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Abstract 

The operation of a demand responsive transport service usually involves the management of 

dynamic requests. The underlying algorithms are mainly adaptations of procedures carefully 

designed to solve static versions of the problem, in which all the requests are known in 

advance. However there is no guarantee that the effectiveness of an algorithm stays 

unchanged when it is manipulated to work in a dynamic environment. On the other hand, the 

way the input is revealed to the algorithm has a decisive role on the schedule quality. We 

analyze three characteristics of the information flow (percentage of real-time requests, 

interval between call-in and requested pickup time and length of the computational cycle 

time), assessing their influence on the effectiveness of the scheduling process. 



Introduction 

Demand Responsive Transport Services (DRTS) are a particular form of public transport 

characterized by the fact that the vehicles operate in response to calls from passengers to the 

transit operator, who then dispatches a vehicle to collect the clients and transport them to 

their destinations. Unlike traditional taxicabs, the scheduling algorithm tries to match the 

requests in order to share as many rides as possible. In a dynamic, or online system, the three 

main activities of a DRTS (collecting the requests, building the schedules and providing the 

service) are not carried out in a rigorous sequential order, but partially or totally overlap. 

Dynamic systems are more flexible and interesting on an operational point of view, since 

they are useful in handling many situations that arise in practice, such as incoming requests, 

customer no-shows at pickup points, vehicles breakdowns or traffic jams. 

The operation of these systems implies the use of specialized algorithms. The schedule of the 

service could be obtained through the solution of a combinatorial optimization problem, 

known in the literature as the Pickup and Delivery Problem, or the Dial-a-Ride Problem. 

However its computational complexity makes it impossible to find the optimal solution for 

problem instances of practical interest. Research efforts are thus focused in defining 

heuristics that can find the best solution within a given computational time. It is important to 

note that most existing methodologies have been originally conceived to efficiently solve 

static problems, and have then been adapted to work in a dynamic environment. However the 

characteristics of an online problem are radically different, and it could hence be supposed 

that solution algorithms that work well in solving a static problem may perform in a less 

satisfying way when tackling its dynamic version. In order to shed some light on this 

concern, we preliminarily compare the performances of two different insertion heuristics that 

have already been evaluated for the solution of static versions of the Dial-a-Ride problem 

(Diana and Dessouky, 2004). It is shown that the findings of that paper, namely the clear 

superiority of one of the two heuristics, are no longer valid when the problem becomes 

dynamic. 

These results suggest that the way the algorithm works is not the only determinant of the 

efficiency of the scheduling process (and maybe not even the most important). Another 

decisive factor is the “temporal dimension” of the dynamic problem, i.e. the way the 

information is revealed to the algorithm. This issue has comparatively received little 

attention in past research. It is quite intuitive to say that a dynamic problem can be solved in 
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a less efficient way than its corresponding static version. Also, it is likely that “more 

dynamic” problems, in which the information is mostly revealed little in advance, are more 

difficult to solve than the “less dynamic” ones. Hence, having fixed the solution method and 

the problem instance (for example, the pool of requests to be served) there seems to be a 

relationship between the way the information becomes known and the efficiency of the 

computational procedure. 

Our objective is to quantitatively investigate the above relationship. In order to do that, we 

focus our attention on the information flow that is feeding the algorithm (the list of incoming 

requests, network travel times etc.). It is then possible to define some temporal attributes 

related to the information flow, for example the advance with which we know a request, or 

the percentage of requests that is known before the start of the scheduling process. We will 

better define the attributes that are considered in the present research in a later section. The 

relevance of this aspect is given by the fact that some of these attributes can be more or less 

influenced by choices of the planner. The outcome of our research would then be the 

definition of policy guidelines that could contribute in incrementing the overall economic 

efficiency of the system. 

In the following, after a bibliographic review on dynamic demand responsive systems, we 

will describe the problem we want to study, and the simulation process we will use to solve 

it. After that, we will introduce some temporal parameters that can be seen as attributes of 

the information inflows of the scheduling process. We will then study the relationship 

between these attributes, the scheduling process and the quality of the solution, clarifying the 

importance of each factor and looking for possible policy implications. Finally, some 

concluding remarks on the overall research activity are reported. 

