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Abstract

The lattice Boltzmann method (LBM) for the incompressible Navier-Stokes (NS)
equations and the gas kinetic scheme for the compressible NS equations are based
on the kinetic theory of gases. In the latter case, however, it is shown that the
kinetic formulation is necessary only in the discontinuous reconstruction of fluid-
dynamic variables for shock capturing. Analogously we will discuss the reduction
of a kinetic method for the incompressible case, where the LBM scheme will be
shown to shrink to an artificial compressibility type finite-difference scheme. We
will prove first that a simple and compact LBM scheme can not catch rarefied
effects beyond Navier-Stokes and hence that it is worth the effort to develop kinetic-
based FD alternatives. Finally we will propose two improvements to existing kinetic-
based FD schemes: first of all, (a) the proposed scheme is formulated purely in
terms of macroscopic quantities on a compact stencil; secondly (b) the semi-implicit
formulation is proposed in order to increase the stability. We think that this work
may be useful to others in realizing the actual possibilities of simple LBM schemes

beyond Navier-Stokes and in adopting the suggested improvements in their actual
FD codes.

Key words: incompressible flow, artificial compressibility, asymptotic analysis,
lattice Boltzmann method

1 INTRODUCTION

In the last years, the lattice Boltzmann method (LBM) has become very pop-
ular among the discretization techniques for solving PDE systems in fluid-
dynamics, such as the incompressible Navier-Stokes equations. Starting from
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some pioneer works [1, 2, 3], the method has reached a more systematic fash-
ion [4, 5] by means of a better understanding of the connections with the
continuous kinetic theory [6, 7]. A more complete and recent coverage of vari-
ous previous contributions on LBM can be found in some books [8, 9, 10] and
some review papers [11, 12].

The lattice kinetic scheme (LKS) [13, 14], which is a variant of LBM, em-
ploys a simpler updating rule of the distribution function than the original
LBM. The updated distribution function is given by the linear combination
of the equilibrium distribution function at each point of the stencil. Since
the equilibrium function is characterized by macroscopic variables, it is obvi-
ous from this updating rule that LKS deals with only macroscopic variables
in the actual computation. In fact, the similarity of LBM with the artificial
compressibility method (ACM) proposed by Chorin [15] is discussed by using
LKS in Ref. [14]. For artificial compressibility method we intend a system of
equations derived by incompressible Navier-Stokes system by adding to the
divergence-free condition for the velocity field a term which is linearly pro-
portional to the time derivative of the pressure. LKS has the similarity with
another well-known kinetic CFD tool called Gas Kinetic Scheme (GKS). GKS
employs truncated asymptotic solutions of kinetic equations for small Knud-
sen numbers, e.g. the local Maxwellian is employed in Pullin’s equilibrium flux
method for the compressible Euler equations [16] and its first order correction
in the Chapman-Enskog expansion is done in Kinetic Flux Vector Splitting of
Chou and Baganoff for the compressible Navier-Stokes equations [17]. Thus,
the actual computation of GKS requires only the macroscopic data as in the
case of LKS, which is in contrast to the original LBM. For this reason, one
may think that the original LBM has a more promising potential ability to
deal with higher rarefaction effect correctly than GKS and LKS. On the other
hand, the recent theoretical studies of GKS [18, 19, 20] reveal that the out-
come of kinetic formulation of numerical methods for the compressible Euler
and Navier-Stokes systems lies only in a simple treatment of discontinuous
reconstruction of macroscopic variables for shock-capturing; the linearity of
convective term of kinetic equation yields a drastic simplification of theory of
approximate Riemann solver. Needless to say, the main target fluid of LBM is
incompressible and continuous, where LBM is not required to have the same
outcome of kinetic formulation as that of GKS.

In the present study, we investigate the outcome of kinetic formulation of LBM
theoretically and numerically. The main purpose of the paper is to make the
LBM users recognize the effective nature of LBM and appreciate the out-
come of the simple modification based on this fact. We found that LBM
scheme shrinks to an artificial compressibility type finite-difference scheme.
The asymptotic techniques for recovering the macroscopic equations solved
by LBM at macroscopic level are well know, both traditional ones (Chapman-
Enskog) and systematic ones (Hilbert). Many papers exist about this topic.



However we want to point out some properties of the macroscopic system of
equations recovered by LBM and used to solve incompressible Navier-Stokes,
more than the way we used to derive it, i.e. the LBM itself. With other words,
at macroscopic level, we found a system of equations which is close to that
considered by the Chorin’s artificial compressibility method, but with a mesh
dependent parameter. Introducing a mesh dependent parameter in front of
the compressible term makes a non-trivial difference and it opens new room
for improvements.

The organization of the paper is as follows. In Sec. 2, we discuss the perspective
of realization of LBM computation beyond Navier-Stokes. For this purpose, we
carry out the asymptotic analysis of continuous BGK equation (Hilbert expan-
sion) and the similar asymptotic analysis of lattice-BGK method according to
the recipe of Ref. [21], where the asymptotic behavior of MRT LBM is studied.
The employment of lattice-BGK is for the simplicity in dealing with higher
order kinetic effects beyond Navier-Stokes. The equation systems derived in
the asymptotic analysis are summing up and the resulting equation system is
discussed. The principal part of the resulting equation system is in the same
form as Chorin’s artificial compressibility system. In Sec. 3, we derive the
principal equation system in a different and simpler manner from the discrete
BGK equation. In Sec. 4, we improve the existing LKS in the efficiency and
stability on the basis of the fact that it deals with the artificial compressibility
system. Sec. 5 is prepared for the numerical examination of the performance
of the original LBM. The LBM, LKS, and the improved LKS are tested in
the standing Taylor-Green problem. Appendix A and B report some details
regarding the analytical calculations.

2 LBM COMPUTATION BEYOND NAVIER-STOKES

2.1 Asymptotic analysis of isothermal BGK equation

The Boltzmann equation is the basic equation in kinetic theory of gases and de-
scribes the time evolution of the distribution function of gas molecules, which
is the function of time, space coordinates, and molecular velocity. The fluid-
dynamic description of solution of the Boltzmann equation for small Knudsen
number is well-known [22, 23]. The Bhatnagar-Gross-Krook (BGK) model
equation [24] inherits the main features of the full Boltzmann equation and
the fluid-dynamic description solution of BGK solution for small Knudsen
numbers is obtained in a much simpler way. Its computational efforts are also
much less than the original Boltzmann equation, and therefore, it is quite nat-
ural and advantageous to employ the BGK equation as the basis of kinetic
method for incompressible Navier-Stokes equation. One of the drawbacks of



the BGK equation is that the recovered Prandtl number is unity while the
original Boltzmann equation yields the values nearly to 2/3. Since most of the
LBM schemes do not consider the energy equation, the problem of recover-
ing the wrong thermal diffusivity can be omitted. At the same time, as will
be seen later, it is allowed to employ the isothermal BGK with a constant
collision frequency for this purpose. In this paper, we will follow this path.
The reported results can be easily extended for thermal cases as well. This is
particularly evident for purely macroscopic FD schemes.

