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Abstract

The object of this article is to compute the holonomy group of the normal
connection of complex parallel submanifolds of the complex projective space.
We also give a new proof of the classification of complex parallel submani-
folds by using a normal holonomy approach. Indeed, we explain how these
submanifolds can be regarded as the unique complex orbits of the (projec-
tivized) isotropy representation of an irreducible Hermitian symmetric space.
Moreover, we show how these important submanifolds are related to other
areas of mathematics and theoretical physics. Finally, we state a conjecture
about the normal holonomy group of a complete and full complex submani-
fold of the complex projective space.

Mathematics Subject Classification(2000): 53C42, 53B25

Key Words: normal holonomy group, symmetric submanifolds, parallel second
fundamental form, normal bundle.

1 Introduction.

The study of the normal holonomy group, started by C. Olmos in [Ol1] (see also
[BCO] for more details and applications), turned out to be a powerful tool for
the study of submanifolds with simple geometric invariants, e.g. homogeneous sub-
manifolds, isoparametric submanifolds and their generalizations [Ol4, DiOl]. In
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particular, normal holonomy methods were used by C. Olmos to give simpler and
geometric proofs of Berger-Simons’ theorems on holonomy [Ol2, Ol3].

The restricted normal holonomy group Φ⊥p of a complex submanifold M ⊂ CPN at
a point p ∈ M acts on the normal space Np(M). Under suitable and very general
conditions (see [AlDi] and Section 2) this action agrees with the isotropy action of
an irreducible Hermitian symmetric space; i.e., the pair (Φ⊥p , Np(M)) is given by
(K,T[K]G/K) = (K, p), (with g = k⊕ p a Cartan decomposition) where G/K is an
irreducible Hermitian symmetric space and the action coincides with the isotropy
representation of G/K on p.

Symmetric submanifolds play a distinguished role among submanifolds with sim-
ple geometric invariants. They are analogous to symmetric spaces for submanifold
theory. Indeed, they always come equipped with a symmetry at each point, namely
the geodesic reflection in the corresponding normal submanifold. This implies that
the second fundamental form is parallel. Actually, for a complex submanifold of
CPN being extrinsically symmetric is the same as having parallel second funda-
mental form (see [BCO, Proposition 9.3.1, page 256] for more details). For real
space forms, symmetric submanifolds turn out to be orbits of the isotropy repre-
sentation, the so called R-spaces. This is a classical result of D. Ferus [Fer] (see
also [BCO, Chapter 3, Section 7]). Notice that these submanifolds are also related
to the theory of Jordan algebras [Ber, p. 239].

In algebraic geometry, complex symmetric submanifolds of CPN are called char-
acteristic projective subvarieties. They are related with (a part of) the celebrated
Borel-Weil theorem since they are the unique complex orbit of the action of a
compact Lie group (see [BoWe], [GuSt, p. 166] and [Mok, p. 103, Remark]). Fur-
thermore they are the main ingredient of a polarization-type argument used by
N. Mok to prove his well-known rigidity theorems for higher rank Hermitian sym-
metric spaces [Mok, p. 111, Prop. 3]. In the theory of Jordan algebras, complex
symmetric submanifolds of CPN are described by means of minimal tripotents, see
[Kaup, p. 579]. These submanifolds are also important in physics and chemistry.
Namely, they are related to the so-called approximation of Hartree-Fock (e.g. Slater
determinants, for details see [GuSt, p. 165]).

Complex symmetric submanifolds of CPN were classified by Nakagawa-Takagi
[NaTa]. Besides the standard techniques from representation theory (cf. [Take]),
their classification depends upon the work of Calabi-Vesentini and Borel [CaVe,
Borel]. Namely, they managed to give a link between the norm of the covariant
derivatives of the second fundamental form of the canonical embeddings of Hermi-
tian symmetric spaces and the eigenvalues of the curvature operator introduced by
Nakano [Na].