Literature review 

Generally speaking, the dynamic version of any routing problem has been much less studied 

than the corresponding static case. Psaraftis (1988, 1995) gives a survey on the state of the 

art of the research on the subject, and points out the potential benefits that the transportation 

sector could have in relying more consistently on these systems. Another comprehensive 

state of the art paper on the subject can be found in Powell et al. (1995). A comparative 

review of some of the former strategies to solve dynamic routing problems is reported in 

Powell (1988). 
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The aforementioned authors point out that no benchmark sets of dynamic problems, upon 

which to test different solution procedures, are available. Furthermore, the dynamic version 

of the above mentioned Pickup and Delivery problem is not univocally defined, since there 

are various ways to make a problem dynamic. Psaraftis (1995) proposes a taxonomy for 

dynamic routing problems that is based on some attributes of information. It is hence 

important to stress that the way the information is revealed is perhaps the most meaningful 

way to look at the problem. 

Researchers proposed effective heuristics for the solution of dynamic Pickup and Delivery 

problems in more recent years. Ichoua et al. (2000) present a review of the approaches 

commonly being used. Most of these are more or less straightforward adaptations of methods 

formerly conceived for static problems. In particular, insertion methods can be easily 

adapted to work in a dynamic environment and hence have been widely used (Madsen et al., 

1995; Dessouky and Adam, 1998b; Horn, 2002; Fu, 1999a; Fu, 1999b; Fu, 2002). In all the 

mentioned works, the insertion criterion is to minimize the additional cost of serving the 

incoming request, that is the heuristic rule that was primarily suggested by Solomon (1987). 

Other less applicable researches make use of reoptimization techniques. A new problem is 

solved every time there is a new input, the current solution generally being used as starting 

solution for the new problem. These approaches make use of a wide range of methodologies: 

local search procedures (Dial, 1995), metaheuristics (Jih and Hsu, 1999; Gendreau et al., 

1999; Ichoua et al., 2000; Ichoua et al., 2003), incomplete optimization techniques 

(Savelsbergh and Sol, 1998; Jih and Hsu, 1999; Colorni and Righini, 2001), fuzzy logic 

(Teodorovic and Radivojevic, 2000). Heuristic rules that are more specifically designed to 

take into consideration the peculiarities of a dynamic routing and scheduling problem can be 

found in Mitrović-Minić and Laporte (2004) and in Mitrović-Minić et al. (2004). 

In dynamic problems the need to quickly find a solution is much more impellent than in 

static cases. For this, these reoptimization techniques can only handle problems that are quite 

small; for example, Jih and Hsu (1999) study the single vehicle problem. On the other hand, 

some of the proposed algorithms need very powerful hardware to be used to solve realistic 

problems. The tabu search algorithm by Gendreau et al. (1999) and Ichoua et al. (2000, 

2003) was implemented on a network of workstations, whereas the decentralized system 

envisioned by Dial (1995) foresees a computing unit on every vehicle of the fleet. Another 

approach may be to build a solution with a greedy rule, so that near-term events are 
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immediately scheduled, and to simultaneously run a reoptimization procedure on another 

computer to improve the schedule of long-term events. One way to cope with the problem of 

the excessive computational burden is to limit the scheduling horizon, i.e. to consider only 

events that will happen up to a certain time point in the future (Savelsbergh and Sol, 1998; 

Colorni and Righini, 2001). 

From these short notes, we can see that the definition and the qualitative characterization of a 

dynamic problem has been the focus of earliest researches, whereas heuristic solution 

approaches have more recently been proposed. The following step should be to focus on the 

time dimension of the information flows, according to the definition we have given in the 

introduction. Past research suggest that a simulation approach could be helpful in this case. 

Wilson et al. (1970) pioneered the use of simulations to compare different routing 

algorithms, as well the influence of the service area size, demand level and service quality on 

fleet size requirements. Regan et al. (1996) evaluated the performance of alternative load 

acceptance and assignment strategies for a dynamic goods distribution problem. Fu (2001) 

and Fu and Xu (2001) focus on the effect of trip cancellations and of the proportion of real-

time demand trips on the operational performance of the system. The percentage of online 

requests is one of the attributes of the information flow that we also consider in the present 

work. The work of Larsen et al. (2002) is mostly interesting, since it examines the impact of 

dynamism on the quality of the solution and on the best-to-implement methodology for the 

so-called Partially Dynamic Travelling Repairman Problem. For this, a synthetic index, 

called degree of dynamism, is defined and a subsequent taxonomy is introduced. The degree 

of dynamism encompasses some of the temporal attributes that we will study in a more 

disaggregate way, as we later show. 

Description of the studied system 

The static version of DRTS we are going to investigate is formally described in Diana and 

Dessouky (2004). Thus, for the sake of briefness, in the following we will only give its 

qualitative synthetic description. 

