
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Providing End-to-End Connectivity to SIP User Agents Behind NATs / Baldi, Mario; DE MARCO, L; Risso, FULVIO
GIOVANNI OTTAVIO; Torrero, Livio. - ELETTRONICO. - (2008), pp. 5902-5908. (Intervento presentato al convegno
IEEE International Conference on Communications (ICC 2008), Advances in Networks & Internet Symposium tenutosi a
Beijing (China) nel May 19-23, 2008) [10.1109/ICC.2008.1103].

Original

Providing End-to-End Connectivity to SIP User Agents Behind NATs

Publisher:

Published
DOI:10.1109/ICC.2008.1103

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1667223 since:

IEEE

Providing End-to-End Connectivity to SIP User
Agents Behind NATs

Mario Baldi, Luca De Marco, Fulvio Risso, Livio Torrero
Dipartimento di Automatica e Informatica,

Politecnico di Torino, Torino, Italy
{mario.baldi,fulvio.risso,livio.torrero}@polito.it, luca.demarco@studenti.polito.it

Abstract— The widespread diffusion of private networks in
SOHO scenarios is fostering an increased deployment of Network
Address Translators (NATs). The presence of NATs seriously
limits end-to-end connectivity and prevents protocols like the
Session Initiation Protocol (SIP) from working properly. This
document shows how the Address List Extension (ALEX), which
was originally developed to provide dual-stack and multi-homing
support to SIP, can be used, with minor modifications, to ensure
end-to-end connectivity for both media and signaling flows,
without relying on intermediate relay nodes whenever it is
possible.

Index Terms- NAT, SIP, ALEX, STUN, ICE, hole punching.

I. INTRODUCTION
The number of hosts connected to the Internet grows day by

day making public Internet addresses a scarce and precious
resource. The shortage of the IPv4 public addresses imposed
the rationalization of address assignment policies and the use of
IPv4 private addresses through the creation of private
networks. This led to a wide adoption of Network Address
Translators (NATs) [1][2]), which dynamically map the hosts
of a private network over a restricted pool of public addresses
and ports. The improved utilization of the IPv4 address space
introduced by the deployment of NATs limited the need for
new IPv6 addresses. However, NATs were developed with a
client-server paradigm in mind: a private client can contact a
public server and obtain the required services. For this reason
the deployment of NATs highly limits the end-to-end
connectivity of all the applications that use different paradigms
(e.g., peer-to-peer and multimedia software). This article
focuses on establishing direct sessions (particularly SIP [3] and
RTP [4] media ones) between two UAs, even in the presence of
NATs. The goal of this article is to prove that a slightly
modified version of the SIP protocol including ALEX (Address
List Extension [5]) can achieve this. ALEX has been formerly
introduced as a solution to support dual-stack UAs and multi-
homed UAs as well, making it possible to the choose at
runtime the best network addresses and ports to use for
communication: the extension proposed here adds the support
to UAs in NAT controlled networks. The idea is that each UA
behind a NAT can be considered a multi-homed host since it
has at least two network addresses when it tries to
communicate with an external node: its private network
address and a public network address dynamically assigned by
the NAT. Note that it is not possible to know a priori which of

these network addresses should be best used to communicate:
for example, if two UAs are behind the same NAT, the best
choice would be to use internal network addresses and ports.
These considerations suggest that ALEX does not need deep
changes to be an optimal solution also for NAT traversal, in
order to provide an integrated solution for end-to-end
connectivity in a large variety of network scenarios. This paper
presents the modification to ALEX required to support NAT
traversal and the results that come from its experimental
evaluation. This paper is structured as follows. Section II
explains why NATs may affect communications between hosts
and how to overcome the problem. In the same section ALEX
is introduced. Section III covers the related works. Then
section IV explains how ALEX has been modified to support
hosts in NAT controlled networks. Section V discusses the
experimental results obtained comparing a modified softphone
supporting ALEX to other reference softphones. Section VI
summarizes the results obtained and introduces future
directions.

II. BACKGROUND

A. NAT operations and traversal
The Network Address Translator (NAT) is a function, most

often implemented in edge routers, that changes the source
network address/port of outgoing packets (base address/port in
NAT terminology), with new ones (reflexive address/port in
NAT terminology). The inverse operation is performed on the
destination network address/port of incoming packets. One of
the main applications of NAT is allowing a host with a private
address to communicate to hosts in to the public Internet by
substituting the private address (i.e., the base address) with a
public one (reflexive address) before packets transit from the
private part of the network to the public one. When two hosts
placed in networks controlled by separate NATs want to start a
session, first of all they have to determine their respective
reflexive addresses/ports in order to be mutually reachable: the
STUN [6][7] mechanism achieves this goal. The private host
discovers its network public address/port by sending a STUN
Binding request to a special public entity called STUN server.
When the STUN server receives the request that has possibly
traversed a NAT, it simply copies the source network
address/port of the request in the payload of the related STUN
Binding Response. In this way, the private host can extract its
public network address and port pair from the payload of the
Binding response. The public network address and port
obtained are called server reflexive address and port