The dimensionless form of the simplified BGK equation is written as

o  of _
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where #;, {, and v; are the (dimensionless) space coordinates, time, and molec-
ular velocity components, respectively; f is the distribution function of gas
molecules; A is a positive constant of the order of unit; and finally f, is the
equilibrium distribution function, namely
ﬂz)z]
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where
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where D is the number of dimensions. In the following, D = 2 is assumed, i.e.
the two dimensional case is considered. Recall that the unit of space coordinate
and that of time variable in Eq. (1) are the mean free path [. and the mean
collision time T,, respectively. The ratio ¢ = [./T, is an estimation of the
average modulus of the molecule velocity. Obviously, they are not appropriate
as the characteristic scales for flow field in the continuum limit. For this reason,
in order to make it more evident, all the quantities which are normalized by
characteristic scales not appropriate for flow field in the continuum limit are
written with a hat *. Let the characteristic length scale of the flow field be
L and let the characteristic flow speed be U. There are two factors in the
incompressible continuum limit. The continuum limit means [, < L and the
incompressible limit means U < c. In the following asymptotic analysis, we
introduce the other dimensionless variables, defined by

wi = (l/L)&,  t=(UT./L). (5)

Defining the small parameter € as € = [./ L, which corresponds to the Knudsen
number, we have x; = ez;. Furthermore, assuming

Ule=k¢, (6)



which is the key of derivation of the incompressible limit [25, 26], we have
t = €2t. Then, Eq. (1) is rewritten as
2 of of
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where

ft, &, 00) = f(E/€, 3 /e, v;), fe(t, &5, 00) = fe(t/€?,mife,v).  (8)
In this new scaling, we can assume

of oM
5, = OU),  5-=0M), (9)

where a = t,x; and M = 0, U;, ;. Actually the previous equations are the
rigorous definitions of the characteristic scales for the flow field, L and L/U,
or equivalently the definitions of L and U.

The solution of Eq. (7) for small € is investigated in the form of the asymptotic
expansion

f=FO4ef®yper@ ..., (10)
p and 4, are also expanded:
p=1+epM +p® ... (11)
4 = eul? + P 4o (12)
and consequently
G = qu( )+€2 (2)+ _ eul(»l)-l—ez[ul(»z)-l—p() (1)] 3[u ()+p() (1)+p() (2)] .
(13)

Since the Mach number is O(e€), the perturbations starts from the order of e.

Corresponding to Eq. (9), the coefficients in these expansions are assumed to

satisfy ) )

afim oM™
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where o = t, z; and M = p,u;, ¢;. Introducing the previous expansions in the
Eq. (2), applying Taylor expansion to f, yields:

fo= O +efM +EfD 4.0 (15)

where f{®) (k=1,2,---) are known polynomial functions of the moments.

Substituting the above expansions into Eq. (7) and equating the terms of the
same order of power of ¢, we have

= AP =™y (k=0,1), (16)
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In particular Eqgs. (17) can be expressed in compact form as

= A(f® — k) (k> 2). (17)

SO = 19 =7 [0 + o5 (18)
where 7 = 1/ and the operator 0 is

0
85 _Uifa—ilfi7 (19)

where the convention of summation is assumed. From the previous relation
the full set of coefficients involved in the regular expansion can be recovered,
namely

7O =1,
7O =,
SO =18 =7 [0 + 0.1,
SO =19 =7 |00 + 02 + 7 (010,10 + 920

PO =10 =708 + 00 + 72 [0 1 + 200,00 + 512
—7 00210 + 21O (24)

1O =10 =708 + 0S0) + 72 [0 1 + 200,08 + 0 1P|
—7* 2000, 10 + 002D + 30 1P ] + 7[00 1L + 04 £ (25)

The above equations give the functional forms of f*) (k = 1,2,.-.) as the
functions of the molecular velocity. However, f*) are not solved with respect
to t and x;. Since ((fo—f)) = ((vi(fe—f))) = 0, the left hand sides in Eqgs. (17)
must satisfy the orthogonality condition

af(k—2) af(k—l)

e

=0 (k=2), (26)
where ¢ = 1, v;, or equivalently, using the compact notation,
(¢ ED 0.5 =0 (k=>2). (27)

From the above orthogonality conditions, we have the PDE systems for p(*)
and ugk). Once these PDE systems are solved under appropriate boundary



condition and initial data, the asymptotic solution for Eq. (7) is determined.
From the orthogonality condition (26) for k = 2, 3,4, 5, we have

dq."
6—% =0, (28)
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where i3 is a proper term which depends on the lower order coefficients only
(see Appendix A for details).

Since the density is expanded around the constant value 1, then ql(l) 51)7

as reported in Eqs. (11, 12, 13). Hence from Eqs. (28) and (31) we have the
incompressible NS system of equations

out!
6.Ti

=0, (36)

(1) (1) (1)
Ouj” w0 9?10y (37)

ot ' Or;  Ox; 3N 0z) )
where p®) = p(*) /3. Thus the incompressible NS system of equations, Egs. (36)
and (37), are derived from the continuous simplified BGK equation under

the diffusion scaling. From Eq. (29), we get that the leading density field is




uniform, i.e. p = pM(¢). In particular, from Eq. (30) we have

0q”  dpW)

(38)

In various situation, such as the problem in a closed domain, where the total

mass in the domain is constant, we can naturally assume (or choose) p(") = 0.
2) (2

Hence ¢, = u; ) and we have the solenoidal condition for uf;Q):
oul?
— = 0. 39
o (39)

Taking into account the previous simplifications, Eq. (33) yields

8”;2) (1) 8u§2) u(2) augl) (‘3p(3) N 1 azu;?)

ot % Bwy ' Bxp | 0w 3 0x)

(40)

Egs. (39) and (40) constitute the homogeneous Oseen system and its solution
from homogeneous initial data and boundary condition is zero. Thus, we have

P = pB =, u? = 0. (41)

1

Taking into account the previous simplifications, Eq. (32) yields

(42)

(2) (3) 2,2 92(u\ MtV
0% Ou” 1|0 (wiuy )| _

| 0a2 Oz 0z

In particular, the previous simplification was achieved by recalling the Poisson
equation for the ICNS system of equations.

Egs. (42) and (35) can be combined in order to produce an additional equation
for computing p* as a function of ql@ (analogously to Poisson equation for
the ICNS system of equations). This means that Eqs. (42) and (35) represent
the first kinetic effect beyond the ICNS description of the flow, which is not
null in general. Clearly any numerical scheme aiming to catch the kinetic
effects prescribed by the original physical model, must be consistent with

these equations.

Remark 1. Actually it is possible to derive the same leading equations (36-
37) and (39-40) for the expansion coefficients by applying the same diffusion
scaling to the following macroscopic system

dp 0

—_= - 0, 43

ot * 0z; (43)

Ot ou;  Op 1 9%u;
g 2 B L0,
ot 0z,  0x; 3\ 0y,

(44)



This remark will be discussed again in the following.

In the next Section, these macroscopic equations will be compared with those
recovered by a simple LBM scheme.

2.2 Asymptotic analysis of isothermal lattice BGK equation

The key starting point of any numerical scheme based on the lattice Boltzmann
method is to consider a finite set of microscopic velocities, called lattice. The
LBM simulates the time evolution of a weakly compressible gas flow in nearly
continuum regime by solving a kinetic equation on the lattice and yields the
solution of the incompressible Navier-Stokes equation as its leading order. As
previously stated, LBM does not need to give the accurate behavior of rarefied
gas flows. Further, because of computation cost, a simplified kinetic equation,
such as the discrete velocity model of isothermal BGK equation with constant
collision frequency is often employed as its theoretical basis.