When making a reservation, the customer k has to specify the origin (Ok) and the destination 

(Dk) of the trip. He can also specify a time point STk, that can be either the pickup or the 

delivery time; on the other hand, the operator computes the maximum ride time as a linear 

function of the direct ride time. He also fixes the maximum wait time at the pickup point (for 
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customers that specify the pickup time) or the maximum advance time at the delivery point 

(for customers that specify the delivery time). All these constraints, related to the quality of 

the service to be provided, imply the respect of time windows for all the pickup and delivery 

nodes, that we will denote by (EPk, LPk) and (EDk, LDk) respectively. In addition, we 

associate with each request a service time both at the pickup (spk) and at the delivery (sdk) 

node, and the vehicles are allowed to stop and idle at any pickup location, waiting to serve 

the following request, if only no passengers are onboard. Passengers must have a seat, so that 

each vehicle has a maximum capacity given by the number of seats. We allow for requests 

being dynamically revealed to the algorithm when the scheduling process has already 

started. The objective function z consists in minimizing the weighted sum of the total 

distance traveled by all the vehicles, the excess ride time for all the customers and the total 

duration of the idle times. 

Dynamic problems usually being considered involve some amount of stochastic information, 

i.e. information that is known a priori with some degree of uncertainty, which eventually 

lessens as time passes. Instead, we will study a deterministic problem. That is, a given piece 

of information is either not yet known, or completely known. For example, we do not know 

any spatial or temporal distribution of the service demand in order to forecast future 

requests, but we simply wait until the customer books the trip, and then we schedule it. We 

believe that this assumption can be considered realistic and useful when dealing with a 

system with a high level of ITS (Intelligent Transport Systems) technology adoption. There 

is a trade-off between the technological level of the system and the amount of incertitude 

associated with the input data we need in a scheduling process. In other words, a higher 

technological level may induce problems that are more dynamic and less stochastic. For 

example, a sufficiently sophisticated ITS architecture can detect the travel times on a road 

every a few seconds. Hence, we can have deterministic information that is denoted by a high 

degree of dynamism, instead of knowing a priori a distribution of the travel times that is 

valid for a longer period. 

We have already mentioned that in a dynamic environment we need to take into account the 

time dimension of the system. This in turn would imply the consideration of the duration of 

all the tasks within the system. In the remainder however we will consider only the 

computational time of the scheduling algorithm, assuming that the following quantities are 

negligible: 
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1) The duration of the phone call of the customer to the call center; 

2) The time needed to transmit the schedule to the vehicles; 

3) The time needed to the customer to be ready to be picked up at the convened point. 

Dynamic scheduling process 

Call-in simulator 

The call-in simulator is a computer program that emulates the flow of service requests to the 

scheduling algorithm. The input is the following: 

1) The list of the n requests, each request k being defined by the above mentioned 

quantities: Ok, Dk, (EPk, LPk), (EDk, LDk), spk and sdk. 

2) The distribution f(∆t) of the time intervals ∆t between call-in and requested pickup or 

delivery time, given in discrete form. Thus, for each class i of time intervals whose 

boundary values are [∆ti, ∆ti+1) we specify the corresponding relative frequency fi. 

3) The percentage p of requests known in advance (offline requests). 

The simulator starts by randomly selecting p·n requests from the list. These are considered as 

offline requests and are immediately sent to the scheduler. The remainder are real-time 

requests. For each real-time request k we need to know the call-in time ITk. A sample whose 

cardinality is the number of real-time requests (1-p)·n is drawn from f(∆t), thus giving the set 

(∆t1, ∆t2, .., ∆tk, .., ∆t(1-p)·n). Assuming that the probability that a request k is real-time and 

that the distribution of the time intervals are not dependent on its desired pickup or delivery 

time STk, we compute 

ITk = STk – ∆tk for every k . 

Real-time requests are not sent to the scheduling algorithm at time ITk. We set a maximum 

acceptable waiting time C for the user that is waiting for feedback, so that the scheduling 

horizon is divided into several cycle times of length C. Let (CTi, CTi+1] be the time limits of 

cycle i, CTi+1 – CTi = C. Then, every request k such that CTi < ITk ≤ CTi+1 is sent to the 

algorithm at time CTi+1. Buffering the requests is in fact likely to improve the performance 

of the heuristic. 
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Scheduling algorithm 

In order to schedule the requests, two algorithms described in Diana and Dessouky (2004) 

have been used. The first one is the classical minimum incremental cost insertion procedure, 

in which a given request k is inserted in the position of the schedule that causes the minimum 

increment in the value of the objective function z. The latter algorithm makes use of a regret 

metric, that takes into account the drawback of not immediately inserting a request that could 

be more difficult to schedule at a later stage. Whenever the algorithm has to select the 

candidate request to be inserted, it computes a minimum cost matrix, i.e. the minimum cost 

cij of inserting each request i in every route j under construction. When an insertion is 

infeasible, the corresponding cell of the matrix is set to an arbitrarily large value. Let ci* be 

the smallest value in each row of the matrix. The second step is to compute the regret cost ri 

of each request i, given by 

( )∑
=

−=
n

j
iiji ccr

1

*  . 