(according to [8]). The mutual knowledge of the respective
server reflexive addresses and ports does not ensure that the
hosts are able to communicate: indeed NATs typically drop
sessions started from external hosts to prevent network attacks.
To establish a communication, both the hosts have to start the
session making each NAT believe that the initiator is the host
in the internal network: by doing this each NAT will create a
temporary binding with the remote host, thus allowing
incoming packets delivery. The procedure that results in the
creation of such bindings will be referred in the following as
connectivity establishment between hosts. Depending on the
NAT policies, there are two mechanisms to achieve this result:
hole punching [9] and relaying [9]. The hole punching
technique tries to establish direct bidirectional flows by
exchanging the server reflexive addresses and ports associated
to the two hosts through an external support node and start
send each other probe packets, using the reflexive addresses
and ports as targets: since both the hosts are senders, the NATs
will create the bindings (or “holes”, according to the hole
punching terminology). Typically hole punching
implementations consist in the integration of STUN servers
directly in the hosts and the probe packets are STUN Binding
Requests. In this case, the reflexive addresses and ports
contained in the related STUN Binding Responses are referred
as peer reflexive addresses and ports [8].

relayed addresses

private network
86.4.23.19

69.232.34.2

69.232.34.3
69.232.34.4
69.232.34.5

130.2.12.45

130.2.12.77
NAT

10.0.0.17

server reflexive address

peer reflexive address

STUN
server

HOST 1

130.192.2.13

HOST 2
base address

relayed addresses

private network
86.4.23.19

69.232.34.2

69.232.34.3
69.232.34.4
69.232.34.5

130.2.12.45

130.2.12.77
NAT

10.0.0.17

server reflexive address

peer reflexive address

STUN
server

HOST 1

130.192.2.13

HOST 2
base address

Figure 1. Example of base address and derived addresses.

It is important to notice that, depending on the NAT type,
the server reflexive address/port may not coincide with the peer
reflexive address/port as the NAT might assign different public
network addresses/ports to a host when it sends packets to
different destinations. Furthermore if both the hosts are placed
in networks controlled by NATs implementing the policy
described, the hole punching will fail, since there is no chance
to deliver the probe packets (both the server reflexive
addresses/ports are different from the peer reflexive ones). If
this is the case, the only solution available is relaying: an
external public node with relay capability is required to
exchange packets. This functionality has been recently
integrated in the STUN entity [10] (i.e. STUN relay). An
internal host can request one of the network address and port
pairs of the relay (called relayed address and port) by sending
a STUN Allocate Request message to the STUN relay, which
returns the chosen network address and port in the related
STUN Allocate response. From that point on, each packet
received by the STUN relay on the relayed address and port
will be forwarded to the host. When the session has been
established, if for some reason there is no traffic between the
hosts for a given period, the NATs may erase the temporary
bindings: to refresh them the hosts have to exchange

periodically keep-alive packets (again this is typically done
exchanging STUN messages).

Server reflexive, peer reflexive and relayed addresses will
be referred in the following as derived addresses, meaning that
they do not belong to any interface of the host, but they are
mapped to it. Figure 1 shows an overview of base and derived
network addresses.

B. ALEX
In [5] we have defined an extension to the SIP protocol

called ALEX, providing full dual-stack and multi-homing
support for both signaling and media flows. This extension
allows a UA to send all its IPv4 and IPv6 addresses to a remote
UA in order to discover which network address and port pair
(or network endpoint, according to ALEX terminology) is the
best choice. Indeed standard SIP UAs can announce only a
network endpoint for the signaling flow and one for each media
flow: so they have to make the best choice a priori. On the
contrary ALEX defines a new SIP header field called ALEX-
item, which consists in a network address with the related ports
to be associated to a flow (either a SIP session, or audio/video
media), together with a priority value. The ALEX-items allows
the UAs to exchange all their network endpoints in order to
choose the most feasible ones at runtime. ALEX defines four
steps executed by each UA during session establishment, as
exemplified in Figure 2.

UAA
INVITE (with ALEX-items)

Address announcement
PRA PRB UAB

Creation of connection lists
and validation phase

STUN checks
(both media and SIP)

Updated INVITE
200 OKSession update

SIP channel

Media channel

Validation Table

…

…

…

…

Local addr Remote addr

Validation Table

…

…

…

…

Local addr Remote addr

UAA
INVITE (with ALEX-items)

Address announcement
PRA PRB UAB

Creation of connection lists
and validation phase

STUN checks
(both media and SIP)

Updated INVITE
200 OKSession update

SIP channel

Media channel

Validation Table

…

…

…

…

Local addr Remote addr

Validation Table

…

…

…

…

Local addr Remote addr

Validation Table

…

…

…

…

Local addr Remote addr

Validation Table

…

…

…

…

Local addr Remote addr

Figure 2. Dialog establishment using ALEX.

