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Abstract— The widespread diffusion of private networks in 
SOHO scenarios is fostering an increased deployment of Network 
Address Translators (NATs). The presence of NATs seriously 
limits end-to-end connectivity and prevents protocols like the 
Session Initiation Protocol (SIP) from working properly. This 
document shows how the Address List Extension (ALEX), which 
was originally developed to provide dual-stack and multi-homing 
support to SIP, can be used, with minor modifications, to ensure 
end-to-end connectivity for both media and signaling flows, 
without relying on intermediate relay nodes whenever it is 
possible. 

Index Terms- NAT, SIP, ALEX, STUN, ICE, hole punching. 
 

I.  INTRODUCTION  
The number of hosts connected to the Internet grows day by 

day making public Internet addresses a scarce and precious 
resource. The shortage of the IPv4 public addresses imposed 
the rationalization of address assignment policies and the use of 
IPv4 private addresses through the creation of private 
networks. This led to a wide adoption of Network Address 
Translators (NATs) [1][2]), which dynamically map the hosts 
of a private network over a restricted pool of public addresses 
and ports. The improved utilization of the IPv4 address space 
introduced by the deployment of NATs limited the need for 
new IPv6 addresses. However, NATs were developed with a 
client-server paradigm in mind: a private client can contact a 
public server and obtain the required services. For this reason 
the deployment of NATs highly limits the end-to-end 
connectivity of all the applications that use different paradigms 
(e.g., peer-to-peer and multimedia software). This article 
focuses on establishing direct sessions (particularly SIP [3] and 
RTP [4] media ones) between two UAs, even in the presence of 
NATs. The goal of this article is to prove that a slightly 
modified version of the SIP protocol including ALEX (Address 
List Extension [5]) can achieve this. ALEX has been formerly 
introduced as a solution to support dual-stack UAs and multi-
homed UAs as well, making it possible to the choose at 
runtime the best network addresses and ports to use for 
communication: the extension proposed here adds the support 
to UAs in NAT controlled networks. The idea is that each UA 
behind a NAT can be considered a multi-homed host since it 
has at least two network addresses when it tries to 
communicate with an external node: its private network 
address and a public network address dynamically assigned by 
the NAT. Note that it is not possible to know a priori which of 

these network addresses should be best used to communicate: 
for example, if two UAs are behind the same NAT, the best 
choice would be to use internal network addresses and ports. 
These considerations suggest that ALEX does not need deep 
changes to be an optimal solution also for NAT traversal, in 
order to provide an integrated solution for end-to-end 
connectivity in a large variety of network scenarios. This paper 
presents the modification to ALEX required to support NAT 
traversal and the results that come from its experimental 
evaluation. This paper is structured as follows. Section II 
explains why NATs may affect communications between hosts 
and how to overcome the problem. In the same section ALEX 
is introduced. Section III covers the related works. Then 
section IV explains how ALEX has been modified to support 
hosts in NAT controlled networks. Section V discusses the 
experimental results obtained comparing a modified softphone 
supporting ALEX to other reference softphones. Section VI 
summarizes the results obtained and introduces future 
directions. 

II. BACKGROUND 

A. NAT operations and traversal 
The Network Address Translator (NAT) is a function, most 

often implemented in edge routers, that changes the source 
network address/port of outgoing packets (base address/port in 
NAT terminology), with new ones (reflexive address/port in 
NAT terminology). The inverse operation is performed on the 
destination network address/port of incoming packets. One of 
the main applications of NAT is allowing a host with a private 
address to communicate to hosts in to the public Internet by 
substituting the private address (i.e., the base address) with a 
public one (reflexive address) before packets transit from the 
private part of the network to the public one. When two hosts 
placed in networks controlled by separate NATs want to start a 
session, first of all they have to determine their respective 
reflexive addresses/ports in order to be mutually reachable: the 
STUN [6][7] mechanism achieves this goal. The private host 
discovers its network public address/port by sending a STUN 
Binding request to a special public entity called STUN server. 
When the STUN server receives the request that has possibly 
traversed a NAT, it simply copies the source network 
address/port of the request in the payload of the related STUN 
Binding Response. In this way, the private host can extract its 
public network address and port pair from the payload of the 
Binding response. The public network address and port 
obtained are called server reflexive address and port 