Finally, the request to be inserted is the one with the maximum value of ri. 

Both the classical and the regret insertion algorithm have been adapted to work in the 

dynamic environment we introduced in the previous section. Their input consists of both 

static and dynamic data. Static data are network travel lengths and travel times, since in the 

present work we do not consider variation of speed flows within the simulation period. 

Hence, a shortest path problem solver is used to preprocess those data and obtain shortest 

paths from any possible pair of service points of future requests. Those shortest path are then 

handled to the scheduling algorithm. Also the above defined parameters that control the 

quality of the solution (maximum ride time and maximum wait or advance time) are 

supposed not to change during the simulation. The dynamic input are the requests coming 

from the call-in simulator. Thus, whenever a group of requests is revealed at time CTi, these 

are inserted in the previously built routes and a new schedule is generated. Of course the 

schedule is updated only for those events (service times, vehicle idle times) that have still to 

take place. This feature can be used to increase the efficiency of the scheduling process, as it 

is discussed in the next section. 

The flow chart of the simulation process is shown in figure 1. 
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Fig. 1. 

Dynamic insertion feasibility checks 

Since we are dealing with an extremely constrained dynamic problem, it is most important to 

quickly detect whether the insertion of a request in a certain position is feasible or not. For 

this, we developed a tailored procedure, generalizing the work carried out by Jaw et al. 

(1986) for static problems. Although specific algorithmic design issues are not the focus of 

this paper, we will give more details concerning this point, since we are not aware of a 

previous generalization of the often mentioned feasibility check methodology of Jaw et al. 

(1986) in order to make it work in a dynamic environment. 

In the following we refer a pickup or delivery point of a request as a node, or service point of 

the schedule, whereas a schedule block is a succession of nodes delimited by two idle times, 

i.e. two pauses of the vehicle that is idling without passengers onboard. For each service 

point i in the schedule of a vehicle, let the control quantities BTOPi, BBOTTOMi, ATOPi and 

ABOTTOMi be respectively the maximum time interval by which all the nodes preceding and 

following i (i is included) can be pushed backward and forward, according to the formal 

definition given by Diana and Dessouky (2004). Unlike Jaw et al. (1986), these control 

quantities are not computed with reference to the schedule block of the insertion point, but 

refer to the whole schedule of the vehicle. This makes the management of insertions of 

requests across different blocks a lot easier. Then, a node i’ can be inserted between nodes i 

and i+1 of the current schedule, without violating the time windows of all the nodes already 

in the schedule, only if BTOPi + ABOTTOMi+1 is greater than the additional travel time 

needed to serve i’. 

When dynamically computing the control quantities, it must be considered that the part of 

the schedule that has already been deployed must not be changed when trying to insert a 

request. Let us consider a schedule with n requests, thus containing 2n+2 nodes (n pickup 

and n delivery points, plus the origin and destination depot) indexed with i, i = 0, 1, ..., 2n+1. 

Let us also assume that the vehicle will be heading towards node j at the end of the present 

computational cycle, and that k is the last node of the schedule block containing j. Then the 

following holds: 
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1) Nodes 0, 1, .., j cannot be moved. Ichoua et al. (2000) studied the possibility of diverting 

the vehicle, i.e. changing node j in the schedule. We do not consider this case, since we 

assume to study a DRTS in an urban area in which the mean length of a trip between 

two nodes is quite low and several vehicles operate. Hence we put equal to zero ATOPi, 

BTOPi, ABOTTOMi and BBOTTOMi for every i = 0, 1, ..., j. Since the detour for 

inserting any node in any position is strictly greater than zero (i.e. the triangular 

inequality holds), this also implies that no node can be inserted in these positions. 