The first one consists in gathering network endpoints: both
the UAs collect all the network endpoints they can use to send
and receive IP packets. Then the UAs exchange network
endpoints placing them in the ALEX-items inside the SIP
messages. The third step is the creation of the validation tables:
each UA pairs each one of its endpoint with the ones obtained
by the ALEX-items received by the other UA: these endpoints
pairs are referred as candidate channels and are the entries of
the validation tables. Validation tables on both UAs contain the
same data. Concluding the last step is the validation step: this
step consists in checking the candidate channels using STUN
messages to verify connectivity: the channels with the highest
priority successfully checked are referred as optimal channels.
ALEX stores the optimal channels in the ALEX cache: these
will be checked first during subsequent session establishments.
Tests performed in [5] comparing a standard UA with an
ALEX-enabled UA demonstrated the effectiveness and the
limited overhead of ALEX. However, one of the assumptions
of ALEX is direct connectivity between UAs, such as in case

UAs have public addresses. Therefore, ALEX does not work in
other cases, e.g., when one UA is behind a NAT.

III. RELATED WORK
Several proposals have been done to enable NAT traversal

for signaling and media flows.

NAT traversal for signaling flows is related to the
establishment and maintenance of SIP dialogs1 between UAs
that share at least one NAT in their path. Two separate
problems are to be faced: the delivery of out-of-dialog SIP
messages and the delivery of mid-dialog ones. Out-of-dialog
messages are SIP messages used to establish a dialog (i.e. the
INVITE message that creates a media session). Mid-dialog
messages are used to update an existing dialog or to terminate
it (e.g., the BYE message closing a media session between two
UAs). The delivery of out-of-dialog requests implies that a UA
be reachable by any other UA that can start a dialog. The
solution proposed by the IETF [11] is based on the fact that in a
typical SIP infrastructure, SIP UAs send out-of-dialog requests
through support nodes called outbound (or edge) proxies. The
first message sent by a UA is a REGISTER message: the
request reaches a node called registrar that stores the
registering information. According to this solution, since
multiple registrations through different outbound proxies are
possible, multiple flows (i.e., bidirectional streams of
datagrams over UDP or TCP) towards the proxies can be
created. These flows will be reused to deliver all the incoming
out-of-dialog messages to the UA, thus placing proxies in the
path of these messages. For mid-dialog messages, the solution
proposed in [12] exploits the fact that usually SIP UAs
exchange directly these messages using the addresses placed in
the contact header of the SIP messages that created the dialog:
the problem is that such addresses may not be globally routable
when NATs are on the path of the messages. The proposed
solution consists in adding a record-route field to the SIP
header of each message forwarded: this field forces the UA to
send all the mid-dialog messages through an edge proxy. Since
the edge proxies may fail due to excessive load, the Registrar
should stay in the path as well: if an edge proxy goes down, the
registrar redirects the messages to an edge proxy that has an
active flow with the UA.

For the problem concerning NAT traversal of media flows,
typically SIP uses SDP (Session Description Protocol) [13] for
the negotiation of media-flow parameters and RTP (Real-Time
Transport Protocol) for the delivery of the media flows
themselves. During the SDP negotiation private UAs announce
their network private endpoints. In this fashion the
establishment of incoming RTP media flows is not possible.
Interactive Connectivity Establishment (ICE) [8] is the state-of-
the art solution to ensure the establishment of media flows. ICE
is not intended for signaling flows since ICE extends only
SDP. Each UA must discover its server reflexive
addresses/ports and must obtain at least a relayed address/port:
these addresses and ports are inserted in new SDP fields called
candidate fields, used by ICE to announce them. Both the UAs

1 Dialogs are end-to-end relationships between UAs, established to

exchange SIP messages.

start the hole punching procedure using the candidates
exchanged to open a path through the NATs.

The biggest problem of these solutions is that often
signaling messages are still exchanged through relays even
when direct connectivity is available (with an increased and
unnecessary load on proxy servers). Our solution will
overcome this problem.

IV. OPERATING PRINCIPLES
The aim of this paragraph is to discuss in detail how ALEX

has been modified to support NAT traversal for both SIP and
media flows: although this is a modified version of the original
ALEX protocol presented in [5], will be referred with the same
name for the sake of clarity. The new ALEX is still based on
the four steps discussed in Section II.B, but some of them need
to be modified in order to support new functionalities, which
become active only when NAT traversal is required, therefore
ensuring compatibility with traditional ALEX UAs.

