
reset some of the other input flags). Moreover Carroll
suggests to set Npopsiz equal to 5 when Micro-GA is
activated. Nparam is the number of parameters (groups
of bits) of each individual. Pmutate is the jump mutation
probability, Maxgen is the maximum number of generations
evaluated by the GA. Idum is the initial random number
seed for the GA run. It must be equal to a negative integer,
e.g. Idum=-1000. Pcross is the crossover probability. For
single-point crossover, a value of 0.6 or 0.7 is recommended.
For uniform crossover, a value of 0.5 is suggested. The GA is
presently set up for tournament selection (Itourny equal to
1). Ielite can be defined by two values: 0 for no elitism (best
individual not necessarily replicated from one generation
to the next) or 1 for elitism to be invoked (best individual
replicated into next generation). Icreep must be set to
0 for no creep mutations or 1 for creep mutations: creep
mutations are recommended. Pcreep is the creep mutation
probability. Iunifrm is equal to 0 for single-point crossover
or equal to 1 for uniform crossover: uniform crossover is
recommended. In the same way, Iniche equal to 1 means
that niching is activated. Nchild can be set equal to 1 for
one child per pair of parents or equal to 2 for two children
per pair of parents. Usually one child per pair of parent is

used.

irestrt 0 icreep 1
microga 1 pcreep 0.04
npopsiz 5 iunifrm 1
nparam 2 iniche 1
pmutate 0.05 | nchild 1
maxgen 200 | idum -1000
pcross 0.05 | nowrite 1
itourny 1 ielite 1

Table 1: Input File Parameters Used in the Simulation.

3 Optimal Trajectories

The purpose of the analysis is the definition of optimal tra-
jectories in terms of energy spent by the platform during
the navigation and in terms of minimum distance from the
waypoint. Starting from a list of waypoints through which
we want our vehicle to go across, we will determine which
amongst the candidate trajectories will be the optimal in
terms of energy. The trajectories that cross through a pre-
fixed list of waypoints are infinite but only some of these can
be carried out by the platform and those with discontinuity
of derivates are discarded (segmented trajectories).

Different types of curves are able to connect a map of
points: for example it is possible to use approximation
and/or interpolation curves such as Bézier curves and spline
curves. Bézier curves are less prone to cross exactly the
waypoints if they are not aligned and, moreover, the genetic
algorithm parametrization would be slightly more difficult.
That’s why we prefer polynomial splines. The spline chosen
is a cubic function, two times differentiable in the whole
range. The relative second-derivate is equal to zero in the
final points. This is useful for the imposition of different
auxiliary conditions in the trajectory such as initial attitudes
and directions.

The selection of the trajectories is also defined by the
design constraints. The first restriction is that the trajectory
must pass through all the scheduled waypoints. Since
the autopilot programs are not so restrictive in terms of
waypoint reaching, it is widely accepted that the waypoint
is reached when the distance of the platform is less than
a given tolerance (e.g. 30 m). In any case, one of our
objectives is to minimize this distance. Another constraint
is the initial value of the bank angle.

Higher order splines are able to connect all the prefixed
waypoints with good precision but would require some addi-
tional computing time. In order to avoid this disadvantage,



the list of scheduled waypoints has been divided in groups of
three and the trajectory has been sequenced: after the op-
timization of the first group of three waypoints, we proceed
restarting the process considering now, as a first waypoint,
the second one in the previous group of three, and so on. The
continuity is guaranteed during the following optimizations,
as the value of the bank angle is kept across junctions.

What selects the optimal trajectory is a balance between:

- energy cost
- precision on waypoint reaching

- feasibility of the trajectory (platform dependent limita-
tions)

The fitness function (or cost function) is a balance between
the energy required to perform the trajectory and the preci-
sion of waypoint tracking. The energy cost is given in terms
of flight commands. In other words, a trajectory that requires
large command changes implies a huge energetic cost.

The fitness function is given in the following form:

J=wi [ Aj(t)dt + wo [1* An(t) dt+
(3)

W3 ttif ATe(t) dt + wWyry + wsro

where wi, wa, w3, wy, ws, are weight factors and ry, ry are
the distances from the second and the third waypoint respec-
tively.