2) Nodes j+1, j+2, ..., k cannot be moved if they come before the node being inserted. In 

fact, this would imply the need of a movement in nodes that have already been served, 

since by definition there is no idle time between j+1, j+2, ..., k and j, j-1, .... This 

condition is satisfied by putting equal to zero the quantities BTOPi and BBOTTOMi for 

every i = j+1, j+2, ..., k. On the other hand, the quantities ATOPi and ABOTTOMi for 

every i = j+1, j+2, ..., k are computed like the static case, as shown in details by Diana 

and Dessouky (2004). 

3) Nodes k+1, k+2, .., 2n+1 are not affected by the fact that the problem is dynamic, and 

the related control quantities are computed like the static case. 

We report in figure 2 a schematic representation of these new dynamic insertion feasibility 

checks. 

Fig. 2. 

Finally, we remark that in a dynamic environment there may be requests whose pickup or 

even delivery time window are entirely before the actual arrival time at node j, for every 

vehicle on duty. This is particularly likely to happen when the customers specify a delivery 

time for a long journey and are requesting the service too late. These requests of course 

cannot be served and are detected by the call-in simulator, in order to avoid handling them to 

the scheduling algorithm. This is done to spare useless computations, but moreover to keep a 

distinction between those requests, that simply cannot be accepted, from those that cannot be 

scheduled because the algorithm does not find a feasible insertion. In order to correctly 

evaluate the performance of the heuristic, only these latter are to be considered. A more 

detailed description of this aspect can be found in Diana (2003). 
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Experimental design 

In the following we will consider five problem instances containing 1000 requests that are 

representative of the transportation service for elderly and disabled people in Los Angeles 

County. These instances have been generated and statically solved by Diana and Dessouky 

(2004). Thus, we already know the minimum number of vehicles needed to serve each of the 

requests when they are all known in advance. In this case the regret insertion heuristic was 

proven to outperform the minimum cost-insertion one. This is not a surprise, since the regret 

heuristic has been carefully designed on the basis of the characteristics of a static problem. 

As we stated in the introduction, at a preliminary stage we would like to verify if the 

performance gap among different solution procedures of static problems is unchanged when 

the problem becomes dynamic. In our formulation the quality of a schedule is given by the 

number of rejected requests and by the value of the objective function z. The formulation of 

z is the same as for the static simulations. The relative importance of the components of z 

related to the total distance, the excess ride time and the idle time is respectively expressed 

by these three numbers: 0.45, 0.50 and 0.05. However the weights actually being used in the 

simulation must take into account that the physical units are different for distance and time, 

so that a scaling factor has been incorporated. The related computational procedure is shown 

in Diana (2003). 

We will express the solution quality in relative terms, comparing the outcome of the static 

and of the dynamic simulations. This will also allow us to evaluate the cost of not knowing 

all the information at the beginning of the process. The most important point is that there are 

various ways to run a dynamic simulation, as described in the previous section, on the basis 

of Los Angeles datasets. In fact, a given piece of information can be transmitted to the 

scheduling process in several different ways. Our goal is to assess whether the temporal 

characterization of the information flow has an influence on the quality of the solution, 

beyond that of the scheduling algorithm. For this, we define an experimental plan that 

considers the effect of the following five factors on the number of rejected requests and on 

the value of the objective function z: 

1) the kind of insertion heuristic being used; 

2) the percentage p of offline requests; 
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3) the expectation E(∆t) of the distribution f(∆t) of the time intervals between call-in and 

requested pickup time; 

4) the length C of the cycle time; 

5) the number v of vehicles in operation. 

The influence of the second factor (the percentage of offline requests) has been previously 

studied by Fu and Xu (2001). There also is a clear relationship between the second and the 

third factor and the “effective degree of dynamism” as defined by Larsen et al. (2002), 

whereas to the best of our knowledge the influence of the length of the computational cycle 

time has never been investigated before. Preliminary statistical analyses have shown that the 

effect of the four quantitative factors is strongly nonlinear, so that we chose to set them at 

three different levels that have been fixed as follows. 

In the actual transportation service in Los Angeles only a fraction of the requests is known 

before the beginning of the scheduling process. Hence, we run three different scenarios in 

which 100, 200 and 400 randomly chosen requests are handed to the heuristic before the 

scheduling process starts, thus fixing p = 10%, 20% and 40%. 

Dessouky and Adam (1998a) derived the distribution f(∆t) from real data concerning three 

days of service operations in Los Angeles (figure 3). In this distribution E(∆t) is 138.9 

minutes. It can be seen that the mean time interval is quite long; a DRTS for the general 

population would probably have requests with a shorter advance notice. Then we run 

additional scenarios supposing that E(∆t) is halved and reduced to one fourth. This was 

obtained simply by reducing the width of the classes of ∆t from 100 minutes to 50 and 25 

minutes respectively, without changing the shape of the distribution. 