The first aim of this paper is to compute the pairs (Φ⊥p , Np(M)) when M is a
complex parallel submanifold of the projective space CPN . We are going to collect
our results in the third column of Table 1 below. Besides the classification of the
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possible pairs (Φ⊥p , Np(M)) given in [AlDi], our method is based on Proposition
2.4 and the classification of complex parallel submanifolds.

Hermitian symmetric
space G/K

M as complex
K-orbit

Normal
holonomy Remarks

E7

T 1 · E6

E6

T 1 · Spin10

SO(12)

T 1 · SO(10)

E6

T 1 · Spin10

SO(10)

U(5)

U(6)

U(5)

Sp(n + 1)

U(n + 1)
CP n Sp(n)

U(n)
Veronese

Gr+
2 (Rn+2) :=

SO(n + 2)

T 1 · SO(n)
Gr+

2 (Rn)
U(2)

U(1)
Quadrics

SO(2n)

U(n)
Gr2(Cn)

SO(2(n− 2))

U(n− 2)
Plücker

Gra(Ca+b) :=
SU(a + b)

S(U(a)× U(b))
CP a−1 × CP b−1 SU(a + b− 2)

S(U(a− 1)× U(b− 1))
Segre

Table 1: Symmetric complex submanifolds M ⊂ P(T[K]G/K). The space in the third column is
the Hermitian symmetric space whose isotropy representation gives the normal holonomy action.

The second goal of this paper is to obtain the classification of complex parallel
submanifolds of the complex projective space without making use of the work of
Calabi-Vesentini and Borel [CaVe, Borel], as in the classical work of Nakagawa and
Takagi [NaTa]. Indeed, such a classification is contained in the second column of
Table 1. It turns out that complex parallel submanifolds of CPn consist of the
first canonical embeddings of rank two Hermitian symmetric spaces, the Veronese
and Segre embeddings. Our approach (presented in Section 4) is based on holon-
omy techniques and the knowledge of the codimension of the canonical embeddings
only. We will also explain how complex parallel submanifolds of CPN can be re-
garded as the unique complex orbits of the (projectivized) isotropy representation
of an irreducible Hermitian symmetric space. Notice the analogy with the above
mentioned result of Ferus in the real setting.
Our main result is encoded in Table 1 and can be read as follows.
Let G/K be an irreducible Hermitian symmetric space from the complete list in
the first column of Table 1. Then, the second column contains the unique complex
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orbit of the K-action on the projective space P(T[K]G/K). This K-orbit has parallel
second fundamental form and all complex parallel submanifolds arise in this way.
Moreover, the third column of the table contains the Hermitian symmetric space
whose isotropy representation gives the normal holonomy action (Φ⊥p , Np(M)).
In particular we prove the following

Theorem 1.1 Let M ⊂ CPN be a full (connected) complex submanifold with par-
allel second fundamental form. Then M is an open subset of the unique complex
orbit of the (projectivized) isotropy representation of an irreducible Hermitian sym-
metric space G/K. Moreover, their normal holonomy actions (Φ⊥p , Np(M)) agree
with the isotropy representations of the Hermitian symmetric spaces listed in the
third column of Table 1.

For higher canonical embeddings of Hermitian symmetric spaces we get

Theorem 1.2 Let fd : G/K ↪→ CPNd be the d−th canonical embedding of an
irreducible Hermitian symmetric space. If d > 2 then the normal holonomy group
is the full unitary group of the normal space.

Motivated by the above theorem we propose the following extrinsic analog of
Berger’s theorem as a conjecture

Conjecture 1.3 Let M ↪→ CPN be a complete (connected) and full (i.e. not con-
tained in a proper hyperplane) complex submanifold. If the normal holonomy group
is not the full unitary group, then M has parallel second fundamental form.

Notice that if the above conjecture is true, then the realization problem of nor-
mal holonomy group of complex submanifolds of CPN is solved. Namely, up to the

isotropy representation of the exceptional
E7

T 1 · E6
any other isotropy representation

of an irreducible Hermitian symmetric space can be obtained as a normal holon-
omy action. Recall that the realization problem of the normal holonomy group of
submanifolds of the sphere was solved in [HeOl], up to eleven exceptions. Finally,
Conjecture 1.3 can be regarded as the complex version of the conjecture posed
in [Ol5]. Namely, an irreducible and full homogeneous submanifold of the sphere,
different from a curve, whose normal holonomy group is not transitive, must be an
orbit of an s-representation.