A. Gathering network address and port information
Before trying to establish a SIP and/or multimedia session,

a UA must collect all the addresses/ports that can be useful to
establish the communication with other endpoints. If a UA is
behind a NAT, its private address can be used only to
communicate with other UAs in the internal network. To
ensure connectivity, the UA must obtain at least a server
reflexive address and port pair for each flow, plus a relayed
address and port pair as a “fallback” solution in case direct
connectivity is not possible: typically NATs assign the same
network address to each flow and simply change the port. To
reduce the overhead on STUN relays, the UA must gather no
more than one relayed address and port pair for each flow. The
gathering phase should be repeated every time a new SIP
dialog is going to be established. These addresses (and ports)
can be seen as “virtual addresses” (and ports) associated to the
host, which therefore becomes a sort of multi-homed host (i.e.
it is associated to more than one address and port). Moreover,
as the discovering and management of all the available
addresses of a UA is one of the key features of the NAT
traversal, it is a logical consequence to think that ALEX can be
beneficial in establishing optimal signaling and media flows
among NATted user agents.

B. Format of the ALEX-item field in SIP headers
This section describes the changes in the format of the

ALEX-item field needed to support NAT traversal.

Figure 3 shows two sample ALEX-item fields. The new
parameters are shown in italic bold. The first new parameter is
seq: it is a sequence number increased by one each time the
gathering procedure is repeated in order to point out the most
updated network addresses and optimize the validation step.
The second new parameter is addr-type, which specifies the
type of the network address announced in the ALEX-item. The
possible values of this parameter are base, relayed, srflx and
prflx. Base is referred to a network address associated with an
interface of the UA. Relayed, is meant for a relayed address,
while srflx is intended for a server reflexive address. The last
admitted value is prflx, standing for peer reflexive address. If

two UAs have established a previous SIP dialog, thus
discovering peer reflexive addresses/ports different from their
server reflexive ones, the peer reflexive addresses/ports can be
announced when the UAs attempt to create a new dialog. This
may help to rapidly discover optimal channels. In the case of
derived addresses the ALEX-item must include the base
address as well: for such purpose the addr parameter is
followed by the base one, containing the base address.

private network

86.4.23.19

130.2.12.45

10.0.0.17

ALEX-item:audio;exp=60;q=0.6;sn=1;srflx=130.2.12.45;rtp=7022;base=10.0.0.17;rtp=7000;

public Internet
130.192.2.13

UA2

ALEX-item:audio;exp=60;q=0.8;sn=1;base=130.192.2.13;rtp=7000;

UA 1 UA 2NAT
STUN
server

private network

86.4.23.19

130.2.12.45

10.0.0.17

ALEX-item:audio;exp=60;q=0.6;sn=1;srflx=130.2.12.45;rtp=7022;base=10.0.0.17;rtp=7000;

public Internet
130.192.2.13

UA2

ALEX-item:audio;exp=60;q=0.8;sn=1;base=130.192.2.13;rtp=7000;

UA 1 UA 2NAT
STUN
server

Figure 3. ALEX-item format.

C. Address priority
ALEX defines a priority field used to rank the gathered

network endpoints. The highest priority will be assigned to
network endpoints containing base addresses, permitting a
direct connection in case either no NAT is present, or two
internal UAs want to communicate. A lower priority value will
be assigned to the network endpoints containing server
reflexive addresses, followed by the ones containing relayed
addresses. However, these ones will be the default network
endpoints, meaning that they will be used to deliver packets
temporarily until the validation step is completed.

D. Creation of the validation tables
UAs create validation tables following the standard

procedure defined by ALEX. The only change is that each
derived address/port is stored with the related base
address/port.

E. Address validation step
The address validation step starts as soon as the validation

tables are ready. It consists in the reiterated execution of a
channel probing procedure based on the mutual exchange of
STUN Binding Request and STUN Binding Response
messages between the UAs. The goal is to ensure that both
UAs have a chance to send a STUN Binding Request message
and to receive related response directly from the other UA, thus
punching a hole through NATs (if they are present) and
informing the UAs that the channel is available. Considering
for example the situation depicted in Figure 4, UA1 starts
sending a STUN Binding request message and, when UA2
sends back the related response, UA1 concludes that the
channel is operative. Notice that UA2 is not aware of UA1’s
conclusion and consequently UA2 anyway sends a STUN
Binding Request to UA1. When UA2 receives the related
answer, UA2 knows that the channel can be used. In order to
cope with NATs (if present), both UAs should ideally send
STUN Binding Requests simultaneously. If these hosts are
behind two different NATs, this allows the STUN requests
opening “holes” through each NAT, thus making the delivery
of the STUN Binding Responses possible. In order to
approximate a simultaneous transmission, each of UA1 and

UA2 sends STUN Binding Requests as soon as it realizes it
needs to open a media session with the other one.

STUN Binding Request
receive state receive and transmit state

STUN Binding Response
confirmed state

STUN Binding Request

STUN Binding Response
confirmed state

UA1 UA2STUN Binding Request
receive state receive and transmit state

STUN Binding Response
confirmed state

STUN Binding Request

STUN Binding Response
confirmed state

UA1 UA2

Figure 4. User Agents validating a channel.