Fig. 3. 

Concerning the cycle time, it is worth pointing out that the planner can freely set this 

parameter. Hence, we tested the following values of C: 5 minutes, 1 minute and 10 seconds. 

The first value is somewhat a limit, beyond which it is surely necessary to call the customer 

back later. The other two are more realistic and could represent the responsiveness of a 

medium- and high-quality service respectively. 
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Including the fleet dimension among the factors under control seems not so insightful. It is in 

fact obvious that it strongly influences the quality of the solution in a positive way. However 

we are interested in looking whether it is possible to serve all the requests in a dynamic 

system, given a sufficiently large value of v. The number of vehicles used in the static 

solutions of the problem vs is a sort of lower bound, since it is anticipated that the fleet that 

has been used there is insufficient in a dynamic environment, i.e. some requests would be 

rejected. The variable v was set at the following levels: v = vs, v = vs + 10% and v = vs + 

30%. 

A full factorial experimental plan would imply running simulations for 2·34 = 162 different 

scenarios, one for each possible combination of levels. However at a preliminary stage we 

are interested in studying only the main effects of the factors on the quality of the solution. 

Setting up a true model would require a more focused study on only some of the above five 

factors and it will be the goal of further research efforts. For this, we adopt a fractional 

design that will allow us to reduce the number of the considered scenarios to 18. We report 

in figure 4 a block diagram showing our design, illustrating the parameter settings for each 

scenario, numbered from C1 to C9 (when the classical metric is used) and from R1 to R9 

(when the regret algorithm is used). It can be seen that the effect of the fleet size is 

monitored through the sequences of scenarios C2-C1-C3 and R2-R1-R3, that of the 

percentage of offline requests through C1-C4-C5 and R1-R4-R5, that of the mean time 

interval through C1-C6-C7 and R1-R6-R7 and that of the cycle time length through C1-C8-

C9 and R1-R8-R9. 

Fig. 4. 

For each scenario the five problem instances simulating the paratransit service in Los 

Angeles have been solved. Since the call-in simulator randomly assigns to each request a 

call-in time according the distribution of figure 3, if we run the simulation more than once 

over a given set of requests we will get different results. We made two replications of each 

sample to keep this aspect into account. To sum up, 10 simulations (2 replications over 5 

problem instances) have been run for each scenario, allowing us to statistically analyze the 

results of 180 different simulations in the next section. 
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Computational results 

Analysis of variance 

An analysis of variance has been performed in order to assess the explanatory power of the 

considered factors concerning both the number of rejected requests and the objective 

function value. The first step is to identify the factors that have a real influence on these two 

experimental responses, so at this stage we will not consider the variation of v (scenarios C2, 

R2, C3 and R3), since as we said its influence is obvious. Then we perform hypothesis tests 

on the sample constituted by the 14 remaining scenarios (i.e., 140 simulations in total), in 

order to assess the significance levels of the kind of algorithm, p, E(∆t) and C. The results 

are reported in terms of P-values in table 1. Considering the “number of rejected requests” 

response (second column of table 1), it turns out that the kind of algorithm, p and E(∆t) are 

three factors that influence the response, whereas C is not significant at a 5% level. This 

shows the importance of considering the temporal characterization of the information flow in 

order to optimize the scheduling process of a dynamic system, beyond the attention 

traditionally paid to algorithmic aspects. On the other hand, none of the considered factors 

seems to influence the value of the objective function (last column of table 1), so that the 

quality of the schedule of a dynamic system under the point of view of the combinatorial 

optimization problem seems to be much less influenced by the algorithm than by other 

sources of variability. 

Table 1. 

As we previously mentioned, the effects of the factors over the responses are highly 

nonlinear and the resulting regression model has an overall fairly low explicative power; 

hence it is not presented here. In the following paragraphs we will instead make comments 

on the relationship among solution quality and single effects, that can give a first set of 

useful policy indications for decision makers. We report in table 2 the averages of the value 

of the objective function and of the number of rejected requests for the considered scenarios. 

Table 2. 