The dimensionless form of the discrete velocity model of the simplified BGK
equation is written as

oF oF

o HVigs = AP (45)
where V; is the dimensionless molecular velocity on the lattice, i.e. V; belongs
to a set of () permitted velocities, F' and F, are lists with () elements and
their elements are functions of ¢ and #;. In the above dimensionless equation,
the time, space coordinate, and molecular velocity are nondimensionalized as
described for the original physical model. Moreover A, which will be employed
as a tuning parameter of LBM, is regarded as a constant of the order of unity.
In D2Q9 model, the molecular velocity V; has the following 9 values:

T
%={010—1o1—1—11} , (46)

T
%2{0010—111—1—1} . (47)

Consequently the components of the molecular velocity Vi, V5, the discrete
distribution function F' and the discrete equilibrium distribution F, are all
lists with 9 elements.

Before proceeding to the definition of the local equilibrium function F,, we
define the rule of computation for the list. Let H and G be the lists defined by
H = [Ho, Hl, Hz, cee ,Hg]T and G = [Go, Gl, Gz, cee ,Gg]T. Then, Hd(G is the
list defined by [HoGo, H G, HyGla, - -+, HgGg]T. The sum of all the elements
of the list H is denoted by (H), i.e. (H) = >% , H;. Then, the dimensionless



density p and flow velocity u; are defined by
p=A(r), = ViI). (48)

According to Ref. [27], F, is defined by

4/9p—2/342 —2/3 12,
1/9p+1/3a;,+1/343 —1/643,
1/9p+1/310s+1/343 —1/643,
1/9p—1/30, +1/342 —1/642,
Fe = 1/9p—1/3ay+1/342 — 1/602, {49)

1/36 p+ 1/12 (4y + o) + 1/8 (g + 1) — 1/24 (43 + 43),
1/36 p— 1/12 (4g — dp) + 1/8 (—0y + 12)* — 1/24 (43 + 43),
1/36 p— 1/12 (41 + @) + 1/8 (=t — 12)* — 1/24 (43 + 43),
| 1/36p+1/12 (4 — @) + 1/8 (g — @2)? — 1/24 (43 + 43) |

)
)

where p = p/3. p, 41 and 1y are also obtained as the moments of F:
p=(F), ;= (Vile). (50)

The discrete equilibrium can be designed by prescribing that 9 linearly in-
dependent discrete moments of F, are equal to the corresponding continuous
counterparts. In order to recover Navier-Stokes on the D2Q9 lattice, 8 mo-
ments are required (instead of the theoretical 10 because of lattice deficien-
cies). Hence only one discrete moment is left as “freely” tunable. Historically
an even forth-order moment is selected for mimicking the continuous counter-
part.

According to Ref. [21], we summarize some convenient formulas related to
F,, which make the analysis of LBM drastically simple. We introduce the
operators defined by

L1(F) = pF*, (51)
Ly(F) = 3Vyu F™, (52)
1
B(F,G) = %(ﬁ,@j + wjw;) (ViV; — g@j)F*a (53)
where
1 T
F*=% 1644441111 - (55)

10



Then, F, is expressed as

F. = Ly(F) + Ls(F) + B(F, F). (56)

As for the moments of I'™*, the following relations hold:

* * 1
(F") =1, (ViViF™) = 30
1
<VZVJVle> = 6(5¢j5kl + 5ik5jl + 5¢l5jk)7
(ViF*) = (V;VVe F*) = (VV;ViViVo F*) = 0, (57)

from which we have

(L(F) = {La(F) =0, (B(RG)=0,
<V;L1<F)> = 07 <V;L2<F)> = aia <V;B(Fv G)> = 07
(VVL(F)) = 585, (ViViLa(F)) =0,
ViV B(F, ) = (i + ity), (59)

and so on.

In order to avoid any interpolation, the velocity lattice is used to generate a
homogeneous spatial mesh. The coordinates of spatial discrete points employed
in the LBM computation are (z,9) = (I, m), where [ and m are integers. Let
2F be the coordinate of a lattice point. Then, 27 — Vi(k) is the coordinate of
a lattice adjacent to the lattice point 2. LBM computation is nothing more
than the forward Euler time integration formula of Eq. (45) with the time step

of the unity:
F(t+ 1,8, Vi) = F(t,2; — Vi, Vi) + NG (L, & — Vi, Vi), (59)

where
G=F,-F. (60)

Recall that the unit of space coordinate and that of time variable in Eq. (59)
are the mean free path [.(= ¢T,) and the mean collision time T,, respectively.
As already pointed out for the continuous case, they are not appropriate as the
characteristic scales for flow field in the continuum limit. The same asymptotic
analysis for the continuous case can be repeated for the system of equations
referring to the considered lattice. Introducing a proper scaling [25, 26] in
Eq.(59), i.e. assuming ¢ = t/€* and @; = 2; /¢, yields

F(t + 627 T, V;) = F(ta Ti — ‘/;'6, ‘/;) + )‘G(ta Li — ‘/;'6, ‘/;) (61)

11



We express F(t + 2, x;,V;), F(t,x; — Vie,V;), and G(t,z; — Vie,V;) as their
Taylor expansions around (¢, z;)

00 €2k B k
F(t+€27xia‘/1) - Z_ Oy F(thi?‘/i)? (62)
2%\t
= (=9
F(twmz - V;'G, V:L) = Z k! D F(ta Li, ‘/1,)7 (63)
k=0 '
= (=)
Gtz = Vie, Vi) = > == DGt 2, Vi), (64)
k=0 :

where 0g = V10, + V50,

Similar to the asymptotic analysis for the discrete velocity BGK equation, we
assume [ in the form

F=F+4eFV 4 2F@ ... (65)

Corresponding to the expansion, f, is expressed in the form:

F,=F+cFY 4+ 2F@ ... (66)
G=cGY 4G 4 ..., (67)
where
Fe(l) _ Ll(F(1)> + LQ(F(l)), (68)
Fe(k) _ Ll(F(k)> i LQ(F(k)) + Z B(F(a),F(b)) (k > 2), (69)
S
GW = p®) _ p, (70)

Substituting the above expansions into Eq. (61) and equating the terms of
the same order of power of ¢, we derive the expressions for the distribution
function coefficients F'®) (k =1,2,---), namely

FE — g ), (71)
G =, (72)

G? = 793FW, (73)

G(3) — T[atFe(l) + 8SF6(2) — wlﬁ?gFe(l)], (74)

GY = 1[0, F? + 05F® — w (02F2 4+ 2050, FV) + w03 F W], (75)

GO =70, F® + 0sF Y — w1 (32 FY 4+ 2040, F? + 93 F®)
+ wy (B + 3030, FM) — wsd PV, (76)

12



where

w =7 —1/2, (77)
wy =712 —T4+1/6, (78)
wy=7"—3/27 +7/127 — 1/24. (79)

Clearly the discrete effects due to the low accuracy of the forward Euler in-
tegration rule is shown by the fact that wy # 7, ws # 72 and ws # 72, as it
should be for the continuous model: this is evident by comparing the previous
equations with Eqgs. (20-25).

From the orthogonality conditions (G) = 0 and (V,G™) = 0, we have the

)

PDE systems for p™ and u,E,m , which are summarized as follows.

oulV
8.’,@' -

augl) N (9(ul(»1)u§~1)) N op?  w 2uM)
ot Ox; Ox; 3 oxi”’

(9ul(»2)
T 0. (82)
2 1) (2 2) (1 2
Gug ) N A )ug U )ug ) N op®) _ ﬂ(92u§ ) (83)
ot Ox; Ox; 3 Oz}’
(2) (3)

A — (84)

aq(B) (1) (3) (3) (1) (9p(4) w1 (9261@ w1 82(1]('3)
e BT PRSP ST == L — I 85
or tan G T )t e = e T G, T (89)

where the inhomogeneous term I3 consists of the lower moments and its deriva-
tives® (see Appendix B for details).