(according to [8]). The mutual knowledge of the respective 
server reflexive addresses and ports does not ensure that the 
hosts are able to communicate: indeed NATs typically drop 
sessions started from external hosts to prevent network attacks. 
To establish a communication, both the hosts have to start the 
session making each NAT believe that the initiator is the host 
in the internal network: by doing this each NAT will create a 
temporary binding with the remote host, thus allowing 
incoming packets delivery. The procedure that results in the 
creation of such bindings will be referred in the following as 
connectivity establishment between hosts. Depending on the 
NAT policies, there are two mechanisms to achieve this result: 
hole punching [9] and relaying [9]. The hole punching 
technique tries to establish direct bidirectional flows by 
exchanging the server reflexive addresses and ports associated 
to the two hosts through an external support node and start 
send each other probe packets, using the reflexive addresses 
and ports as targets: since both the hosts are senders, the NATs 
will create the bindings (or “holes”, according to the hole 
punching terminology). Typically hole punching 
implementations consist in the integration of STUN servers 
directly in the hosts and the probe packets are STUN Binding 
Requests. In this case, the reflexive addresses and ports 
contained in the related STUN Binding Responses are referred 
as peer reflexive addresses and ports [8]. 

relayed addresses

private network
86.4.23.19

69.232.34.2

69.232.34.3
69.232.34.4
69.232.34.5

130.2.12.45

130.2.12.77
NAT

10.0.0.17

server reflexive address

peer reflexive address

STUN 
server

HOST 1

130.192.2.13

HOST 2
base address

relayed addresses

private network
86.4.23.19

69.232.34.2

69.232.34.3
69.232.34.4
69.232.34.5

130.2.12.45

130.2.12.77
NAT

10.0.0.17

server reflexive address

peer reflexive address

STUN 
server

HOST 1

130.192.2.13

HOST 2
base address

 
Figure 1. Example of base address and derived addresses. 

It is important to notice that, depending on the NAT type, 
the server reflexive address/port may not coincide with the peer 
reflexive address/port as the NAT might assign different public 
network addresses/ports to a host when it sends packets to 
different destinations. Furthermore if both the hosts are placed 
in networks controlled by NATs implementing the policy 
described, the hole punching will fail, since there is no chance 
to deliver the probe packets (both the server reflexive 
addresses/ports are different from the peer reflexive ones). If 
this is the case, the only solution available is relaying: an 
external public node with relay capability is required to 
exchange packets. This functionality has been recently 
integrated in the STUN entity [10] (i.e. STUN relay). An 
internal host can request one of the network address and port 
pairs of the relay (called relayed address and port) by sending 
a STUN Allocate Request message to the STUN relay, which 
returns the chosen network address and port in the related 
STUN Allocate response. From that point on, each packet 
received by the STUN relay on the relayed address and port 
will be forwarded to the host. When the session has been 
established, if for some reason there is no traffic between the 
hosts for a given period, the NATs may erase the temporary 
bindings: to refresh them the hosts have to exchange 

periodically keep-alive packets (again this is typically done 
exchanging STUN messages). 

Server reflexive, peer reflexive and relayed addresses will 
be referred in the following as derived addresses, meaning that 
they do not belong to any interface of the host, but they are 
mapped to it. Figure 1 shows an overview of base and derived 
network addresses. 