4 The mathematical model and the
trajectory geometry

In order to evaluate the cost of a single trajectory generated
by the genetic algorithm, the outputs of the mathematical
model (1) and the geometry of the trajectory are combined.
In this way, after the definition of a population of trajecto-
ries, it is possible to calculate which will be the inputs in
every single phase of the flight so that it can be successfully
performed. Integrating the input required along the trajec-
tory, it is possible to obtain the energetic cost. If the inputs
required are over the operative capability of the aircraft, the
cost function for that trajectory will be evaluated with an
energetic cost proportional to its impossibility, forcing the
genetic algorithm to move away from this trajectory (defi-
ciency function).

When the trajectory has been chosen, all the required geo-
metric parameters are fixed, so that all the spatial derivatives
are given. The mathematical model is updated in an explicit
form:

dx

o = V() cos(t) cos x(1) (4)
% = V(t) cos y(t) sin x(t) (5)
= V(1) sinx(t) (6)
CETZ _ % (n(t) cos ¢(t) — cos(t)) (7)
% - V!gt) <n(2>z:l(f)(t)> )
%’ _ w _ gsinA(t) 9)

The in-plane and the out-of-plane splines are respectively:

y(t) = a1z (t)® + biz(t)® + crz(t) + dy
h(t) = agx(t)® 4 box(t)? + cox(t) + do

(10)
(11)
Combining the equation (4), (5), (6) with the spline equations
it is possible to obtain the following equation for the heading
angle and the flight-path angle:
x(t) = arctan (3a1z(t)* + 2by2(t) + ¢1)
v(t) = arctan (3asz(t)* + 2baz(t) + c2)

The horizontal speed V¢ is assumed to be constant along the
trajectory:

Ve = V(t) cos(t) (14)
The analytical equations for the model inputs become:
- @ -
%VG cos x(t) cosy(t)
t t - <d$> 15
¢(t) = arctan @ (15)
(Cliljsz)QVG cos x(t) + % cosy(t)
I
L dx i
In the same way is possible to write:
d?y
0 V() (cosy(t)
t) = t)——= 1
’fl( ) QVG COSX( ) 51n¢(t) ( 6)

dy g
14+ =
()
Considering the equations of lift and drag forces, we obtain
the expression of the throttle setting as:

Te(t) = m (V(t) tany(t) + gsinvy(t)) +

2 (17)
5 n(t)mg
3PV3(t)S s)

3PV2(t)

Cpo + Kcp <

In some cases, during the random search process, it
may not be possible to calculate the polynomial spline



due to unpredictable combination of parameters. To avoid
this numerical fault, a coordinate change is recommended
(in-plane re-alignment). This option is included in the whole
optimization process. If a change of frame is not sufficient
to complete the evaluation of the spline, a right turn (error
procedure) is imposed to the vehicle.

5 Simulation and results

In this section some simulations conducted for different
types of waypoint distribution are shown. The number of
generations is fixed at 200. For each track two different
weight distributions are considered. The first enhances the
energy saving (solid blue line) while the second one the
precision of the tracking (dashed black line). In tables 2,3
and 4 E.S.C. and T.P.C. refer respectively to Energy Saving
Case and Tracking Precision Case.

5.1 Random Trajectory

This waypoint distribution is expected to perform a sequence
of coordinates with altitude change. In Fig. 2, Fig. 3 and
Fig. 4, the trajectory is represented in a 3D view and in the
horizontal /vertical plane. In Fig. 5, Fig. 6, Fig. 7 and Fig. 8
the time-histories of glade angle and the control variables are
reproduced. In this case, comparing the two different opti-
mized trajectories, it is possible to see that the energy saving
optimized trajectory is exact enough with an adequate com-
promise between precision and energy saving. The thrust has
a slightly different time history in the two different cases as
the impact of this variable in the cost function is less effec-
tive as a consequence of the selection of weights. Moreover,
it is possible to highlight how the ¢ and n time histories are
similar in both cases, as their weights in the cost functions
are of the same order.

E.S.C. T.P.C.
\% 10 m/s 10 m/s

Xin 0 deg 0 deg
Yin 0 deg 0 deg
wy 107 106
Wa 103 10*
w3 1 10
wy 1 10*
Ws 1 104

Table 2: Input File Parameters Value Used in Random Tra-
jectory Simulation.