1 The adopted definition of discrete equilibrium (49) is based on the so-called in-
compressible approximation [27], i.e. the fact that density effects are neglected in
higher order moments. Because of these approximation, ‘11(3) Z(
LBM scheme. In the previous formulas, the notation qf’) has been adopted in or-
der to simplify the comparison between the LBM case given by Eq. (85) and the

continuous case given by Eq. (35).

— 4 for the simple

13



Remark 2. Summing up Egs. (80, 82, 84) and Eqs. (81, 83, 85) yields respec-
tively

62@ 0t

8% _ 8@1 6]3 . W1 8211@-

o Yo, T w3 o

where p = (p — 1)/¢® and 4; = 1;/e. Clearly the previous system traces the

Chorin’s ACM with mesh dependent parameter. The solution of the previous

system approximates the incompressible NS equation with viscosity wi/3 =
(1/3)(1/X —1/2) and error of O(¢?).

=0, (86)

(87)

Let us compare the equations recovered by the simple LBM scheme with those
for the original physical model.

e First of all, the actual transport coefficients w; prescribed by the numerical
scheme are not the same of the original kinetic model. This problem may
be partially fixed by changing the definitions of the transport coefficients.

e The second problem is that the truncated local equilibrium is not enough to
describe some of the terms appearing in the equations ruling the dynamics of
the higher order moments. This problem may be fixed by considering a more
accurate approximation of the local equilibrium, in terms of polynomial
forms.

e Finally, since only few discrete velocities are considered by the simple LBM
scheme, some spurious terms appear in the differential operators ruling the
dynamics of the higher order moments. For example, the D2Q9 lattice is
not enough accurate to catch the physics up to the Burnett-like order, i.e.
the set of equations ruling the deviations from the ICNS description. As a
proof, see the difference between forcing term i3 reported in Appendix A
for the original kinetic model and I3 reported in Appendix B derived by the
simple LBM scheme.

Hence, if special treatments are not considered, and, in particular, larger lat-
tices are not used or proper corrective terms are designed, it is impossible to
claim that the simple LBM scheme may naturally catch physics beyond the
NS description of the flow. The present study indeed moderates the expec-
tations on the fact that “standard” LBM schemes can realize a slip theory
for micro-flows [28, 29, 30, 31], although it does not prevent the improvement
of the NS system by replacing the nonslip boundary condition with the slip
boundary condition. In particular, it is worth the effort to point out that,
even though LBM is formulated in terms of the particle distribution function,
this does not ensure one to naturally catch the flow dependence on Knudsen
number, including the slip velocity, despite some of these claims are sometimes
reported in literature [28]. This misunderstanding has been already pointed
out [32]. Hence the so-called kinetic content of LBM should be addressed more
carefully.
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LBM deals with a complete kinetic description of the flow, even though the
numerical accuracy is tuned in such a way to recover only the Navier-Stokes
equations and this leads to “non-existing” higher order rarefaction effect. For
higher order rarefaction effect, we intend the macroscopic fluid dynamics be-
yond Navier-Stokes system of equations. This fake rarefaction effect becomes
more real, only when the stencil becomes larger. If we want to deal with physi-
cally correct kinetic effect beyond Navier-Stokes, we should use non-isothermal
BGK equation at least. Even in the simple framework of isothermal BGK, the
LBM with usual stencil cannot deal with physically relevant kinetic effect
beyond Navier-Stokes.

3 TRUNCATED MOMENT SYSTEM

In the previous section, we compare the equations solved at macroscopic level
by LBM with those prescribed by the original kinetic model up to the Burnett-
like order. We found that as far as we proceed beyond Navier-Stokes with the
simple D2Q9 lattice, some differences between LBM and the kinetic model
arise, which can not be filled by elementary tricks. Although the applied
asymptotic analysis [21] is effective, however, it sometimes considered a bit
complicated. Hence a simpler strategy is suggested in this section, in order to
derive the equivalent macroscopic system. Instead of going through the asymp-
totic analysis, we can directly derive the artificial compressibility system. We
already realized that the simple forward Euler integration rule forces one to
redefine the macroscopic transport coefficients, because of the discrete error
effects. This induces us to introduce the coefficients w;. In order to avoid this
eventuality, the discrete velocity model defined by Eq. (45) will be adopted
instead of LBM updating rule as starting point.

Let us introduce the diffusion scaling [25, 26] in Eq. (45). Recalling the es-
sential steps reported in the previous Section 2, defining the small parameter
€ as € = ./ L, which corresponds to the Knudsen number, we have x; = €Z;.
Furthermore assuming U/c = ¢, we have ¢t = ¢?{. Finally Eq. (45) becomes

— =\(F.-F). (88)

Let us introduce the general nomenclature for non-conserved equilibrium mo-

ments
n times m times

. — —— T
H11m122~~2(11 -0 1,22 "2) = <V1 VQ Fe>- (89)

The previous nomenclature can be expressed for non-conserved generic mo-

15



ments as well, namely

n times m times
,—/h ,—/H n m

Let us define a matrix M = [1; Vi; Vo; V2 V2 ViVia; Vi(Va)2: (V)2 Vs (V1)2(Vo)?)T,
which involves proper combinations of the lattice velocity components. For
example, the matrix M can be used to compute some equilibrium moments,
namely

_/3 . _p .
Q1 €Uy
G2 € Us
15, P+ uj
MF,= |18, |=|p+eu , (91)
115, 2 uyuy
115, cui/3
115, €uy/3
ey _15/3"‘62”%/3"‘62”%/3_

where p = p/3 and u; = € u;, because of the low Mach number limit.

Property 1. In particular for the considered D2Q9, the following equivalences
hold

iii=vi Vbl = Vs, (92)

For example, taking into account the previous equivalences, it is immediate
to realize that 11111 = II; = eu; and Il = Il = cus.

Property 2. Since the adopted diffusion scaling assumes that the system is
close to the local equilibrium, the following properties hold

111 90... 1§

Mz s = Oy ), 222 o (M)
where o = t, x;. Property 2 is not an assumption, but a simple consequence of
our searching of the continuum regime in the limiting case of small Knudsen
number. Whatever (diffusion or acoustic) scaling we adopt, the leading term
ruling the dynamics of any moment, in the limiting case of small Knudsen
number, will always be the corresponding equilibrium part.

We can now apply the asymptotic analysis of the LBM scheme based on
the Grad moment system. Let us compute the first moments of the Eq. (88)
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(corresponding to the first three rows of the matrix M), namely

o + oz 0, (94)
ou; oll,; ;

3 Q 1]

o T on = 0. (95)

In the momentum equation, the generic expression of the stress tensor appears.
The components of the stress tensor satisfy the following equations

Oy, Ouy Oll119 «

2 2 _ 2.2

€ Gt + € 8331 + € axQ =)\ (p + € uy Hu) s (96)
o1l o1l ou

9O0llgg 221 20Uy A 2.2

€5 +e B +e 05 —/\(p-i—e us H22>, (97)
oIl oIl oIl

AR e el GUC RO (98)

where both equivalences given by Eq. (92) and the the commutative property
of multiplication were used. In the previous equations, the new unknowns II;5
and Ils9; appear. The equations ruling these two moments are

oIl o1l o1l
2P | Oty | Ol
875 85131 a.TQ
oIl oIl oIl
2 | Ol | Ol
(91& 81‘1 81‘2
where the new unknown Il ;55 appears. Finally the latter moment satisfies

8H1122 8H221 aHllQ
2
¢ 875 te 85131 te a.TQ

=\ (6 U2/3 — H112) s (99)

= )\(Eul/g—ﬂzgl), (100)

=\ (p/3+ @ ud/3+ u3/3 — i), (101)

where no new unknowns appear. This clearly means that at this point the
sequence of equations ruling the discrete moments is automatically truncated.
The assumption to consider a lattice, i.e. a finite set of () discrete velocities,
is enough to produce a closure in the moment system. In particular, only @)
independent moment equations exist.

