
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Advanced VPN Support on FreeBSD Systems / Scandariato, R.; Risso, FULVIO GIOVANNI OTTAVIO. - (2002), pp.
136-143. (Intervento presentato al convegno 2nd European BSD Conference (BSDCon02)).

Original

Advanced VPN Support on FreeBSD Systems

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1417049 since:

Advanced VPN support on FreeBSD systems
Riccardo Scandariato, Fulvio Risso

Politecnico di Torino, Italy
{scandariato, risso}@polito.it

Abstract— Currently, the Virtual Private Network (VPN) support of-
fered by FreeBSD is quite limited: it provides a way to establish tunnels
but it does not consider the problems of multiple VPNs concurrently de-
ployed on the same machine. Our implementation enables the provision-
ing of VPN services on FreeBSD by extending its routing and forwarding
infrastructure. We adopted the virtual router approach, by adding sup-
port for multiple routing tables. Forwarding kernel modules have also been
modified accordingly. We also improved several user-level applications (e.g.
route, ifconfig, zebra) to allow the exploitation of the new routing infras-
tructure.

Keywords— Provisioned IP VPN, virtual router, GRE tunnel, FreeBSD

I. I NTRODUCTION

THE Internet, originally born as an academic-based infras-
tructure, is rapidly evolving toward a generic network in

which academics, business, and several other worlds are coexist-
ing. From the pure networking perspective (i.e. we do not intend
to take into account any application issue), one of the problems
of the nowadays public IP networks is the lack of support for
IP private addresses. At a glance, supporting a private address-
ing schema on a public IP network seems to be a non-sense.
However, from the perspective of companies with a wide area
network infrastructure, this is a strong requirement since the
IP public network is becoming a way to connect together their
branch networks around the world (and saving money). This
is the well-know topic under the name of Virtual Private Net-
works (VPN), i.e. networks that use a public IP infrastructure
to connect together several pieces with private addressing (and
with the need of secured communications). The biggest issue
in VPN support is that the IP protocol did not foresee the need
of multiple overlapping addresses spaces, so that applications
like VPNs introduce a high degree of complexity in the man-
agement of the IP network. The idea of a VPN is not a novelty
in the networking world. The novelty is that, so far, companies
created their private network by using a data-link infrastructure
(for example point to point links, or X.25 / Frame Relay / ATM
accesses) provided by a telecom provider. That infrastructure
was simply a private network (i.e. a network that allowed only
the employees to access to the resources of the company) build
on top of a public network (the public telephone network instead
of the public X.25 network or whatever). In other words, the ba-
sic technology changes while the underlying concept of VPNs
does not.

In order to support efficiently VPN services, there are two
main options:
• the presence of the VPN is relegated to the access side of the
network. This means that any VPN is hidden in the core (i.e.
in the public part of the IP network) and the complexity is in-
serted into the edge routers. These routers must map the private
address space into a public space, deliver packets to the proper
destination, and then map the packets back.

• the presence of the VPN is well known inside all the network
(backbone included), so that the routers must be aware that over-
lapped address spaces exist and they must be able to cope to this
problem.

The first option is far simpler, but (in general) it does not al-
low creating an optimized virtual network from the topological
viewpoint. The second option is more complex, but the routing
into the network can be highly optimized. The present solutions
(MPLS, tunneling, ...) chose the first method to deal with these
problems. In our mind, however, these solutions cannot be used
to configure plug and play networks, nor can be used to create
large virtual infrastructures.

This work wants to present the lessons learned by modifying
the forwarding path of a software router (FreeBSD 4.4) in or-
der to support VPNs in the network backbone. Our effort was
devoted to change the forwarding mechanism in order to sup-
port overlapped address spaces. Each router is then able to find
the proper route to each packet by checking at the destination
address (contained into the packet) and an additional parame-
ter identifying the VPN the packet belongs to. However, this
choice implies several other components to be modified in order
to support the VPN into the backbone. Routing protocols, for
example, need to be modified in order to be aware of what VPN
they are currently computing the best path. Therefore, several
other components (detailed in the following) have been modi-
fied in order to provide seamless VPN support.

The rest of the paper is organized as follows. Section II in-
troduces the functionalities that are needed for concurrent VPN
service provisioning. Section III describes the modification in-
troduced into the FreeBSD kernel and into some user-space ap-
plications in order to implement such functionalities. Section IV
discusses the related work, and, finally, the conclusive remarks
and further work are presented in Section V.