2 Preliminaries.

Throughout this paper by complex submanifold M of CPN we mean a holomorphic
and isometric embedding M ↪→ CPN , where CPN carries the standard Fubini-
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Study Kähler form of constant holomorphic curvature 1. We will always assume
that M is connected.
We refer to [BCO] for the definitions of the normal bundle N(M)→M , its normal
connection and its holonomy group Φ⊥p at a point p ∈ M (the so called normal
holonomy group).
Recall that the shape operator of a complex submanifold anticommutes with the
complex structure J , i.e., AξJ = JAξ, for any normal vector ξ. Moreover, the
equation of Gauss yields the following expression for the holomorphic sectional
curvature of M

(∗) 1
2
(
〈X,Y 〉2 + 〈X, JY 〉2 + ‖X‖2‖Y ‖2

)
= 〈RX,JXJY, Y 〉+ 2‖α(X,Y )‖2 .

We say that M ⊂ CPN is full if it is not contained in a hyperplane of CPN . Recall
that the first normal space N1(M) is defined by N1(M) := span {α(X,Y )}.
The following result gives a sufficient condition for a submanifold of CPN not to
be full.

Theorem 2.1 [Ce], [ChO1] Let M be a Kähler submanifold of CPN . If there exists
a complex ∇⊥-parallel subbundle V 6= 0 of the normal bundle N(M) such that
V ⊥ N1(M), then M is non-full.

Calabi rigidity theorem of complex submanifolds M ↪→ CPN [Cal] implies that
isometric and holomorphic immersions are equivariant (see Subsection 2.3 ) Namely,
any intrinsic isometry can be extended to the ambient space, i.e., to the projective
space CPN . For a detailed explanation see [NaTa, p. 655, Theorem 4.3] or [Take].
Finally, let us recall the following well-known proposition (see e.g. [NaTa]).

Proposition 2.2 Let M be a Kähler manifold not necessarily complete. Let f :
M → CPN be a holomorphic and isometric immersion with parallel second fun-
damental form. Then M is a locally Hermitian symmetric space of compact type.
Moreover, there exists a complete Hermitian symmetric space of compact type M̃

and a holomorphic and isometric embedding M̃
f̃
↪→ CPNwith parallel second fun-

damental form such that f = f̃ ◦ i, where i : M → M̃ is the canonical inclusion.

2.1 Normal holonomy.

The link between isotropy and holonomy is well-known for Riemannian symmetric
spaces. For submanifolds with parallel second fundamental form there is a similar
relationship between isotropy and normal holonomy group.
As we quoted in the introduction, it was proved in [AlDi] that, under suitable
and very general conditions, the normal holonomy group acts on the normal space
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as the isotropy representation of an irreducible Hermitian symmetric space. All
known examples (complete submanifolds, Kähler-Einstein submanifolds and mani-
folds with zero index of relative nullity) satisfy these conditions. Moreover, it is not
known whether there exists a full complex submanifold whose normal holonomy
group acts in reducible way. For completeness let us state here the following special
case of the main result in [AlDi].

Theorem 2.3 [AlDi] Let M ⊂ CPN be a complete and full submanifold of CPN .
Let Φ⊥p be the normal holonomy group at p ∈M . Then, there exists an irreducible
Hermitian symmetric space H/S such that Φ⊥p = S. Indeed, dimC(Np(M)) =
dimC(H/S) and the Φ⊥p -action on Np(M) agrees with the isotropy representation
of S on T[S](H/S).

The following proposition gives a nice application of the above theorem.

Proposition 2.4 Let M = G/K ↪→ CPN be a full parallel submanifold where
M = G/K is a Hermitian symmetric space. Then the normal holonomy group Φ⊥p
is homomorphic with K i.e. Φ⊥p = K/I, where I is normal in K.