From Eq. (95) and taking into account the property given by Eq. (93)

— = . 102
o) - o (102)

Consequently, in various situations, such as the problem in a closed domain,
where the total mass in the domain is constant, we can naturally assume
D = po + €2p, where py is a constant, or equivalently p = pg + €2p, where py is
another constant. Introducing the previous expression in Eq. (94) yields

8ui _ 2@
8:61- - 8t’

(103)
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which means that the recovered velocity field is divergence-free, as far as the
terms O(e?) are neglected.

Taking into account the property given by Eq. (93)

GHU k

Freaie O(e). (104)

From Eq. (102) and taking into account the property given by Eq. (93)

Ol

9o O(e?). (105)

Collecting the previous results, Eqgs. (102-105, 99) yield T35 = eus/3+ O(€3),
while Egs. (102-105, 100) yield Iy = eu1/3 + O(e3). Introducing these ex-
pressions in Eqgs. (96-98) yield

Ju 51 0u
4 2 1 2
O(€") + ¢ 8—+ 302, /\(po—l—ep—l—e uj — H11> (106)
O(e!) + 5o+ 2= (po+ €p+ *u3 — T) , (107)
1 (9uQ 1 (9u1
O< >+€ ga—xl—FE ga—xQ_)\(E Uiy — H12)7 (108)

or equivalently, taking into account Eq. (103),

ou;  Ou;
IL; = (po + €%p) ij + uuj — o (au + (;;j) + O(eh). (109)

Finally, introducing Eq. (109) into Eq. (95) and taking into account Eq. (103)
yields
ou; Ou; ~ Op 82uZ
ot Y an, o Vo
where v = 1/(3\). Clearly Eqgs. (103, 110) approximate the NS system of
equations, if errors ~ O(€?) are neglected.

+ O(e?), (110)

Over twenty five years ago, Chorin [15] proposed a computationally efficient
method for computing viscous incompressible flow in steady state conditions
by means of artificial compressibility. Obviously the LBM method shares some
features with the Chorin’s method, as proved by Egs. (103, 110). However the
LBM is usually considered a good solver for transient flows too, if proper
scaling of the quantities can be assumed. The reason is that the artificial com-
pressibility ¢ d;p in Eq. (103) is not only negligible but also grid depending.
In this way, the grid size is introduced as a perturbation parameter in the
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system of equations and this leads to solutions depending on it according to
the diffusion scaling.

Remark 3. Neglecting terms ~ O(¢?) in Eq. (110) and considering the obtained
equation together with Eq. (103) yields a system which is perfectly equivalent
to Eqgs. (86, 87), since it is evident, from the previous definitions, that p = p
and u; = u;. Taking into account the diffusion scaling, this system is equivalent
as well with Eqs. (43, 44), if 8 = 1 is assumed. Moreover this remark will be
recalled in deriving a simple ACM scheme in Section 5.

Some final comments are reported.

e The asymptotic expansions for the fluid dynamic conserved moments are
neither that considered by the Chapman-Enskog procedure (which expands
the distribution function and moment equations but it does not expand
the macroscopic variables) nor the Hilbert procedure (which expands both
the distribution function and the macroscopic variables, and consequently,
moment equations).

e The proposed expansion based on the truncated moment system is defini-
tively easier than that based on the Hilbert expansion. Maybe in the case
of the simple fluid, the difference is not so evident. However applying the
Hilbert expansion in case of multi-relaxation-time models and, for example,
in case of multi-components is a different matter [33]. In these cases, the
proposed procedure is much simpler and equally effective.

e The proposed asymptotic analysis immediately allows one to appreciate the
hierarchy of macroscopic moment equations and consequently to understand
which term must be modified, in order to design new scheme for solving
modified equations. In particular the order of the higher moments involved
in the dynamics of a given moment is immediately evident.

In this section, it has been proved that the key point in the derivation of the
macroscopic equations is the diffusion scaling and that complex expansions of
the hydrodynamic conserved moments can be avoided.

4 IMPROVED LKS: FD-LKSv

It is pointed out in Sections 2 that the macroscopic equations recovered from
LBM by means of the systematic asymptotic analysis differ from those ob-
tained from the continuous BGK equation at the Burnett level. The principal
macroscopic equation system, which is common for both cases and derives
Chorin’s ACM, is also obtained from the moment analysis of the discrete
BGK equation (Sec. 3). It is seen from these discussions that the kinetic for-
mulation for the low Mach number limit is not essential and there should be
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a simple macroscopic way of developing a numerical scheme which inherits
the main features of LBM. The mesh described in the previous section natu-
rally suggests to consider as an alternative a numerical scheme based on finite

difference (FD).

Obviously it is possible to design a FD scheme which mimics the leading terms
of the macroscopic equations derived by means of the asymptotic analysis up
to some degree of accuracy (depending on the considered stencil). However the
problem is that the regular expansions used in the previous section involve an
infinite number of terms. For this reason, it is impossible to define a finite
difference scheme which is perfectly equivalent, at any order of the expansion
parameter ¢, with an LBM scheme. With the expression perfectly equivalent,
we intend two schemes producing results which differ each other for difference
smaller than the machine precision. With other words, it seems impossible to
express the dynamics of the distribution function ruled by the kinetic formu-
lation in terms of a finite number of nodal values of the macroscopic variables,
as expected by any FD scheme, because this would be equivalent to express
the kinetic dynamics in terms of a closed function of the local equilibrium.
Even though the kinetic theory prescribes that the kinetic formulation is in-
finitesimally close to the local equilibrium in the low Mach number limit, it is
not perfectly equivalent to a pure macroscopic formulation, at least in prin-
ciple. This is displayed also by the closeness of LBM to the kinetic schemes.
The kinetic schemes also use the Boltzmann equation of kinetic theory as the
starting point, but they are aimed at solving the macroscopic equations of fluid
flow. The basic idea is to use the leading terms of the expansion reported in
Section 2 in approximating the distribution function in order to derive explicit
formula for the numerical fluxes.

Actually since LBM is a discrete nodal algorithm, it is possible to find out a
degenerate case. The so-called lattice kinetic scheme (LKS) [13, 14], obtained
in case A\ = 1, employs a simpler updating rule of the distribution function
than the original LBM. The updated distribution function is given by the
linear combination of the equilibrium distribution function, which is charac-
terized by macroscopic variables. It is obvious from this updating rule that
LKS deals with only macroscopic variables in the actual computation. In fact,
the similarity of LBM with the artificial compressibility method proposed by
Chorin [15] is discussed by using LKS in Ref. [14]. From the numerical point
of view, there is some room for the improvement of the existing LKS.

(1) The existing LKS employs a larger stencil than that of LBM, which is not
advantageous in the actual parallel computation since it requires larger
time for data transmission.

(2) Another improvement is expected in the increase of the stability by rec-
ognizing LKS as the finite difference method and applying a semi-implicit
formulation.
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In case A = 1 the updating rule Eq. (61) becomes
Fr=F{t+,x, Vi) = F.(t,z; — Vie, Vi), (111)

The equilibrium distribution function F, is directly based on the hydrody-
namic quantities. This allows one to derive a perfectly equivalent FD scheme,
based only on macroscopic variables. This FD scheme can be used instead of
LKS in order to update the hydrodynamic quantities in time.