Classical versus regret metric 
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We see from table 2 that the number of rejected requests is lower when we use the minimum 

incremental cost insertion, except in one case. The value of the objective function is often 

greater, but we showed that this is not statistically significant. Thus we can overall say that 

the classical insertion outperforms the regret scheme when the considered problem becomes 

dynamic. We have a confirmation of the inadequacy of the regret criterion considering what 

happens when the number of requests that is simultaneously handled to the scheduler is 

lowered. Considering the sequence of scenarios C1, C8 and C9 and R1, R8 and R9 it can be 

seen that the performance gap between the two algorithms lessens. This is fully 

understandable, since the two methodologies become more similar when the algorithm can 

handle only few requests. These findings contrast with the conclusions of Diana and 

Dessouky (2004), where the same the static version of the same problem was solved. As a 

reference, we report in the first line of table 2 the results from the computations of that 

paper. These results clearly show that the regret algorithm can schedule more requests at a 

lesser cost when the considered problem is static (R-static versus C-static scenarios). This 

confirms the importance of not exclusively focusing on the scheduling algorithm when 

designing a dynamic DRTS. 

We finally point out that our results cannot be generalized as such, i.e. we cannot say that the 

classical insertion consistently outperforms the regret one when solving dynamic routing and 

scheduling problems. Our goal is instead to show that the relative performance of different 

heuristics cannot be taken for granted with reference to a dynamic problem simply on the 

basis of results that have been validated when studying their corresponding static versions. 

Sensitivity to the percentage of offline requests 

Comparing scenarios 1, 4 and 5 we conclude that we do not improve the quality of the 

schedule when we increase the percentage p of offline requests from 10% to 20%. On the 

contrary, when p = 40% there is a significant improvement of the solution. It can thus be said 

that, concerning the efficiency of the scheduling process, if the percentage of offline requests 

is less than 20%-30%, the problem still basically behaves in a “dynamic” way. The non-

monotonicity of the response implies that there is a benefit in knowing in advance a greater 

number of requests only if p is above a certain threshold. In the considered case, this 

threshold seems to be quite high, somewhere located between p = 20% and p = 40%. From a 

decision maker perspective, the determination of this threshold has a practical relevance, for 

example in the definition of an effective pricing policy. Economic incentives for customers 
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that book an offline trip should be foreseen only if this information is valuable in terms of an 

increase of the efficiency of the service schedule. Fu and Xu (2001) study the relationship 

between p and the vehicle productivity (trips/hour) when p ranges between 80% and 95% 

(figure 3 of that paper). Their results seem to confirm that when the problem is “mostly 

static” decreasing the number of real-time requests can lead to important efficiency gains. 

Sensitivity to the time difference between call-in and requested pickup time 

Results from table 2 show that there is a strong interaction between E(∆t) and the kind of 

heuristic, and the analysis of the variance told us that both factors are significant. We believe 

that this can give us an explanation of the counter-intuitive finding that, when using the 

classical insertion scheme, the lower E(∆t) the better the solution. More research should be 

addressed to clarify this interaction. Furthermore, we see here a clear indication of the 

importance of designing an heuristic that can make a difference between short term and long 

term events in dynamic environments. Various strategies have been implemented in the past. 

Not scheduling requests that fall beyond a certain planning horizon is the simplest one, 

whereas more elaborate approaches make use of periodic reoptimization techniques. From a 

policy perspective, fare incentives for booking a real-time trip as soon as possible should be 

considered only if an increase of the value of E(∆t) improves the computational efficiency. 

We have found that this depends on the capability of the algorithm, whereas on the contrary 

from the previous paragraph we conclude that the influence of the percentage of offline 

requests is more dependent on the structure of the problem itself (i.e., demand patterns). 

Sensitivity to the length of the cycle time 

The analysis of variance told us that C is not significant at a 5% level (P = 0.06). 

Furthermore, different results are obtained when considering the two concurring algorithms 

(scenarios C1, C8 and C9 versus scenarios R1, R8 and R9). As a consequence of this, it is 

not a good idea to set up long cycle times, thus lowering the responsiveness of the system 

and the quality level that is perceived by the users. Hence, a cycle time of only a few seconds 

is likely to be the best solution, since it does not represent a problem for a customer waiting 

for a response. 
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Sensitivity to the fleet size 

Using more vehicles to operate the service of course lessens the number of rejected requests, 

but even incrementing this number by 30% (scenarios C3, R3) is not sufficient to satisfy all 

the demand, whereas the objective function value z steadily increases, due to the 

corresponding increase of vehicle miles traveled. Looking at the values of the three 

components of z, not reported here for briefness, we see that the ridesharing and the increase 

of ride time are not sensitive to the increase of the fleet size. In other words, from the point 

of view of the customer, the quality of the service is not changing when more vehicles are 

used, but the probability of being rejected decreases. 