Proof. Let us denote by K⊥ the image of the restriction of the isotropy represen-
tation of K to the normal space Np(M), the so called slice representation . Thus,
we are going to show that K⊥ = Φ⊥p . First of all, notice that, since isometries
preserve parallel transport, K⊥ ⊂ Nor (Φ⊥p ), where Nor (Φ⊥p ) ⊂ U(Np(M)) is the
normalizer of Φ⊥p in the full unitary group U(Np(M)). By the above Theorem 2.3
Φ⊥p is isomorphic to the isotropy S of an irreducible Hermitian symmetric space.
Thus, Nor (Φ⊥p ) = Φ⊥p and we get the inclusion K⊥ ⊂ Φ⊥p .

The proof that Φ⊥p ⊂ K⊥ is similar to the one given in [Esch, p.7, Theorem 2].
Namely, any transvection of G/K, when extended to the ambient projective space,
gives the parallel transport with respect to the normal connection. Then we can
approximate any closed curve by a closed geodesic polygon. So we get a composition
of isometries which belong to K and, by construction, to Φ⊥p .
By taking limits and using the compactness of the involved groups we get the
desired inclusion Φ⊥p ⊂ K⊥. 2

As a sum up of the above propositions, we have the following theorem.

Theorem 2.5 Let M = G/K ↪→ CPN be a Hermitian symmetric space embedded
into CPN with parallel second fundamental form. Assume also that the embedding
is full. Then, there exists an irreducible Hermitian symmetric space H/S such that
Φ⊥p = S = K/I where I ⊂ K is a normal subgroup, dimC(Np(M)) = dimC(H/S)
and Φ⊥p acts on Np(M) as the isotropy representation of S on T[S](H/S).
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2.2 Parallel products.

The following result of Nakagawa and Takagi allows us to restrict to parallel em-
beddings of irreducible Hermitian symmetric spaces. Here we present an alternative
proof.

Theorem 2.6 [NaTa, p. 664, Lemma 7.1] Let Mi be an ni-dimensional Kähler
manifold (i = 1, 2). If the Kähler manifold M1 ×M2 admits a Kähler immersion
into CPn1+n2+p with parallel second fundamental form, then M i is locally CPni

(i = 1, 2).

Proof. We can assume that the immersion is full otherwise by using Theorem 2.1
we can reduce the codimension. So let us introduce the subbundles α1,1, α2,2 and
α1,2 of the normal bundle N(M) as follows:

αi,j := {α(TMi, TMj)},

where α is the second fundamental form of M . Since the immersion M1 ×M2 ⊂
CPn1+n2+p has parallel second fundamental form, we get N(M) = α1,1+α1,2+α2,2.
Indeed, this is a consequence of Theorem 2.1 since the first normal space is parallel.
Moreover, a simple application of the equation (∗) implies that the above sum is
orthogonal, i.e. N(M) = α1,1 ⊕ α1,2 ⊕ α2,2. Observe that any αi,j is a parallel
subbundle with respect to the normal connection. Thus, since Φ⊥p acts irreducibly
on Np(M) by Theorem 2.3, two of the three subbundles αi,j must be trivial. It is
not difficult to check that α1,2 cannot be trivial (see [AlDi, p. 202, Thm. 17] for
details). Indeed, equation (∗) with X ∈ TM1 and Y ∈ TM2 yields a contradiction.
Using again the equation (∗), we get that the curvature tensor of each factor agrees
with the curvature tensor of the ambient space CPn1+n2+p and we are done. 2