Taking the hydrodynamic moments of Eq. (111) yields, for the pressure update
in time, i.e. for calculating the pressure at the new time step p* = p(t+¢2, z;),

p+=p :-1}[5U1+5UQ+6(55UQ+55U1>

2

— [52}9 + 4, Jp+ 82(u?) + (52(u2) + 26,0 (u1u2)1

_6 6§5§ (p +ul + ug) : (112)

For the velocity update in time, i.e. for calculating the velocity components
at the new time step ui = uy(t + €2, x;) and uj = uy(t + €2, 1),

ul = up + € [—(ch — 6, (uf) — 0, (uyus)

252
—25x5yu1 + — 6 (

1
e [6 8,02(p + i + ) + 5 5§5y(u1u2)} , (113)

382u; + 26,6 u2—|—5 ul)

uy = ug + € l—éyp — 0, (u3) — 0, (uguy)

—25§5§u2+ (352u2+25 Sptty + 62ug)

[ 5 52(p+u2+u1)+ 520, (u2u1)}. (114)

In the previous expressions, the second-order central finite difference formulas
Oz, Oy, 02 and 52 are used in order to collect the linear combinations of the
nodal Values (see Appendix C for details). The important comment is that the
previous expressions are identical operative alternatives to the original LKS
scheme. Eqgs. (112, 113, 114) are exact, in the sense that they are perfectly
equivalent to the numerical scheme defined by Eq. (111).
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The leading term in the right hand side of Eq. (112) is clearly related to the
divergence of the velocity field. Recalling that, in the low Mach number limit,

ou, 0
(826, s + 6,62uy) = % n ai; +O(eh), (115)

E2

590U1 + 5yU2 + 6

then Eq. (112) is clearly a simple implementation of the artificial compress-
ibility method (ACM). It is worth the effort to point out that in this case the
ACM is used to recover approximations of the transient ICNS solutions.

Clearly LKS is solving, with second order accuracy in space, the incompressible
Navier-Stokes system of equations with an effective kinematic viscosity v =
1/6, purely due to the numerical discretization error. In the case of the simple
LKS scheme, the kinematic viscosity is fixed.

4.1 Compact formulation

The simple LKS scheme can be modified in order to deal with a tunable
kinematic viscosity [13]. Recalling the connection between LBM and kinetic
schemes, Junk [14] defined a purely finite difference scheme by calculating the
leading terms of Chapman-Enskog expansion, the spatial gradients of which
are computed by means of central difference formula. The same idea was used
in order to improve LKS [34]. Moreover modifying even further the Chapman-
Enskog expansion is possible to include additional effects directly in terms
of macroscopic variables. In this case, we can take advantage of the analysis
reported in Section 2.

The modified updating rule for LKSv becomes

F:— :F(t+€2,$i,v;) :Fe*(taxi_‘/iey‘/i)a (116)
where

Foo = F. +€et0sF, = F, + er(V10, F, + V20, F,). (117)

The modified local equilibrium F, involves first order spatial gradients, which
are usually approximated by means of central difference operators (see Ap-
pendix C for details). However using a central difference approximation in
order to compute the spatial gradients in Eq. (117) is equivalent to consider
a stencil larger than the original D2Q9. Actually it is possible to develop a
numerical scheme which is equivalent to LKSv, but it is purely formulated

in terms of macroscopic variables and it is based on finite difference formulas
(FD-LKSv).

Let us consider an example in order to clarify this concept. Let us consider the
following east-west velocity pair of the D2Q9 lattice, i.e. (V1,V5)r = (1,0) =
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—(V1,Vo)w = (—1,0). In this case, Eq. (117) applied in the W point of the
stencil clearly involves the terms d,ui(z — €, y) and dyu;(z — €, y) which must
be computed numerically with second order accuracy. This can be done in the
following way

u(x —e,y+e) —u(r—ey—e  Ou(r—ey)
2¢ B Ay

+ O(é?), (118)

—3u(r —€6,y) F4u(z,y) —u(x + € y) _ Ouy(x — ¢€,y)

5. - +0(?).  (119)

Clearly the first formula is a central difference formula, while the second one
is shifted in order to force the numerical approximation to stay inside the
considered stencil. However they both ensure the second order accuracy with
respect to €. The previous example proves that F,, can be computed purely
in terms of macroscopic hydrodynamic quantities by means of proper finite
difference interpolation formulas with the required accuracy and this leads to
a FD difference scheme, that we will call FD-LKSwv.

Following this idea and integrating the kinetic updating rule given by Eq.
(116) yields

1 2
P unsue) = = |G+ 6y0s) (L €)+ 60+ 6

2
+ [0 2+ 20+ 08) + 280 010

4
€
¢ (5§5yu2 + 5w5§u1>1 + 35 5207 (p +u + u%) :
(120)
where ¢ = (1 — \)/\, while, for the velocity update in time,
+ _ 2 2
) = s+ €| ~6up = 808 6 )
+€—2 1+C 8262y + v (3 82uy + 2 6,0,us + 02uy)
3 1 x yul 14 U1 =z yUQ yul
1 1
et [6 .02+ + ) + 5§5y(u1u2)] , (121)
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u;_*(p, Uy, u?) = Uz + 62 [_53/1) - 5y(ug) - 51:(“2“1)

2 1
+5 (5 +€) 0t v (3030 20,000 + )

1 1
—t [E 8,02(p + uj + ui) + 3 5§5$(u2u1)] , (122)

where the kinematic viscosity is

~1Ge9-3G-D e

As in the previous section, the second order finite difference formulas are used

in order to collect the linear combinations of the nodal values (see Appendix
C for details).

Clearly the FD-LKSv solves the incompressible Navier-Stokes system of equa-
tions with tunable kinematic viscosity v. This section is consistent with the
previous one, because, in case of ¢ = 0, the results for simple FD-LKS are re-
covered. The idea of using non-central difference formulas for the calculation
of the spatial gradient of the regular expansion without reducing the accuracy
of the original LKSv scheme allows one to define a practical alternative FD
scheme, purely based on macroscopic variables. Preliminary results seem to
suggest that FD-LKSv is stable for 1 < A < 2.

4.2 Semi-implicit formulation

In this section, the previous formula for pf, uf, and u3, will be used to derive
a semi-implicit scheme. Essentially once the operative updating formulas are
expressed in terms of macroscopic variables, it is possible to apply first those
for the velocity components in order to compute the new values (explicitly),
then it is possible to use this updated velocity field at the new time step in
order to compute a consistent pressure field (implicitly). This simple approach
is very common in CFD community, but it is not possible in the simple formu-
lations of LKS because this scheme considers as unknowns only the discrete
distribution functions. Let us summarize the semi-implicit algorithm.

Let us start with p, u; and ug at t = 4.

Let us compute uf,(p, u1, uz) and ug, (p, uy, us) (explicit step).

Let us compute p} (p, uf,, us,) by using the new values for the velocity com-
ponents (implicit step).

Let us compute p; — p, uf, — u; and uj, — us at t =ty =t + Ot.
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Clearly the implementation of the previous idea for a scheme formulated in
terms of macroscopic variables is very simple.

5 NUMERICAL RESULTS

In this section, some numerical results are reported in order to verify: (a) the
validity of the expressions for the coefficients of the asymptotic expansion,
given by Egs. (71-76) and (b) to compare preliminarily the numerical results
by FD-LKSv with conventional schemes.