B. ALEX 
In [5] we have defined an extension to the SIP protocol 

called ALEX, providing full dual-stack and multi-homing 
support for both signaling and media flows. This extension 
allows a UA to send all its IPv4 and IPv6 addresses to a remote 
UA in order to discover which network address and port pair 
(or network endpoint, according to ALEX terminology) is the 
best choice. Indeed standard SIP UAs can announce only a 
network endpoint for the signaling flow and one for each media 
flow: so they have to make the best choice a priori. On the 
contrary ALEX defines a new SIP header field called ALEX-
item, which consists in a network address with the related ports 
to be associated to a flow (either a SIP session, or audio/video 
media), together with a priority value. The ALEX-items allows 
the UAs to exchange all their network endpoints in order to 
choose the most feasible ones at runtime. ALEX defines four 
steps executed by each UA during session establishment, as 
exemplified in Figure 2. 
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Figure 2. Dialog establishment using ALEX. 

The first one consists in gathering network endpoints: both 
the UAs collect all the network endpoints they can use to send 
and receive IP packets. Then the UAs exchange network 
endpoints placing them in the ALEX-items inside the SIP 
messages. The third step is the creation of the validation tables: 
each UA pairs each one of its endpoint with the ones obtained 
by the ALEX-items received by the other UA: these endpoints 
pairs are referred as candidate channels and are the entries of 
the validation tables. Validation tables on both UAs contain the 
same data. Concluding the last step is the validation step: this 
step consists in checking the candidate channels using STUN 
messages to verify connectivity: the channels with the highest 
priority successfully checked are referred as optimal channels. 
ALEX stores the optimal channels in the ALEX cache: these 
will be checked first during subsequent session establishments. 
Tests performed in [5] comparing a standard UA with an 
ALEX-enabled UA demonstrated the effectiveness and the 
limited overhead of ALEX. However, one of the assumptions 
of ALEX is direct connectivity between UAs, such as in case 



UAs have public addresses. Therefore, ALEX does not work in 
other cases, e.g., when one UA is behind a NAT. 

III. RELATED WORK 
Several proposals have been done to enable NAT traversal 

for signaling and media flows. 

NAT traversal for signaling flows is related to the 
establishment and maintenance of SIP dialogs1 between UAs 
that share at least one NAT in their path. Two separate 
problems are to be faced: the delivery of out-of-dialog SIP 
messages and the delivery of mid-dialog ones. Out-of-dialog 
messages are SIP messages used to establish a dialog (i.e. the 
INVITE message that creates a media session). Mid-dialog 
messages are used to update an existing dialog or to terminate 
it (e.g., the BYE message closing a media session between two 
UAs). The delivery of out-of-dialog requests implies that a UA 
be reachable by any other UA that can start a dialog. The 
solution proposed by the IETF [11] is based on the fact that in a 
typical SIP infrastructure, SIP UAs send out-of-dialog requests 
through support nodes called outbound (or edge) proxies. The 
first message sent by a UA is a REGISTER message: the 
request reaches a node called registrar that stores the 
registering information. According to this solution, since 
multiple registrations through different outbound proxies are 
possible, multiple flows (i.e., bidirectional streams of 
datagrams over UDP or TCP) towards the proxies can be 
created. These flows will be reused to deliver all the incoming 
out-of-dialog messages to the UA, thus placing proxies in the 
path of these messages. For mid-dialog messages, the solution 
proposed in [12] exploits the fact that usually SIP UAs 
exchange directly these messages using the addresses placed in 
the contact header of the SIP messages that created the dialog: 
the problem is that such addresses may not be globally routable 
when NATs are on the path of the messages. The proposed 
solution consists in adding a record-route field to the SIP 
header of each message forwarded: this field forces the UA to 
send all the mid-dialog messages through an edge proxy. Since 
the edge proxies may fail due to excessive load, the Registrar 
should stay in the path as well: if an edge proxy goes down, the 
registrar redirects the messages to an edge proxy that has an 
active flow with the UA. 