2.3 Canonical embeddings.

Let us assume now that M = G/K is an irreducible Hermitian symmetric space and
let f : M ↪→ CPN be a full holomorphic and isometric embedding. From Calabi
rigidity theorem it follows that the embedding f : M ↪→ CPN is G-equivariant
(see [NaTa, p. 655, Theorem 4.3] or [Take]). Then, from Elie Cartan’s work, such
embeddings G/K ↪→ CPN are well-known and are called canonical embeddings.
They can be constructed by means of the representation theory of the simple group
G through the so-called Borel-Weil construction (see [BoWe, Take]), which holds,
more generally, for homogeneous Kähler manifolds and can be summarized as fol-
lows.
Let d be a positive integer and ρ : GC → gl(CNd+1) the irreducible representation
of the complexification GC of G with highest weight dΛj , where Λj is the fun-
damental weight corresponding to the simple root αj . Let p be a highest weight
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vector corresponding to dΛj . Then the action of GC on CNd+1 induces a unitary
representation of G whose orbit of the highest weight vector p in CPNd yields a
full holomorphic embedding fd of M = G/K into CPNd , called the d-th canonical
embedding of M into a complex projective space.
The submanifold M of CPNd is the unique complex orbit of the action of G on
CPNd (or equivalently, the unique compact orbit of the GC-action). The dimension
Nd can be calculated explicitly by means of the Weyl’s dimension formula. The
induced metric on M ⊂ CPNd is Kähler-Einstein.

3 Normal holonomy of parallel submanifolds.

In this section we are going to prove the last sentence of Theorem 1.1 and later
Theorem 1.2. The proof of the first part of Theorem 1.1 will be given in Section 4.
Proof of the last part of Theorem 1.1. We compute the third column of Table 1
using Theorem 2.5.

Let us start with the first line, explaining our method. Namely, let us focus on

the 1−st canonical embedding
E6

T 1 · Spin10
↪→ CP 26. By Theorem 2.5, the normal

holonomy group Φ⊥p is a quotient of T 1 ·Spin10 whose action on the 10-dimensional
normal space agrees with the isotropy representation of a 10-dimensional irreducible
Hermitian space. Looking for such an irreducible Hermitian symmetric space (see

the first column of Table 1) we see that the only possibility is
SO(12)

T 1 · SO(10)
. Thus,

Φ⊥p acts on Np(M) as the isotropy representation of
SO(12)

T 1 · SO(10)
.

The computation for the second line is similar. Indeed, by Theorem 2.5, the normal

holonomy group Φ⊥p of the embedding
SO(10)
U(5)

↪→ CP 15 is a quotient of U(5) whose

action on the 5-dimensional normal space agrees with a isotropy representation
of a 5-dimensional irreducible Hermitian space. Looking for such an irreducible

Hermitian symmetric space, the only possibility is
U(6)
U(5)

. Thus, Φ⊥p acts on Np(M)

as the isotropy representation of
U(6)
U(5)

, i.e. as the standard representation of U(5)

on C5.
For the next four classical cases (i.e. the Veronese, the Quadrics, etc) a similar
analysis, based on Theorem 2.5, can be done in order to compute the third column.
This completes the proof of the last sentence in Theorem 1.1. 2

Proof of Theorem 1.2. It is enough to prove that the first normal space does not
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agree with the full normal space. We will actually show

(∗∗) dimC Np >
m(m+ 1)

2
, m = dimC(G/K) ,

which implies the above assertion, since the dimension of the first normal space is

smaller or equal than
m(m+ 1)

2
. Indeed, if the first normal space has a comple-

ment, any vector in this complement belongs to the nullity of the adapted normal
curvature tensor R̃ (see [AlDi, Ol1]). This is absurd, since the curvature tensor of
a Hermitian symmetric space has no nullity, so that the normal holonomy must be
transitive on the unit sphere of the normal space.
The inequality (**) is clear for the canonical embeddings of the projective space,
namely the rank one case. Assume therefore that rank G/K > 1. Observe that the
embeddings fd factor through the Veronese embeddings and the first canonical em-
bedding, i.e., fd = Ver ◦f1, where Ver : CPN1 → CPNd is the Veronese embedding
(see [NaTa, p.659] or [Take, Section 3]). Then, the dimension of the normal space

of fd is greater than
N1(N1 + 1)

2
. Now recall that any canonical embedding is full.

Thus, m < N1 and

dimC Np >
N1(N1 + 1)

2
>
m(m+ 1)

2
.