Let us consider the two-dimensional (2D) standing Taylor-Green vortex flow
as a test case. Let us consider a square domain (z,y) € [0,6] x [0,6]. The
standing Taylor-Green vortex flow has the following analytic solutions to the
incompressible Navier-Stokes equation in two dimensions:

2 2
uy(t, x,y) = — cos <%> sin <%> exp (— 7r91/t> , (124)
2m2ut
us(t, x,y) = cos (%) sin (%) exp (— ﬂgy ) : (125)
1 2 2 4m?
= o () s () xp ().

5.1 Validation of asymptotic analysis

In order to verify the validity of the expressions for the coefficients of the
asymptotic expansion, given by Eqs. (71-76), let us define first the following
quantity
k
M =3k plk), (127)
i=0
According to the assumptions of the asymptotic analysis FI* — F = O(#*1)
and this theoretical trend can be verified by considering different discretiza-
tion steps e for the test case. Analogously we can define pl*! and ugk]. Then

we use the previous approximations in order to derive macroscopic equations
approximating the behavior of the numerical scheme, namely

(FI — M) = 0, + Bl (0", o) = 0, (128)

(V; (FW — FH)) = g™ 4+ Eq (o1, o) = 0. (129)
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Recalling that d,p = O(¢?) and d,u; = O(e) where o = ¢, ;, then it is possible
to prove that 9yp + EqM(p, u;) = O(**?) and Gyu + EqlM (p, u;) = O(F+2), it
p and u; are numerical solutions of LBM scheme.

E-02
E-03 | . ——p-LBM
E-04
~a- F-FA[1] = 2nd
E-05

- F-F[2] = 3rd
| F-FA3] = 4th
F-FA4] = 5th
|~ F-F[5] = 6th

~&~ continuity LBM

- continuity FD

Normalized error [-]
— — — — — — — — — — — — —

Number of cells [-]

Fig. 1. Two-dimensional (2D) standing Taylor-Green vortex flow. Numerical veri-
fication of the convergence rate of F' — FIFl = O(eb*1) for k = 1,2,3,4,5 and the

consequent approximation for the continuity equation 0yp + Eq[p5] (p,uj) = O(e®).

In Figs. 1 and 2 the numerical verification of the convergence rate of F' —
FUWF = O(e#1) for k = 1,2,3,4,5 is reported for the two-dimensional (2D)
standing Taylor-Green vortex flow. In particular, in Fig. 1 the fifth order
FD approximation of the continuity equation O;p + qu’] (pyuj) = O(e®) is
reported. On the other hand, in Fig. 2 the fifth order FD approximation of
the momentum equation dyuy + Eq”(p,u;) = O(¢") is reported. Both the
verification based on the discrete distribution function and that based on the

macroscopic equations recovered by the scheme produced accurate results.

5.2 Artificial compressibility method

Before considering the improved LKS, called FD-LKSv, designed in Section
4, we derived a simpler scheme based on the artificial compressibility method
(ACM). It is possible to define an ACM by neglecting the errors ~ O(e?) only
in Eq. (110), namely

Ou; ou;  Op D%u,

o Yo on Voa

(130)

26



- F-FA[1] = 2nd
-k F-FA[2] = 3rd
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) = 5t

Normalized error [-]
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Fig. 2. Two-dimensional (2D) standing Taylor-Green vortex flow. Numerical veri-
fication of the convergence rate of F' — FIFl = O(eb*1) for k = 1,2,3,4,5 and the

consequent approximation for the momentum equation 9;u; + qu’ ] (pyuj) = O(€).

The system of equations (103, 130) can be solved by means of any efficient
FD scheme. Obviously pure central difference approximations of the previous
system is not a good idea, since they lead to unstable schemes because of the
chessboard pressure problem, which can be solved by staggered grids. How-
ever operative formula Eq. (112, 113, 114) may suggest better discretization
strategies, since preliminary results seem to suggest that they are stable for
5t < 8tg, where 6ty = €2/(6 ). The key point is that macroscopic equations
derived by LKS may be used in order to lead the discretization process and
to overcome the chessboard pressure problem on simple non-staggered grids.

To define the best discretization of Egs. (103, 130) in terms of stability is a
very difficult task, because the concept itself of stability for non-linear systems
depends somehow on the considered application. One possible choice is the
following
1 2
p:‘* =p— g (533U1 + dyUQ + E(5§(5y112 + 5$5§u1)1 s (131)

) ]
€

uf, =u + € | =0p — 8. (u) — 8, (wug) + v ((5§u1 + 5§u1) + 5 v&s0ius |

(132)

r 2
€
Ug,, = Uy + € | =8,p — 0,(u3) — 6 (uguy) + v ((ﬁuz + 53112) t3 v 0ius |,

(133)
which we will call ACM. In particular, the last terms in Eqgs. (132, 133) allow
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one to highly increase the stability region of the original scheme, which was
actually as small as that of a pure central difference scheme. Analogously to
what done in the previous section, it is possible to introduce a semi-implicit
formulation by computing first the new velocity components uj,, (p, u1, us)
and ug,,(p, w1, us), and then use them in order to update the pressure field,
i.e. pf, (p, uf,,, us,,). This numerical trick will be used in the numerical simula-

tions. Preliminary results seem to suggest that ACM is stable for 0 < v < 1/6.

5.8 Improved LKS at work

In this section, the previously discussed numerical scheme will be compared
in solving the test case. Concerning the stability region of the FD schemes,
some preliminary results seem to suggest that FD-LKSyv and ACM are stable
for 1 < XA < 2and 0 < v < 1/6 respectively. It is worth the effort to point out
that, recalling Eq. (123), selecting A in FD-LKSv such as 1 < A < 2 implies
an actual kinematic viscosity 0 < v < 1/6. Consequently both FD schemes
seem stable for 0 < v < 1/6. On the other hand, LBM schemes are stable
for 0 < A < 2, which implies only v > 0. This seems to prove that there
is a contraction of the stability region of FD schemes in comparison with
the original LBM schemes. However the portion 0 < v < 1/6 is the domain
relevant for most of the applications: for this reason, the previous stability
contraction does not seem a serious issue.

1.E-02 »
S— ——p, semi-implicit ACM
A T e —B—p, semi-implicit FD-LKS
é 1.E-03 A\ e —&—p, FD-LKS:=LKS
3 BN < —e—p, LBM lambda = 1/2
o
s \\ ‘/ LA —%
S 1E-04 Q{
L] ——d
N
E 105
= ‘\‘
1.E-08
10 100 1000

Number of cells [-]

Fig. 3. Two-dimensional (2D) standing Taylor-Green vortex flow. Comparison of
convergence rate for the pressure field among different numerical schemes (semi-im-
plicit ACM method, semi-implicit FD-LKS, LKS and LBM method).

In the following calculations, the maximum time step was used for the FD
schemes, i.e. A = 1. Strictly speaking, this means that LKS and FD-LKS
were considered. Similar considerations apply for FD-LKSv. In Fig. 3, com-
parison of convergence rate for the pressure field among different numerical
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Fig. 4. Two-dimensional (2D) standing Taylor-Green vortex flow. Comparison of
convergence rate for the velocity field among different numerical schemes (semi-im-
plicit ACM method, semi-implicit FD-LKS, LKS and LBM method).

schemes (semi-implicit ACM method, semi-implicit FD-LKS, LKS and LBM
method) is reported. The comparison in terms of the convergence rate for the
pressure field is reported in Fig. 4. The latter field is solved in a way sub-
stantially equivalent by the first three schemes (semi-implicit ACM method,
semi-implicit FD-LKS and LKS), while the possibility for LBM to consider
larger time steps and smaller dimensionless relaxation frequencies (A = 1/2
in the plot) is compensated by the larger numerical errors generated. The
main differences appear in solving the pressure field. LKS and LBM show a
non-regular decay, if the discretization accuracy is increased. This is due to
parasitic acoustic waves moving in the domain. On the other hand, the decay
for the semi-implicit FD-LKS is much more close to the theoretical expecta-
tions, even though the smallest numerical errors are achieved by the simple
semi-implicit ACM.