It is worth underlining that even in scenario C3 and R3 only one out of twenty simulations 

originated a schedule in which all the requests were served. The variability of the response is 

high, so that dimensioning the fleet in order to serve all the requests with a reasonable degree 

of confidence is quite a difficult task. This leads to a clear policy indication: to persist in 

serving all the requests might lead to an abnormally high number of vehicles to be used in 

certain circumstances. Hence, the utilization of a taxicab service for serving a small portion 

of requests can be economically justifiable (and perhaps practically unavoidable), even if the 

marginal cost of serving these would be high. This is generally not the case of static services, 

the attentive planning of which can generally avoid the use of external resources. For this 

particular case study, a good solution could be to dimension the fleet as for scenarios C3 and 

R3 (v = vs + 30%), and to serve the remaining requests through taxicabs. An economic 

analysis that keeps into account the cost structure of a DRTS would be needed to find the 

optimal fleet dimension and the percentage of requests to be served outside the system. 

Conclusions 

In this paper we defined an evaluation framework for a dynamic DRTS that allowed us to 

assess the effect of different factors on the efficiency of the scheduling process. On a 

methodological point of view, a generalization of the insertion feasibility checks proposed 

by Jaw et al. (1986) has been discussed. Our finding can be summed up as follows. 

• The kind of algorithm being used is only one of the factors that can influence the quality 

of the schedule of a dynamic DRTS and perhaps not the most important. Furthermore, 
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performance gaps among heuristics, that have been detected in solving a static problem, 

are not guaranteed to stay unchanged when the problem becomes dynamic. 

• The relationship between the percentage of offline reservations and the number of 

rejected requests is not monotonic and is dependent on demand patterns. It follows that 

fare discounts for early reservations have a positive effect on the scheduling efficiency 

only if they are determinant to assume a critical percentage of offline requests. This 

threshold needs to be determined through a market study. 

• On the contrary, the benefit of knowing a real-time request sufficiently far in advance 

basically depends on the capabilities of the algorithm. Pricing policies concerning this 

point should then be considered together with the performances of the scheduling 

software. We point out that most of the commercial software implements a classical 

insertion heuristic. For this kind of algorithm, our results are counterintuitive: smaller 

advance times lower the number of rejected requests. 

• The length of the cycle time does not significantly affect the solution. It seems thus 

advisable to shorten it as much as possible in order to increase the system 

responsiveness to customers calls. 

• In a dynamic environment trying to serve all the requests by a DRTS can lead to 

oversized fleets. If policy regulations do not allow for rejections, then it is more 

convenient to foresee the possibility of outsourcing a fraction of these to taxicabs. 

We believe that the above guidelines are only a preliminary finding of a new direction of 

research that is worth considering more carefully. In particular, future efforts will be aimed 

at developing predictive models for subsets of the factors here considered. Nonlinearities 

that have been detected require in fact a more extended experimental study, possibly using 

datasets from different sites, as well as a wider range of scheduling procedures. 

Beyond the attention traditionally paid to the heuristic design, we have shown that, when we 

face a dynamic problem, issues linked to the temporal characterization of the information 

flow play a major role. What is even more important, an overall assessment of these 

“temporal” effects is a powerful tool for defining useful guidelines for planners and decision 

makers, beyond continuing efforts in improving scheduling heuristics, on crucial issues such 

as the definition of the most convenient fare structure or the opportunity of outsourcing to 

taxicabs part of the service operations. 
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Fig. 1. Flow chart of the simulation process 
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Fig. 3. Distribution of the time intervals between call-in and pickup time 
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Fig. 4. Design of experiments for the factor analysis 
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Table 1. Significance levels of the four considered factors (P-values) 

Factor/Response Rejected requests Objective function 

Algorithm <0.0001 0.60 

Offline requests <0.0001 0.14 

Advance notice 0.0006 0.96 

Cycle time 0.06 0.22 
 
 
 
 
 
 
 
 

Table 2. Number of rejected requests and objective function values, mean values over two 
replications of five samples 

Scenario Rejected 
requests 

Objective 
function Scenario Rejected 

requests 
Objective 
function 

C-Static 7.6 19182 R-Static 0 18731 

C1 44.4 19766 R1 71.5 19710 

C2 78.0 18564 R2 99.0 18768 

C3 10.9 21438 R3 30.6 21361 

C4 52.3 19205 R4 75.6 19176 

C5 27.3 20247 R5 44.4 19856 

C6 38.3 19725 R6 53.0 19946 

C7 35.0 19542 R7 76.9 19087 

C8 49.8 19808 R8 59.6 19685 

C9 51.5 19632 R9 47.0 19979 
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