2

Remark 3.1 By using the Weyl’s formula [Take, p.189, Remark 2.3] to compute
the dimension N of the target projective space CPN , it is possible to extend the
above proof to an arbitrary immersion of a homogeneous Kähler manifold M .
Namely, it is enough to check that the codimension of the immersion M → CPN

is bigger than
n(n+ 1)

2
, n = dimC(M) to conclude that the normal holonomy

group is the full unitary group U(N − n). This observation is another motivation
of Conjecture 1.3.

4 Complex parallel submanifolds.

The goal of this section is to simplify the arguments in the classical article [NaTa].
Namely, we are going to avoid the use of the eigenvalues of the curvature operator
computed by Calabi-Vesentini [CaVe] and Borel [Borel] which were strongly used
in [NaTa].
Here we are going to give a direct proof of the following theorem.

Theorem 4.1 Let fd : G/K → CPNd be the d-th canonical embedding of an irre-
ducible Hermitian symmetric space G/K. Assume that the embedding has parallel
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second fundamental form. Then, if fd is not the Veronese embedding, fd = f1, that
is to say fd is the first canonical embedding.

Proof. As we remarked in the proof of Theorem 1.2, the embeddings fd can be
described in terms of the Veronese embeddings and the first canonical embedding.
Namely, fd = Ver ◦ f1, where Ver : CPN1 → CPNd is the Veronese embedding.
Then the codimension of the embedding fd is greater than N1(N1+1)

2 (and one has
equality if any only if fd is the Veronese embedding). Thus, if the codimension of
fd(G/K) is one then fd is the first canonical embedding of Gr+

2 (Rn) i.e. a complex
quadric. Thus, we can assume that the codimension is greater than one and that
fd is not the Veronese embedding.
Now recall that any canonical embedding is full. Let n = dimC(G/K) be the com-
plex dimension of G/K. Thus, n < N1 and we get that the dimension of the first
normal space is smaller or equal to N1(N1+1)

2 . Thus, if d > 1 then fd cannot be full
since the first normal space is invariant by parallel transport in the normal connec-
tion and thus agrees with the normal space, by reduction of the codimension (i.e.
by Theorem 2.1). This shows that fd = f1 and we are done. 2

According to the above theorem, in order to get the embeddings of Hermitian
spaces with parallel second fundamental form we have to study the first canonical
embeddings only. The following theorem gives a sharp description.

Theorem 4.2 Assume that the first canonical embedding of an irreducible Hermi-
tian symmetric space M of higher rank has parallel second fundamental form. Then
rank (M) = 2.

Proof. According to Theorem 2.5, if M = G/K ↪→ CPN has parallel second fun-
damental form then K (or a quotient S) must act on the normal space Np as the
isotropy of an irreducible Hermitian symmetric space. From the classification of ir-
reducible Hermitian symmetric space we will show that if rank (M) > 2 then there
is no irreducible Hermitian symmetric space H/S of dimension dim(Np). This will
follow from a case by case analysis on the list in the first column of Table 2.

So, let us start with the rank 3 exceptional Hermitian symmetric space
E7

T 1 · E6
.

Notice that the codimension of its first canonical embedding is 28 (see the third
column of Table 2 constructed using [NaTa, p. 654]). Thus, a simple inspection on
the second column of Table 2 implies that there is no irreducible 28-dimensional
Hermitian symmetric space whose isotropy is a quotient of T 1 ·E6. Then, the first

canonical embedding of
E7

T 1 · E6
does not have parallel second fundamental form.

Going on on the list,
E6

T 1 · Spin10
is of rank 2, so we do not need consider it.
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Hermitian symmetric
space G/K

dimC G/K
Codimension of its first

canonical embedding
Rank of

G/K

E7

T 1 · E6
27 28 3

E6

T 1 · Spin10
16 10 2

Sp(n)

U(n)

n(n + 1)

2

(
2n
n

)
−

(
2n

n− 2

)
− 1−

n(n + 1)

2
n

SO(n + 2)

T 1 · SO(n)
n 1 2

SO(2n)

U(n)

n(n− 1)

2
2n−1 −

n(n− 1)

2
− 1 [n/2]

SU(a + b)

S(U(a)× U(b))
ab

(
a + b

b

)
− ab− 1 min(a, b)

Table 2: Hermitian symmetric spaces, their dimensions, ranks and the codimension of their first
canonical embedding.