Figure 2: Random Trajectory: 3D View.
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Figure 3: Random Trajectory: View in Horizontal Plane.
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Figure 4: Random Trajectory: View in Vertical Plane.



Y [grad]

1 . : 1 | |
0 2000 4000 6000 8000 10000 12000 14000
Time [x100 s]

Figure 5: Random Trajectory: Climb Angle.
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Figure 8: Random Trajectory: Load factor.

5.2 Climb Turn Trajectory

With this type of waypoint distribution we want to force the
algorithm in the error procedure. When the vehicle will be
in the waypoint number 2, its bank angle is negative and the
spline for waypoints 2, 3 and 4 is not directly available. The
error procedure will lead the platform to start a right turn
so that the spline can be calculated.

Figure 6: Random Trajectory: Thrust.
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Figure 7: Random Trajectory: Roll Angle.

E.S.C. T.P. C.
A\ 10 m/s 10 m/s
Xin -30 deg -30 deg
Yin 10 deg 10 deg
w1 108 106
wo 10° 104
w3 1 10
wy 1 10*
ws 1 10%

Table 3: Input File Parameters Value Used in Climb Turn
Trajectory Simulation.

Figures from 9 to 15 refer to this particular trajectory.
If we choose to pay more attention to the energy saving
we have to give up for the precision of the trajectory.
The variation of v and T, are more aggressive than in the
precision task even if the time required to conclude the
trajectory is reduced. When the energy saving is required
the T, time history shows one high peak but subsequently
the idle setting is kept for longer time.
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Figure 10: Climb Turn Trajectory: View in Horizontal Plane.
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Figure 11: Climb Turn Trajectory: View in Vertical Plane.
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Figure 13: Climb Turn Trajectory: Thrust.
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Figure 14: Climb Turn Trajectory: Roll Angle.
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5.3 ”Butterfly” Trajectory 105
This case represents the most limiting waypoint distribution Toar I
in which an UAV can operate (see from Fig. 16 to Fig. 21) 103} |
as heading from crosstrack corrections are continuously ool i
updated. The task must also be sequentially repeated. ol |
In this case no substantial difference between the two = . e es 9 ,
separate optimization procedures is highlighted. The total =T ]
time necessary to complete the whole task is the same. sr 7
E.S.C. T.P.C. ul |
\% 10 m/s 10 m/s
Xin -45 deg -45 deg R ~200 ~100 . €m] 100 200 300
Yin 0 deg 0 deg
wy 107 106
Wa 10° 104 Figure 18: Butterfly Trajectory: View in Vertical Plane.
w3 1 10
Wy 1 104
Ws 1 104 25
Table 4: Input File Parameters Value Used in Butterfly Tra- I
jectory Simulation. wl
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Figure 19: Butterfly Trajectory: Climb Angle.
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Figure 16: Butterfly Trajectory: 3D View.
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Figure 20: Butterfly Trajectory: Thrust.
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Figure 21: Butterfly Trajectory: Roll Angle.
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Figure 22: Butterfly Trajectory: Load Factor.

6 Conclusions

Several waypoint distributions were successfully tested and
even random layouts were optimized with limited computa-
tional workload.

The algorithm is fast enough to be applied to pre-flight
trajectory definition. An extension to real time is poten-

tially possible with a minimal degradation in term of fitness
for the best individual (reduce the number of generations).
An alternative way to provide faster runs is the reduction of
intermediate waypoints (plan limited to corner waypoints).
Nevertheless, if the number of waypoints given for a trajec-
tory plan is too low the optimization may be weak (under-
sampling). Some numerical exercise is required to tune the
minimum number of waypoints in order to obtain a feasible
trajectory.

The micro-GA implementation is beneficial as random
search is performed on a very limited number of individu-
als (small population).

Optimal trajectories are affected by the type of strategy,
either energy saving or precision tracking. The user is ex-
pected to decide which of the two should fit the application.

As expected, if the weights for trajectory precision are high
the optimal radius of waypoints decreases. Differently, en-
hancing the energy balance - despite the precision - the al-
gorithm provides trajectories with smoother changes. The
effect of spline assembly is also reduced (corner smoothing)
depending on proximity of waypoints. The size of inputs is
also affected by the design strategy: in the energy save case
the average control inputs are small and, occasionally, con-
trols may show moderate “jumps”.
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