The finite state machine depicted in Figure 5 implements
the connectivity check procedure. If a UA receives the initial
STUN Binding Request, the connectivity check moves to the
receive and transmit state: the other endpoint can send packets
without fear of being dropped by a NAT. Then the UA sends
back the related STUN Binding Response together with
another STUN Binding Request: if the response arrives, the
UA knows that the channel is operative in both directions, thus
moving to the confirmed state. On the other hand, if a UA
sends a STUN Binding Request before receiving one, the
connectivity check transitions to the receive state. If the UA is
behind a NAT, the STUN message has opened a channel
toward the other endpoint and the UA is expecting to receive
packets through such channel. When an answer is received it
shows that the other endpoint can receive packets from the UA,
which in turn can receive the other endpoint’s messages: a
transition to the confirmed state occurs.

idle

receive
and

transmit
receive

recv. binding req.

send binding resp.
send binding req.

recv. timeout

send binding req. recv. binding req.

send binding resp.

recv. binding req.

send binding resp.

recv. timeout

send binding req.

recv. binding resp.

-

recv. binding resp.

-
recv. binding resp.

-

start check

send binding req.

confirmed

recv. binding req.

send binding resp.

idle

receive
and

transmit
receive

recv. binding req.

send binding resp.
send binding req.

recv. binding req.

send binding resp.
send binding req.

recv. timeout

send binding req.

recv. timeout

send binding req. recv. binding req.

send binding resp.

recv. binding req.

send binding resp.

recv. binding req.

send binding resp.

recv. binding req.

send binding resp.

recv. timeout

send binding req.

recv. timeout

send binding req.

recv. binding resp.

-

recv. binding resp.

-

recv. binding resp.

-

recv. binding resp.

-
recv. binding resp.

-

recv. binding resp.

-

start check

send binding req.

start check

send binding req.

confirmedconfirmed

recv. binding req.

send binding resp.

recv. binding req.

send binding resp.
Figure 5. FSM handling the connectivity check procedure.

If a STUN Binding Request is received while in the receive
state, a STUN Binding Response is sent and a transition to the
receive and transmit state occurs. In the original ALEX
specification, i.e., when NATs are not involved, the only
reason for packet retransmission was network loss. When
dealing with NAT traversal, packets might be dropped by
NATs: potentially more STUN message retransmissions are
required to probe each channel. To reduce the delay due to
multiple retransmissions, the validation step has been split in
two sub-steps: the real-time validation step and the background
validation step. The real-time validation step aims at
discovering optimal channels as soon as possible: STUN
messages are resent quickly and up to three times in case of
missing answers. The real-time validation step begins probing
the default channels (i.e. channels made up by default network
endpoints) and stops as soon as an optimal channel has been
discovered or when a dedicated timer fires. Upon timer

expiration, the background validation step begins and
concurrently both SIP and media sessions start using the best
channels successfully checked. The background validation step
is needed to probe again high priority channels that may have
not been successfully checked in the real-time validation step
or to probe the remaining channels that have not been tested yet
because of the timer expiring. The goal of the background step
is to discover optimal channels without delaying the beginning
of the SIP and media communication and in a less aggressive
way, in order to limit additional network load due to
connectivity checks. The retransmission intervals of STUN
messages in the background step are longer than in the real-
time step.

F. The ALEX cache
To fully support NAT traversal, each entry of the ALEX

cache contains an additional tag to keep its current state. At
first the state of an optimal channel is set to “live”. Periodically
the UA sends a keep-alive message on the channel to ensure
that it is still open: this is done at least until there is a session
involving it. If no keep-alive messages are sent for a given
period, the state of the channel is set to “probed”: the channel is
no longer active, but it is kept in the cache as a hint for the
establishment of subsequent sessions.

G. Using the SIP channel to probe media flows
As it is likely to happen, the real-time validation step

concludes with the discovery of an optimal SIP channel before
the 200 OK SIP message is sent. The information gathered
can be used to reduce the number of STUN messages needed to
detect optimal media channels. This is done setting the priority
fields of the ALEX-items related to media flows placed in the
200 OK answer. For example if the optimal SIP channel
included a relayed address, the highest priority is assigned to
the ALEX-item containing a relayed address for each media
flow.