II. OBJECTIVE

As mentioned in Section I, VPN services can be implemented
either on top of access routers only, or cooperatively afforded
by all backbone routers. In the first case ([1], [2]), VPN traf-
fic is identified when entering the backbone network, and then
delivered to the opposite network edge by means of tunnels.
Core routers are unaware of VPNs since they forward VPN tun-
neled traffic by looking up the destination address of the outer
IP header (see later). All the VPN-specific work is done by ac-
cess routers sitting at the backbone edge. For instance, routing
information about VPN destination is exchanged only between
access nodes. On the other case, VPN traffic is tagged at ac-
cess node and sent through the core without encapsulation. All
the core nodes forward packets using the couple (destination ad-
dress, VPNID tag). This means that routing information about
VPN destinations must be available to all the backbone nodes,

which have to maintain separate routing table (one for each tag,
i.e one for each VPN).

In the first case, VPN packets are forwarded edge-to-edge
across tunnels, which traverses multiple physical link (see tun-
nels betweenfreebsd anddante traversing a third node in Fig-
ure 1). Obviously, since core nodes (e.g.core001 in Figure
1) look up packets by using only the outer destination address,
VPN packets (and tunnels) follows the physical paths governed
by the ”real” IP network (hereafter called thebasenetwork, in
opposition tovirtual networks). In other words, a single hop on
the virtual network implies multiple hops on the base networks.
This causes many problems if traffic engineering or QoS guar-
antees must be applied to tunnels, since the routing instances of
the two types of networks (base and virtual ones) are unrelated.
However, this solution simplifies the management of the core
side.

The second case is logically equivalent to a network where all
the backbone nodes (both access and core) play the role of VPN
routers, and where tunnels are established on each physical link.
Hence, a single hop on the virtual network coincides with an hop
on the base network1. Hence, all the conventional techniques
for traffic engineering and QoS can be applied to VPNs. The
drawback is a huge complexity in the core side.

Fig. 1. Backbone network provisioning multiple VPNs

Our solution tries to merge the benefits of both the above ap-
proaches. Figure 1 shows a sample scenario that can be de-
ployed by adopting our implementation. The figure depicts four
customer sites connected to a provider network (the bigger cloud
in the middle). The backbone is made of VPN routers (see
darker nodes) and VPN-unaware routers (e.g. nodecore001).
All the nodes providing access to client sites (freebsd, mago,
dante) must be VPN nodes. Further, also some nodes in the
core (goomer) can be promoted to be VPN router. VPN routers
run the modified version of FreeBSD providing multiple table
support and virtualized forwarding, as described in Section III.
Having VPN routers in the core gives an increased flexibility
for VPN deployment. For instance, a central node can be used

1Actually, while in the first case networks are layered (being virtual networks
on top of the base networks) in the second case networks are sided (being the
base network just one of the existing parallel networks).

as tunnel concentrator, in order to apply traffic filters to a given
VPN, or to merge traffic originated in different VPNs. We recall
that packet are available in clear, i.e. not tunneled, only at tunnel
termination points, hence, such operation can be performed only
by a VPN router. In Figure 1, a pure edge-based adopted was
adopted forVPN B (see the dashed edge-to-edge tunnel between
access nodes labeled asfreebsd anddante), while VPN A uses
an intermediate VPN node for traffic delivery (see the couple of
tick tunnels betweenfreebsd, goomer, andmago). Note that
all VPN routers are maintaining a dedicated routing table for
each VPN they are serving, additionally to the base network IP
table. Hence,freebsd has to maintain 2+1 tables, while other
VPN nodes are maintaining 1+1 tables. Non-VPN nodes just
maintain the IP base table.

As highlighted by Figure 3 an Figure 2, access and core nodes
fulfill different tasks. This are detailed in next two sections.

A. Access router functionalities

Figure 2 shows the detail of thefreebsd VPN router. It is
placed at the network edge and it has three physical interfaces:
• eth0 is an Ethernet interface connecting client site VPNA.a1
(site a1 of VPN A). This site is using the 10.0.1.0/24 address
space.
• eth1 is a second Ethernet interface connecting client site
VPN B.b1. This site is using the 10.0.1.0/24 address space too.
• eth2 attached to the backbone core and has a public IP ad-
dress.
Bounded to eth2, there are two pseudo-interfaces (also called
virtual interfaces), that can be created dynamically:
• gif0 is a GRE (Generic Routing Encapsulation, [3]) interface.
This interface represents the tunnel end-point used to forward
traffic of VPN A. The GRE interface is assigned (by means of
theifconfig UNIX command) with a private address out from
the VPN A address space.
• gif1 is another GRE interface. This interface represents the
tunnel end-point used to forward traffic of VPN B. The GRE
interface is assigned with a private address out from the VPN B
address space.
The binding between virtual interface and the physical interface
is done by means of thegifconfig BSD command, which con-
figures the source and destination addresses to be used in the
outer header.