For the problem concerning NAT traversal of media flows, 
typically SIP uses SDP (Session Description Protocol) [13] for 
the negotiation of media-flow parameters and RTP (Real-Time 
Transport Protocol) for the delivery of the media flows 
themselves. During the SDP negotiation private UAs announce 
their network private endpoints. In this fashion the 
establishment of incoming RTP media flows is not possible. 
Interactive Connectivity Establishment (ICE) [8] is the state-of-
the art solution to ensure the establishment of media flows. ICE 
is not intended for signaling flows since ICE extends only 
SDP. Each UA must discover its server reflexive 
addresses/ports and must obtain at least a relayed address/port: 
these addresses and ports are inserted in new SDP fields called 
candidate fields, used by ICE to announce them. Both the UAs 

                                                        
1  Dialogs are end-to-end relationships between UAs, established to 

exchange SIP messages. 

start the hole punching procedure using the candidates 
exchanged to open a path through the NATs. 

The biggest problem of these solutions is that often 
signaling messages are still exchanged through relays even 
when direct connectivity is available (with an increased and 
unnecessary load on proxy servers). Our solution will 
overcome this problem. 

IV. OPERATING PRINCIPLES 
The aim of this paragraph is to discuss in detail how ALEX 

has been modified to support NAT traversal for both SIP and 
media flows: although this is a modified version of the original 
ALEX protocol presented in [5], will be referred with the same 
name for the sake of clarity. The new ALEX is still based on 
the four steps discussed in Section II.B, but some of them need 
to be modified in order to support new functionalities, which 
become active only when NAT traversal is required, therefore 
ensuring compatibility with traditional ALEX UAs. 

A. Gathering network address and port information 
Before trying to establish a SIP and/or multimedia session, 

a UA must collect all the addresses/ports that can be useful to 
establish the communication with other endpoints. If a UA is 
behind a NAT, its private address can be used only to 
communicate with other UAs in the internal network. To 
ensure connectivity, the UA must obtain at least a server 
reflexive address and port pair for each flow, plus a relayed 
address and port pair as a “fallback” solution in case direct 
connectivity is not possible: typically NATs assign the same 
network address to each flow and simply change the port. To 
reduce the overhead on STUN relays, the UA must gather no 
more than one relayed address and port pair for each flow. The 
gathering phase should be repeated every time a new SIP 
dialog is going to be established. These addresses (and ports) 
can be seen as “virtual addresses” (and ports) associated to the 
host, which therefore becomes a sort of multi-homed host (i.e. 
it is associated to more than one address and port). Moreover, 
as the discovering and management of all the available 
addresses of a UA is one of the key features of the NAT 
traversal, it is a logical consequence to think that ALEX can be 
beneficial in establishing optimal signaling and media flows 
among NATted user agents. 

B. Format of the ALEX-item field in SIP headers 
This section describes the changes in the format of the 

ALEX-item field needed to support NAT traversal. 

Figure 3 shows two sample ALEX-item fields. The new 
parameters are shown in italic bold. The first new parameter is 
seq: it is a sequence number increased by one each time the 
gathering procedure is repeated in order to point out the most 
updated network addresses and optimize the validation step. 
The second new parameter is addr-type, which specifies the 
type of the network address announced in the ALEX-item. The 
possible values of this parameter are base, relayed, srflx and 
prflx. Base is referred to a network address associated with an 
interface of the UA. Relayed, is meant for a relayed address, 
while srflx is intended for a server reflexive address. The last 
admitted value is prflx, standing for peer reflexive address. If 



two UAs have established a previous SIP dialog, thus 
discovering peer reflexive addresses/ports different from their 
server reflexive ones, the peer reflexive addresses/ports can be 
announced when the UAs attempt to create a new dialog. This 
may help to rapidly discover optimal channels. In the case of 
derived addresses the ALEX-item must include the base 
address as well: for such purpose the addr parameter is 
followed by the base one, containing the base address. 
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Figure 3. ALEX-item format. 

C. Address priority 
ALEX defines a priority field used to rank the gathered 

network endpoints. The highest priority will be assigned to 
network endpoints containing base addresses, permitting a 
direct connection in case either no NAT is present, or two 
internal UAs want to communicate. A lower priority value will 
be assigned to the network endpoints containing server 
reflexive addresses, followed by the ones containing relayed 
addresses. However, these ones will be the default network 
endpoints, meaning that they will be used to deliver packets 
temporarily until the validation step is completed. 