Let us consider further
Sp(n)
U(n)

: the codimension of its first canonical embedding is

h(n) =
(

2n
n

)
−
(

2n
n− 2

)
− 1− n(n+ 1)

2
. There are two candidates for Hermi-

tian symmetric spaces whose isotropy is U(n):
Sp(n)
U(n)

and
SO(2n)
U(n)

. However, some

computations show that dimension cannot be equal to h, for any n.

We can skip the case of
SO(n+ 2)
T 1 · SO(n)

, since its rank is two.

The Hermitian symmetric space
SO(2n)
U(n)

has first canonical embedding of codi-

mension 2n−1 − n(n− 1)
2

− 1. Again Hermitian symmetric spaces whose isotropy

is U(n) are given by
Sp(n)
U(n)

and
SO(2n)
U(n)

, but their dimensions cannot equal

2n−1 − n(n− 1)
2

− 1 for any n.
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Finally, for
SU(a+ b)

S(U(a)× U(b))
the codimension of its first canonical embedding is(

a+ b
b

)
− ab − 1. Hermitian symmetric spaces whose isotropy is a quotient of

S(U(a)×U(b)) are
Sp(n)
U(n)

,
SO(2n)
U(n)

with n = a or n = b and
SU(a+ b)

S(U(a)× U(b))
, but

none of them fits. 2

We are now going to show that the converse of Theorem 4.2 also holds. Namely,

Theorem 4.3 The first canonical embedding of an irreducible Hermitian symmet-
ric space M of rank two has parallel second fundamental form.

Proof. A first proof can be obtained by an explicit construction of an extrinsic
symmetry at each point of M . A second proof was given in [Mok, p.245] by means
of a pinching theorem due to A. Ros [Ros1]. Another proof is in Nakagawa-Takagi’s
paper [NaTa]. 2

The above theorem is also a consequence of the following conceptual argument.
Indeed, one can see that the list of submanifolds given by the images of the first
canonical embedding of an irreducible Hermitian symmetric space of rank two
agrees with the list of the unique complex orbits of the isotropy action on the
projective space P(T[K]G/K) i.e. the second column of Table 1. Thus, we just need
to show the following proposition.

Proposition 4.4 The complex orbit of the (projectivized) isotropy representation
of an irreducible Hermitian symmetric space G/K has parallel second fundamental
form.

Proof. Let g = k ⊕ p be a Cartan decomposition of the Lie algebra g of G. Then,
the isotropy action agrees with the restriction to p ∼= CN+1 of the adjoint action
of K.
Let M = K/K0 the unique complex orbit of the isotropy action on the projective
space CPN and suppose that M is an irreducible Hermitian symmetric space. Let
k = k0 + m be a Cartan decomposition of k. Then M is isometrically embedded in
CPN if it is endowed with a multiple of the opposite of the Killing form on m and
m ∼= T[p]M . A similar computation as in [BCO, Lemma 4.1.5] yields

[m, N[p]M ] ⊆ T[p]M .

This implies that M has parallel second fundamental form, since it is Hermitian
symmetric (cf. [BCO, Lemma 7.2.6]). 2

This completes the proof of Theorem 1.1.
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Remark 4.5 Observe that Proposition 4.4 can be also proven by using ideas in
[Mok, Chapter 6] about characteristic varieties. Furthermore, these orbits can also
be described by using the Jordan Algebra approach to Hermitian symmetric spaces,
namely, in terms of the so called tripotents [Roos] and [Kaup, p. 579].

Remark 4.6 Finally, we recall a problem proposed by A. Ros (Problem 5 in [Ros2,
p. 272]), namely to characterize the symmetric submanifolds of CPN without using
metric notions (that is to say, changing “holomorphic isometry” with “holomorphic
transformation”). We remark that Ros’ problem could be related to the geometric
characterization of the so called Helwig spaces see [Ber, p. 58, Problem II.4.5.].

Acknowledgments. We wish to thank Carlos Olmos for his many valuable suggestions.
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