Finally, in Fig. 5 a comparison between explicit FD-LKS and LBM for different
values of the dimensionless relaxation frequency and of the discretization step
is reported, in terms of the numerical errors produced in order to solve the
velocity field. Clearly, the two schemes are identical in case of A = 1, because
explicit FD-LKS = LKS for construction and LKS = LBM in case of A = 1.
In the range 1 < A < 2 (the only one possible for FD-LKSv), LBM produces
always numerical errors which are smaller or eventually equal to those of the
explicit FD-LKSv scheme.

These numerical results are preliminary and not exhaustive, however they are
enough to prove that the designed FD schemes are not simply theoretical
curiosities but they may lead to practical alternatives to LBM. A detailed
comparison and an optimized design of the FD schemes will be discussed in a
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Fig. 5. Two-dimensional (2D) standing Taylor-Green vortex flow. Comparison be-
tween FD-LKSyr and LBM for different values of the dimensionless relaxation fre-
quency A and of the discretization step, in terms of the numerical errors produced
in order to solve the velocity field.

next paper.

6 CONCLUSIONS

In this section, we summarize the main results of the present paper.

(1)

First of all, we discussed the perspective of realization of LBM computa-
tion beyond NS. For this purpose, we carry out the asymptotic analysis of
discrete BGK equation and lattice-BGK method according to the recipe
of Ref. [21], where the asymptotic behavior of MRT-LBM is studied up
to NS order only. The principal part of the resulting equation system is
in the same form as Chorin’s artificial compressibility system. Beyond
that, the macroscopic equations recovered by the simple LBM scheme
differ from those prescribed by the original kinetic model. This means
that simple LBM scheme leads to “non-existing” higher order rarefaction
effect. Hence, if special treatments are not considered, and, in particular,
larger lattices are not used, it is impossible to claim that the simple LBM
scheme may naturally catch physics beyond the NS description of the
flow. This fake rarefaction effect becomes more real one, only when the
stencil becomes larger.

We derived the principal equation system in a different and simpler man-
ner from the discrete BGK equation by using the Grad moment system.
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After introducing a proper scaling of both the kinetic equations and the
macroscopic moments according to the regime we are interested in, the
macroscopic equations are simply recovered by recursive substitution.
This proves that the key point in the derivation of the macroscopic equa-
tions is the diffusion scaling and that complex expansions of the hydro-
dynamic conserved moments can be avoided. This approach allows one
to make simpler the analysis of existing schemes and the design of new
ones.

(3) Finally, we improved the existing LKS scheme in the efficiency and sta-
bility on the basis of the fact that it deals with the artificial compressibil-
ity system. Essentially two improvements were proposed: first of all, (a)
the scheme is formulated purely in terms of macroscopic quantities on a
compact stencil; secondly (b) the semi-implicit formulation is proposed
in order to increase the actual stability of the scheme. The LBM, LKS,
and the improved LKS, called FD-LKSv, were tested in the standing
Taylor-Green problem.
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A APPENDIX

In this Appendix, some more details are reported on how to derive Egs.(34,
35). In particular for k = 5, Eq.(27) yields

(¢ [0 f® + 0., D])) =0, (A.1)

or equivalently
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(60D + 0D = 7[R 1 + 200,12 + 01
+7° [2070, 10 + 30,02 [ + B JP] = 7 00210 + L 1P| ) = 0.
(A.2)

Selecting first ¢ = 1, the elementary integrals involved in the previous expres-
sion are

ayy _ Oat”
<<88fe4 >>_ (9513,, s

oy _ O
(0. 1)) = B =0 (A.3)
((0:117)) =0,

62]?(3) 52 )

WO = g + g, (i ) =0, (A4)
o =22 o (A5)
(R = (A5)
() =0

oL = s = (A7)

In particular, the conditions (41) have been applied. Introducing the previous
intermediate terms in Eqgs. (A.2) yields

In a similar way, selecting ¢ = v;, the following elementary integrals appear

32



329(2) O (0
af(2 il] = + (U U, )
(0,10 =2 a%( )
(0s 0 vi)) =0,
82(]3) 32q(~3) 52
2 £(3) _ . J 1), @, 1)
{2 P u))y = 1/3 +2/3 e +8:L’k8x, (u; "uy uy ), (A.9)
62u£1
(s o) 130
(0812 1)) = 0 (D), (A10)
o fo v)) = u; A10
a0z,
{3 LD v;)) =0,
RS
4 (1), _ 7
<<asfe U’L>> 1/387)%81']2 (Al]‘)

Again introducing the previous results in Egs. (A.2) yields, after some algebra,
2 (3)
J

3%@) 0 (1) (3) (3) (1) 3]9(4) (92%(

ot Oz Ox; ox3

+23, (Al?)

where i3 is defined as

J

' :Tﬁx] 3 0z} Oxy T
ou [r ol ol ) 819(2 LNONUNG
2 83 7—2 a au (1) 7—3 8411(1)
5T T B S A13
+ 3 8%%85{7@ 3 8 [ 8$J + 9 8:6%8:;;3’ ( )

and clearly it depends on the lower order coefficients only.

B APPENDIX

In this Appendix, some more details are reported on how to derive Eqs.(85).
As discussed in Appendix A, the key point is how to compute the elementary
integrals involved in the approximated expressions derived by means of the
asymptotic analysis. Let us derive the corresponding integrals for the discrete
case, namely
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(‘3 3 oz}
Comparing the previous expressions with those for the continuous case, the
limits of the terms derived for the simple LBM scheme are evident. By com-
paring Eq. (B.1) with Eq. (A.9), it is evident that the usual equilibrium dis-
tribution function [27], truncated up to the second order, does not allow one
to derive third order terms in the previous integrals. Secondly by comparing
Egs. (B.2, B.3) with Egs. (A.10, A.11), the former show a lack of symmetry,
since the last terms in the right hand side cannot be expressed in terms of the
classical differential operators.

0g” 9 op 32 R ¥

FUNCIWONT _
or T, Mt ) = e e

-+13, (B.4)

where /5 is defined as

Is= 0 [wl 82%(1) — augl) MO Gp(Q)} ul
j

wla—xj 3 0x? oz, ~ Ox;

+w16u@(1) w1 82u§.1) - 8u§~1) u(l) - 3p(2)
dz; | 3 &v% oy, " Ox;
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and clearly it depends on the lower order coefficients only.
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APPENDIX

In this appendix, some FD operators are reported for the generic function
¢(x,y), which are linear combinations of the nodal values.

(b(l‘ + e,y) - ¢($ - e,y)

B6(,) = = , (1)

byola.y) = XDV —Any =) ©2)
5§¢(9§,y) _ ¢('T + 6 y) B 2¢(:§7y) + ¢('T ) y)’ (03)
5Z¢(l"y) _ ¢($,y+€) _2¢(€§7y)+¢(1‘7y_6)’ (04)
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