D. Creation of the validation tables 
UAs create validation tables following the standard 

procedure defined by ALEX. The only change is that each 
derived address/port is stored with the related base 
address/port. 

E. Address validation step 
The address validation step starts as soon as the validation 

tables are ready. It consists in the reiterated execution of a 
channel probing procedure based on the mutual exchange of 
STUN Binding Request and STUN Binding Response 
messages between the UAs. The goal is to ensure that both 
UAs have a chance to send a STUN Binding Request message 
and to receive related response directly from the other UA, thus 
punching a hole through NATs (if they are present) and 
informing the UAs that the channel is available. Considering 
for example the situation depicted in Figure 4, UA1 starts 
sending a STUN Binding request message and, when UA2 
sends back the related response, UA1 concludes that the 
channel is operative. Notice that UA2 is not aware of UA1’s 
conclusion and consequently UA2 anyway sends a STUN 
Binding Request to UA1. When UA2 receives the related 
answer, UA2 knows that the channel can be used. In order to 
cope with NATs (if present), both UAs should ideally send 
STUN Binding Requests simultaneously. If these hosts are 
behind two different NATs, this allows the STUN requests 
opening “holes” through each NAT, thus making the delivery 
of the STUN Binding Responses possible. In order to 
approximate a simultaneous transmission, each of UA1 and 

UA2 sends STUN Binding Requests as soon as it realizes it 
needs to open a media session with the other one. 

STUN Binding Request
receive state receive and transmit state

STUN Binding Response
confirmed state

STUN Binding Request

STUN Binding Response
confirmed state

UA1 UA2STUN Binding Request
receive state receive and transmit state

STUN Binding Response
confirmed state
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STUN Binding Response
confirmed state
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Figure 4. User Agents validating a channel. 

The finite state machine depicted in Figure 5 implements 
the connectivity check procedure. If a UA receives the initial 
STUN Binding Request, the connectivity check moves to the 
receive and transmit state: the other endpoint can send packets 
without fear of being dropped by a NAT. Then the UA sends 
back the related STUN Binding Response together with 
another STUN Binding Request: if the response arrives, the 
UA knows that the channel is operative in both directions, thus 
moving to the confirmed state. On the other hand, if a UA 
sends a STUN Binding Request before receiving one, the 
connectivity check transitions to the receive state. If the UA is 
behind a NAT, the STUN message has opened a channel 
toward the other endpoint and the UA is expecting to receive 
packets through such channel. When an answer is received it 
shows that the other endpoint can receive packets from the UA, 
which in turn can receive the other endpoint’s messages: a 
transition to the confirmed state occurs. 
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Figure 5. FSM handling the connectivity check procedure. 

If a STUN Binding Request is received while in the receive 
state, a STUN Binding Response is sent and a transition to the 
receive and transmit state occurs. In the original ALEX 
specification, i.e., when NATs are not involved, the only 
reason for packet retransmission was network loss. When 
dealing with NAT traversal, packets might be dropped by 
NATs: potentially more STUN message retransmissions are 
required to probe each channel. To reduce the delay due to 
multiple retransmissions, the validation step has been split in 
two sub-steps: the real-time validation step and the background 
validation step. The real-time validation step aims at 
discovering optimal channels as soon as possible: STUN 
messages are resent quickly and up to three times in case of 
missing answers. The real-time validation step begins probing 
the default channels (i.e. channels made up by default network 
endpoints) and stops as soon as an optimal channel has been 
discovered or when a dedicated timer fires. Upon timer 



expiration, the background validation step begins and 
concurrently both SIP and media sessions start using the best 
channels successfully checked. The background validation step 
is needed to probe again high priority channels that may have 
not been successfully checked in the real-time validation step 
or to probe the remaining channels that have not been tested yet 
because of the timer expiring. The goal of the background step 
is to discover optimal channels without delaying the beginning 
of the SIP and media communication and in a less aggressive 
way, in order to limit additional network load due to 
connectivity checks. The retransmission intervals of STUN 
messages in the background step are longer than in the real-
time step. 