V. EXPERIMENTAL RESULTS
To evaluate the effectiveness of ALEX for NAT traversal,

ALEX has been implemented in the OpenWengo NG [14], the
same UA that has been used in [5] to demonstrate and assess
the first ALEX version for multi-homing support. During the
validation phase each STUN binding request is retransmitted
up to three times if an answer is not received. The modified
OpenWengo NG has been tested against two reference UAs:
CounterPath X-lite [15] and PJSUA [16]. CounterPath X-lite is
one of the most complete and easy-to-use existing UAs. X-lite
supports both STUN and ICE functionalities, but ICE support
was disabled during the tests since its implementation refers to
an obsolete specification. PJSUA has been used as the
reference UA to test ICE functionalities against ALEX. This
UA is a sample textual application that is part of the PJSIP
project. The tests performed aim at (i) demonstrating that
ALEX provides connectivity between UAs independently of
the kind of NAT present in the path (ii) comparing ALEX
performance in terms of network overhead required to identify
the optimal channel with the one of the alternative solutions. In
order to define our test scenarios we analyzed the different
typologies of NATs [17]. For instance, an application-friendly

NAT always assigns the same reflexive address/port to an
internal host regardless of the remote target. Furthermore, this
NAT has a deterministic behavior, meaning that its behavior
does not change without explicit reconfiguration. Entry-level
NATs typically implement this policy since it is the least
resource consuming. For the sake of completeness more
complex NAT implementations with a non-deterministic
behavior are also used in the experiments. Most of the times,
these NATs may assign different reflexive addresses/ports
when forwarding packets to different remote targets. All the
NATs considered during the tests implement address and port-
dependent filtering policies. Using these NATs the following
test scenarios, depicted in Figure 6, are considered in this work
(i) UA1 and UA2 are in the same internal network, (ii) UA2 is
behind an non-deterministic NAT, (iii) UA2 is behind an non-
deterministic NAT, (iv) UA1 and UA2 are behind two different
application-friendly NATs, (v) UA1 is behind an application-
friendly NAT while UA2 is behind a non-deterministic NAT
and (vi) both UAs are behind non-deterministic NATs.
OpenWengo NG, X-lite and PJSUA are tested in each scenario
trying to establish 20 subsequent media sessions, in order to be
able to significantly average the obtained measurements. The
UAs are executed on hosts connected to the Internet through
ADSL connections at 4 Mbit/s (384 Kbps in download) and
NATs, when deployed, are at the boundary of a private
network (internal) and the public Internet (external). UAs
established only media sessions consisting of a single audio
flow, without any RTCP flows. The average end-to-end round
trip time between the UAs is about 163 ms. SIP proxies, STUN
servers and STUN relays are placed on the public Internet. The
RTT from the UAs to the STUN server and the STUN relay is
about 70 ms.

internal
networkUA 1

NAT

UA 2

SIP
Proxy

scenario 1

internal
network

UA 1

SIP
Proxy

1

SIP
Proxy

2

NAT

UA 2

scenario 2

internal
network

UA 1

SIP
Proxy

1

SIP
Proxy

2

NAT

UA 2

scenario 3

internal
network

internal
network

NAT

SIP
Proxy

1

NAT

SIP
Proxy

2

UA 1 UA 2

scenario 4

internal
network

internal
network

NAT

SIP
Proxy

1

SIP
Proxy

2

UA 1 UA 2

scenario 5

internal
network

internal
network

SIP
Proxy

1

SIP
Proxy

2

UA 1 UA 2

scenario 6

NAT NAT

application-friendly NAT

NAT

NAT
non-deterministic NAT

NAT

internal
networkUA 1

NAT

UA 2

SIP
Proxy

scenario 1

internal
network

UA 1

SIP
Proxy

1

SIP
Proxy

2

NAT

UA 2

scenario 2

internal
network

UA 1

SIP
Proxy

1

SIP
Proxy

2

NAT

UA 2

scenario 3

internal
network

internal
network

NAT

SIP
Proxy

1

NAT

SIP
Proxy

2

UA 1 UA 2

scenario 4

internal
network

internal
network

NAT

SIP
Proxy

1

SIP
Proxy

2

UA 1 UA 2

scenario 5

internal
network

internal
network

SIP
Proxy

1

SIP
Proxy

2

UA 1 UA 2

scenario 6

NAT NAT

application-friendly NAT

NAT

NAT
non-deterministic NAT

NAT

Figure 6. Scenarios used for the tests.

A. X-lite
In a first set of tests the Record-Routing functionality is

disabled on the proxies. X-lite performs standard STUN
operations to discover a network endpoint that can be
registered to receive out-of-dialog messages. While this is
enough in scenario 1, in scenario 2 and 3 session establishment
fails when UA1 is the caller. In fact, the ACK message cannot
be delivered directly to UA2 since the NAT drops it.
Furthermore, session establishment fails also in the remaining
scenarios as the ACK cannot be delivered in any case since
there are multiple NATs on the path between the UAs. The
only way to complete the session establishment is to have the

record-routing functionality enabled on the proxies: this
solution guarantees the delivery of all SIP messages, but it does
not solve the problem of media sessions whose packets are
usually dropped (depending on the typology of NAT). Since
both UAs send each other RTP packets simultaneously, holes
through the NATs might be successfully opened, thus allowing
the delivery of subsequent media packets (although the first
media packets are lost): this is possible only if the NATs are
application-friendly. This may work in scenario 2 and 3, but
does not work in scenario 4, 5 and 6: so this approach cannot
be considered a proper solution.