F. The ALEX cache 
To fully support NAT traversal, each entry of the ALEX 

cache contains an additional tag to keep its current state. At 
first the state of an optimal channel is set to “live”. Periodically 
the UA sends a keep-alive message on the channel to ensure 
that it is still open: this is done at least until there is a session 
involving it. If no keep-alive messages are sent for a given 
period, the state of the channel is set to “probed”: the channel is 
no longer active, but it is kept in the cache as a hint for the 
establishment of subsequent sessions. 

G. Using the SIP channel to probe media flows 
As it is likely to happen, the real-time validation step 

concludes with the discovery of an optimal SIP channel before 
the 200 OK SIP message is sent. The information gathered 
can be used to reduce the number of STUN messages needed to 
detect optimal media channels. This is done setting the priority 
fields of the ALEX-items related to media flows placed in the 
200 OK answer. For example if the optimal SIP channel 
included a relayed address, the highest priority is assigned to 
the ALEX-item containing a relayed address for each media 
flow. 

V. EXPERIMENTAL RESULTS 
To evaluate the effectiveness of ALEX for NAT traversal, 

ALEX has been implemented in the OpenWengo NG [14], the 
same UA that has been used in [5] to demonstrate and assess 
the first ALEX version for multi-homing support. During the 
validation phase each STUN binding request is retransmitted 
up to three times if an answer is not received. The modified 
OpenWengo NG has been tested against two reference UAs: 
CounterPath X-lite [15] and PJSUA [16]. CounterPath X-lite is 
one of the most complete and easy-to-use existing UAs. X-lite 
supports both STUN and ICE functionalities, but ICE support 
was disabled during the tests since its implementation refers to 
an obsolete specification. PJSUA has been used as the 
reference UA to test ICE functionalities against ALEX. This 
UA is a sample textual application that is part of the PJSIP 
project. The tests performed aim at (i) demonstrating that 
ALEX provides connectivity between UAs independently of 
the kind of NAT present in the path (ii) comparing ALEX 
performance in terms of network overhead required to identify 
the optimal channel with the one of the alternative solutions. In 
order to define our test scenarios we analyzed the different 
typologies of NATs [17]. For instance, an application-friendly 

NAT always assigns the same reflexive address/port to an 
internal host regardless of the remote target. Furthermore, this 
NAT has a deterministic behavior, meaning that its behavior 
does not change without explicit reconfiguration. Entry-level 
NATs typically implement this policy since it is the least 
resource consuming. For the sake of completeness more 
complex NAT implementations with a non-deterministic 
behavior are also used in the experiments. Most of the times, 
these NATs may assign different reflexive addresses/ports 
when forwarding packets to different remote targets. All the 
NATs considered during the tests implement address and port-
dependent filtering policies. Using these NATs the following 
test scenarios, depicted in Figure 6, are considered in this work 
(i) UA1 and UA2 are in the same internal network, (ii) UA2 is 
behind an non-deterministic NAT, (iii) UA2 is behind an non-
deterministic NAT, (iv) UA1 and UA2 are behind two different 
application-friendly NATs, (v) UA1 is behind an application-
friendly NAT while UA2 is behind a non-deterministic NAT 
and (vi) both UAs are behind non-deterministic NATs. 
OpenWengo NG, X-lite and PJSUA are tested in each scenario 
trying to establish 20 subsequent media sessions, in order to be 
able to significantly average the obtained measurements. The 
UAs are executed on hosts connected to the Internet through 
ADSL connections at 4 Mbit/s (384 Kbps in download) and 
NATs, when deployed, are at the boundary of a private 
network (internal) and the public Internet (external). UAs 
established only media sessions consisting of a single audio 
flow, without any RTCP flows. The average end-to-end round 
trip time between the UAs is about 163 ms. SIP proxies, STUN 
servers and STUN relays are placed on the public Internet. The 
RTT from the UAs to the STUN server and the STUN relay is 
about 70 ms. 
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Figure 6. Scenarios  used for the tests. 

A. X-lite 
In a first set of tests the Record-Routing functionality is 

disabled on the proxies. X-lite performs standard STUN 
operations to discover a network endpoint that can be 
registered to receive out-of-dialog messages. While this is 
enough in scenario 1, in scenario 2 and 3 session establishment 
fails when UA1 is the caller. In fact, the ACK message cannot 
be delivered directly to UA2 since the NAT drops it. 
Furthermore, session establishment fails also in the remaining 
scenarios as the ACK cannot be delivered in any case since 
there are multiple NATs on the path between the UAs. The 
only way to complete the session establishment is to have the 



record-routing functionality enabled on the proxies: this 
solution guarantees the delivery of all SIP messages, but it does 
not solve the problem of media sessions whose packets are 
usually dropped (depending on the typology of NAT). Since 
both UAs send each other RTP packets simultaneously, holes 
through the NATs might be successfully opened, thus allowing 
the delivery of subsequent media packets (although the first 
media packets are lost): this is possible only if the NATs are 
application-friendly. This may work in scenario 2 and 3, but 
does not work in scenario 4, 5 and 6: so this approach cannot 
be considered a proper solution. 

B. PJSUA 
The SIP signaling considerations done above for X-lite are 

valid for PJSUA as well. Since PJSUA supports the ICE 
extension, direct media connectivity is possible in the first four 
scenarios: the STUN messages exchanged by the UAs open 
direct channels through the NATs. This does not apply to the 
remaining two scenarios because PJSUA does not support 
relayed sessions: since there is at least a non deterministic NAT 
on the path, direct media connectivity is not possible. 

C. ALEX-enabled OpenWengo NG 
Differently from the other UAs, the ALEX-enabled 

OpenWengo NG tries to open a direct SIP channel: in the first 
four scenarios this results in direct connectivity for both SIP 
and media flows. Out-of-dialog SIP messages (like the initial 
INVITE) still need to be delivered through a proxy that can 
reach the UA, while mid-dialog SIP messages are exchanged 
without intermediaries.  In scenarios 5 and 6 the situation is 
more complex because it is not possible to establish a direct 
communication due to the non deterministic behavior of NATs. 
In scenario 5 UA2 hides the presence of a NAT announcing a 
relayed network address and port. In this fashion UA2 can 
announce itself as a sort of “virtual” UA on the public Internet 
and, because of this, UA1 has only to punch a hole through its 
NAT contacting the relay. In scenario 6 both the UAs behave 
like UA2 did in the previous scenario: to ensure connectivity 
both the UAs have to announce relayed network addresses and 
ports in order to masquerade the presence of non deterministic 
NATs, thus media and signaling flows are delivered to the 
relay present on the public network. 

D. Performance evaluation 
Table 1 shows the results obtained measuring the time 

overhead introduced by ALEX, when compared to the behavior 
of a standard SIP UA. The first column shows the validation 
time for the SIP channel, the second one shows the same value 
for the media flow and the last one displays the latency 
reduction (in terms of end-to-end delay) measured when SIP 
messages are exchanged directly instead of being delivered 
through a SIP proxy. 

The time spent in the validation phase of the SIP channel is 
about 900 ms in scenario 1, 5 and 6 since UAs  retransmit  
every unanswered STUN binding request up to three times 
every 300 ms. In scenario 1 multiple retransmissions occur 
because server reflexive addresses and ports cannot be 
checked. The cause is the lack of hairpin translation [9] support 
on the NAT (i.e. the NAT drops sessions between hosts in the 

same internal network if they use server reflexive addresses 
and ports instead of the internal ones). In scenario 5 and 6 
multiple retransmission are due to NAT policies. The values in 
the second column are lower because the SIP channel properly 
works as a probe channel, i.e., the time needed to discover an 
optimal channel for media flows is reduced by using 
information already gathered during the identification of the 
optimal SIP channel. In scenario 5 and 6 the time spent to 
check the media flow is about 70 ms: this time is needed to 
send a STUN allocate request to the STUN relay and to receive 
the related response, since media packets have to be exchanged 
using a relay. 