B. PJSUA
The SIP signaling considerations done above for X-lite are

valid for PJSUA as well. Since PJSUA supports the ICE
extension, direct media connectivity is possible in the first four
scenarios: the STUN messages exchanged by the UAs open
direct channels through the NATs. This does not apply to the
remaining two scenarios because PJSUA does not support
relayed sessions: since there is at least a non deterministic NAT
on the path, direct media connectivity is not possible.

C. ALEX-enabled OpenWengo NG
Differently from the other UAs, the ALEX-enabled

OpenWengo NG tries to open a direct SIP channel: in the first
four scenarios this results in direct connectivity for both SIP
and media flows. Out-of-dialog SIP messages (like the initial
INVITE) still need to be delivered through a proxy that can
reach the UA, while mid-dialog SIP messages are exchanged
without intermediaries. In scenarios 5 and 6 the situation is
more complex because it is not possible to establish a direct
communication due to the non deterministic behavior of NATs.
In scenario 5 UA2 hides the presence of a NAT announcing a
relayed network address and port. In this fashion UA2 can
announce itself as a sort of “virtual” UA on the public Internet
and, because of this, UA1 has only to punch a hole through its
NAT contacting the relay. In scenario 6 both the UAs behave
like UA2 did in the previous scenario: to ensure connectivity
both the UAs have to announce relayed network addresses and
ports in order to masquerade the presence of non deterministic
NATs, thus media and signaling flows are delivered to the
relay present on the public network.

D. Performance evaluation
Table 1 shows the results obtained measuring the time

overhead introduced by ALEX, when compared to the behavior
of a standard SIP UA. The first column shows the validation
time for the SIP channel, the second one shows the same value
for the media flow and the last one displays the latency
reduction (in terms of end-to-end delay) measured when SIP
messages are exchanged directly instead of being delivered
through a SIP proxy.

The time spent in the validation phase of the SIP channel is
about 900 ms in scenario 1, 5 and 6 since UAs retransmit
every unanswered STUN binding request up to three times
every 300 ms. In scenario 1 multiple retransmissions occur
because server reflexive addresses and ports cannot be
checked. The cause is the lack of hairpin translation [9] support
on the NAT (i.e. the NAT drops sessions between hosts in the

same internal network if they use server reflexive addresses
and ports instead of the internal ones). In scenario 5 and 6
multiple retransmission are due to NAT policies. The values in
the second column are lower because the SIP channel properly
works as a probe channel, i.e., the time needed to discover an
optimal channel for media flows is reduced by using
information already gathered during the identification of the
optimal SIP channel. In scenario 5 and 6 the time spent to
check the media flow is about 70 ms: this time is needed to
send a STUN allocate request to the STUN relay and to receive
the related response, since media packets have to be exchanged
using a relay.

TABLE I. ALEX PERFORMANCE EVALUATION

validation time [ms]
Scenario

SIP Media
latency

reduction

1 867 34 50 %
2 207 156 23.38 %
3 192 167 25.76 %
4 198 135 22.41 %
5 874 70 23.11 %
6 891 75 23.09 %

Table 2 shows the results obtained comparing OpenWengo
NG to PJSUA, i.e., comparing ALEX and ICE. Specifically,
the lefthand half of the table shows the results obtained when
UA1 sends the INVITE message that commences the session,
while the righthand half shows the results obtained when the
roles are inverted. The first two columns in each half display
the number of STUN messages exchanged respectively during
the ALEX validation step and the ICE validation phase.

TABLE II. COMPARING ICE AND ALEX

#of STUN messages
Scenario

ALEX ICE
Overhead

(% in bytes)

1 14 6 -1.34 %
2 9 6 -12.34 %
3 11 4 +1.9 %
4 8 4 -6.83 %

Note that the number of messages exchanged during the
ALEX validation step is higher since the algorithm
implementation uses multiple retransmissions during the real-
time validation step, while the ICE implementation does not.
Furthermore the algorithm used by ALEX is slightly more
complex since both UAs send STUN binding requests, which
is not always true for the validation algorithm used by in ICE.
The last column shows the overhead of ALEX computed as the
number of additional bytes exchanged by ALEX when
compared to ICE, over the total number of bytes exchanged by
ICE (i.e. the overhead includes the size of ALEX-items as well
as the one of STUN messages). The overhead observed for
ALEX is limited when compared to ICE mainly because the
format of ALEX-items is more compact than the format of the
candidate fields included in ICE. Indeed each STUN binding

request has a transaction identifier used to correlate it with the
corresponding STUN binding response. ICE has to store a
parameter specific for such purpose in each candidate field. On
the contrary ALEX computes this identifier from the identifier
of the SIP dialog: since ALEX is an extension of SIP protocol,
it is easy to exploit dialog-related data structures. The overall
byte overhead is not affected by the STUN messages because
of their limited size compared to SIP messages. Scenario 5 and
6 have not been considered since PJSUA does not support
relaying.