TABLE I.  ALEX PERFORMANCE EVALUATION  

validation time [ms]  
Scenario 

SIP Media 
latency 

reduction 

1 867 34 50 % 
2 207 156 23.38 % 
3 192 167 25.76 % 
4 198 135 22.41 % 
5 874 70 23.11 % 
6 891 75 23.09 % 

 

Table 2 shows the results obtained comparing OpenWengo 
NG to PJSUA, i.e., comparing ALEX and ICE. Specifically, 
the lefthand half of the table shows the results obtained when 
UA1 sends the INVITE message that commences the session, 
while the righthand half shows the results obtained when the 
roles are inverted. The first two columns in each half display 
the number of STUN messages exchanged respectively during 
the ALEX validation step and the ICE validation phase. 

TABLE II.  COMPARING ICE AND ALEX 

#of STUN messages  
Scenario 

ALEX ICE 
Overhead  

(% in  bytes) 

1 14 6 -1.34 % 
2 9 6 -12.34 % 
3 11 4 +1.9 % 
4 8 4 -6.83 % 

 

Note that the number of messages exchanged during the 
ALEX validation step is higher since the algorithm 
implementation uses multiple retransmissions during the real-
time validation step, while the ICE implementation does not. 
Furthermore the algorithm used by ALEX is slightly more 
complex since both UAs send STUN binding requests, which 
is not always true for the validation algorithm used by in ICE. 
The last column shows the overhead of ALEX computed as the 
number of additional bytes exchanged by ALEX when 
compared to ICE, over the total number of bytes exchanged by 
ICE (i.e. the overhead includes the size of ALEX-items as well 
as the one of STUN messages). The overhead observed for 
ALEX is limited when compared to ICE mainly because the 
format of ALEX-items is more compact than the format of the 
candidate fields included in ICE. Indeed each STUN binding 



request has a transaction identifier used to correlate it with the 
corresponding STUN binding response. ICE has to store a 
parameter specific for such purpose in each candidate field. On 
the contrary ALEX computes this identifier from the identifier 
of the SIP dialog: since ALEX is an extension of SIP protocol, 
it is easy to exploit dialog-related data structures. The overall 
byte overhead is not affected by the STUN messages because 
of their limited size compared to SIP messages. Scenario 5 and 
6 have not been considered since PJSUA does not support 
relaying. 

VI. CONCLUSIONS AND FUTURE DIRECTIONS 
NAT traversal techniques for media session establishment 

typically ensure direct communication only for media flows, 
relegating the delivery of SIP messages (both out-of-dialog and 
mid-dialog ones) to SIP proxies according to the solution 
currently proposed within IETF  [11][12]. ALEX moves the 
state information needed to route messages from the proxies to 
the UAs. Moreover, in some cases ALEX ensures the delivery 
of out-of-dialog messages using relayed addresses obtained 
from a STUN relay. Furthermore, since the delivery of mid-
dialog messages is completely handled by the UAs, the 
registrar does not need to elaborate and forward all the mid-
dialog messages while edge-proxies are no longer necessary to 
make the SIP session fault-tolerant. In addition to that, end-to-
end sessions enable a significant reduction of network latencies 
and ALEX UAs succeed in establishing communication in all 
the network scenarios considered, while the ICE based UAs 
used during tests considered do not. The overhead introduced 
by ALEX validation step is negligible because of the small 
dimension of STUN messages. Thanks to ALEX effectiveness 
the need to have intermediate nodes in the path of the messages 
to ensure connectivity is considerably reduced, bringing the 
SIP protocol back to its original centralized peer-to-peer 
paradigm. 

Future work includes the deployment of ALEX in a peer-
to-peer infrastructure able to provide distributed relaying 
functionalities, which can be included directly in UAs. This 
will help to guarantee connectivity in every situation, while 
providing scalability since as the number of the UAs grows so 
does the number of potential relay nodes. 

A prototype of our solution is freely downloadable from 
our research web site, http://netgroup.polito.it. 
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