VI. CONCLUSIONS AND FUTURE DIRECTIONS
NAT traversal techniques for media session establishment

typically ensure direct communication only for media flows,
relegating the delivery of SIP messages (both out-of-dialog and
mid-dialog ones) to SIP proxies according to the solution
currently proposed within IETF [11][12]. ALEX moves the
state information needed to route messages from the proxies to
the UAs. Moreover, in some cases ALEX ensures the delivery
of out-of-dialog messages using relayed addresses obtained
from a STUN relay. Furthermore, since the delivery of mid-
dialog messages is completely handled by the UAs, the
registrar does not need to elaborate and forward all the mid-
dialog messages while edge-proxies are no longer necessary to
make the SIP session fault-tolerant. In addition to that, end-to-
end sessions enable a significant reduction of network latencies
and ALEX UAs succeed in establishing communication in all
the network scenarios considered, while the ICE based UAs
used during tests considered do not. The overhead introduced
by ALEX validation step is negligible because of the small
dimension of STUN messages. Thanks to ALEX effectiveness
the need to have intermediate nodes in the path of the messages
to ensure connectivity is considerably reduced, bringing the
SIP protocol back to its original centralized peer-to-peer
paradigm.

Future work includes the deployment of ALEX in a peer-
to-peer infrastructure able to provide distributed relaying
functionalities, which can be included directly in UAs. This
will help to guarantee connectivity in every situation, while
providing scalability since as the number of the UAs grows so
does the number of potential relay nodes.

A prototype of our solution is freely downloadable from
our research web site, http://netgroup.polito.it.

REFERENCES
[1] K. Egevang, P. Francis, “The IP Network Address Translator,”

http://www.ietf.org/rfc/rfc1631.txt, RFC 1631, May 1994.
[2] P. Srisuresh, M. Holdrege, “IP NAT Terminology and Considerations,”

http://www.ietf.org/rfc/rfc2663.txt, RFC 2663, Aug. 1999.
[3] J. Rosemberg et al., “SIP: Session Initiation Protocol,” IETF Network

Working Group, http://www.ietf.org/rfc/rfc3261.txt, RFC 3261, June
2002.

[4] H. Schulzrinne et al., “RTP: a transport protocol for real time
Applications,” IETF Network Working Group, http://www.ietf.org/rfc/
rfc3550.txt, RFC 3550, July 2003.

[5] Mario Baldi, Fulvio Risso, Livio Torrero, “Adding Multi-Homing and
Dual-Stack Support to the Session Initiation Protocol,” Internet
Protocol Symposium, Washinghton D.C., USA, november 2007

[6] J. Rosenberg, J. Weinberger, C. Huitema, R. Mahy, “STUN - Simple
Traversal of User Datagram Protocol (UDP) Through NATs,”
http://www.ietf.org/rfc/rfc3489.txt, RFC 3489, Mar. 2003.

[7] Rosenberg, J., “Session Traversal Utilities for NAT (STUN),”
http://tools.ietf.org/html/draft-ietf-behave-rfc3489bis-06, Oct. 2006.

[8] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol
for NAT Traversal for Offer/Answer Protocols,” http://tools.ietf.org/
html/draft-ietf-mmusic-ice-18, September. 2007.

[9] Bryan Ford, Pyda Srisuresh, Dan Kegel, “Peer-to-Peer Communication
Across NATs,” USENIX 2005

[10] J. Rosenberg, R. Mahy, C. Huitema, “Traversal Using Relays around
NATs (TURN): Relay Extensions to Session Traversal Utilities for NAT
(STUN),” http://tools.ietf.org/html/draft-ietf-behave-turn-04, July 2007.

[11] C. Jennings, Ed., R. Mahy, Ed., “Managing Client Initiated Connections
in SIP,” http://tools.ietf.org/html/draft-ietf-sip-outbound-10, July 2007.

[12] K. Johns, “Routing of mid dialog requests using sip-outbound,”
http://tools.ietf.org/html/draft-johns-sip-outbound-middialog-draft-02,
Jan. 2007.

[13] M. Handley, V. Jacobson, “SDP: Session Description Protocol,”
http://www.ietf.org/rfc/rfc2327.txt, RFC 2327, Apr. 1998.

[14] The OpenWengo Project. Available at http://www.openwengo.org.
[15] CounterPath X-lite. Available at http://www.counterpath.com.
[16] Pjsip.org. Available at http://www.pjsip.org.
[17] F. Audet, Ed., C. Jennings, “NAT Behavioral Requirements for Unicast

UDP,” http://www.ietf.org/rfc/rfc4787.txt, RFC 4787, Jan. 2007 .