Fig. 2. VPN access router managing multiple VPNs

In order to properly serve the two VPN client sites, the node
must implement the following functionalities:
• Routing virtualization. The node must have multiple IP rout-
ing tables (one for each VPN) in order to support the overlapping
address spaces within the two different VPNs. Each routing ta-
ble contains path informations about all the other VPN destina-
tions. Each route contains the address of a peer tunnel end-point
(i.e. agif on a remote tunnel-connected VPN router) as next
hop. In our solution, each routing table is updated by a dedi-
cated routing protocol instance (zebra-OSPF) running on top
of the virtual network. This means that routing advertisement
are tunneled too.
• Incoming traffic identification. The node must associate each
packet incoming from theeth0 andeth1 interfaces to the cor-
responding VPN. To this aim, our solution ”colors” the ingress
physical interface by tagging them with a VPN identifier. This
solution is straightforward to implement. However it imposes
some limitations, as described in Section V.
• Forwarding virtualization. Upon reception of a packet from
the client site, the forwarding module must be able to select the
proper routing table according to the identified VPN. After hav-
ing looked up the correct table, the forwarder must sent out the
packet on one of the tunnels that have been configured for the
given VPN. Selection of the right tunnel is determined by the
VPN-level routing information.
• Tunneling. As shown in the lower part of Figure 2, once
an outgoing tunnel has been selected, the correspondinggif
module is responsible of encapsulating (i.e. of adding the
outer header) the packet before transmission. This functional-
ity (differently from all the above items) is already available in
FreeBSD, and was not implemented.

Note that above we explained the case of a packet arriving
from the client site. Obviously, the same operations must be
pursued in case of delivery to the site of a packet arriving from
the core.

B. Core node functionalities

Figure 3 shows the detail of thegoomer VPN router. It is
placed in the network core and it has two physical interfaces
connecting him to other routers of the backbone. These inter-
faces are assigned with addresses out from the provider public
address space.

Fig. 3. VPN core router acting as a tunnel switch

The router also has two tunnel end-points, both terminating
tunnels that belong to the VPN A:

• gif0 represents the tunnel end-point used to forward traffic of
VPN A to/fromfreebsd. The GRE interface is assigned with a
private address out from the VPN A address space.
• gif1 represents the tunnel end-point used to forward traffic of
VPN A to/from mago. This interface is assigned with a private
address out from the VPN A address space too.
Note thatgif0 is bounded toeth0, while gif1 is bounded to
eth1.

The node acts as a tunnel switch, that is it receives VPN traf-
fic from a (incoming) tunnel and forwards it to another (out-
going tunnel). This means that the node has to decapsulate
the incoming VPN packet, looking up the destination of the in-
ner header towards the proper table, and then encapsulating the
packet again (but with a new outer header). This operation is
described in the lower part of the Figure 3.

With respect to the access case, the difference is in the traf-
fic identification operation that is much more simpler, since the
VPN traffic already arrives in a tunneled manner. Hence, a tag
applied to the tunnel (actually the tunnel end-point) will serve
the aim perfectly. Differently from Section II-A, this solutions
does not involve any limitation, since end-point can be created
dynamically in any desired number (up to the kernel configured
limit). The only problem (as shown in Section V) is that the cur-
rent tunneling implementation does not support more than one
configured tunnel between a couple of IP addresses.

III. I MPLEMENTATION

This section outlines the strategy adopted to integrate the
VPN functionalities described in Sections II-B and II-A into the
FreeBSD 4.4 operating system. Since we refer frequently to the
internals of FreeBSD, the reader unfamiliar with the network-
ing architecture of a BSD-like system can refer to [4] and [5].
The detailed description of all the kernel/application modifica-
tion can be found in [6], or directly in the source code [7].

Fig. 4. Roadmap of VPN functionalities

Figure 4 gives the roadmap of modifications introduced by
our implementation. Actually, the total amount of modified lines
of code is very small, since our aim was to implement our solu-
tion in the most simple and clean way. Further, we tried to re-
alize the most harmonic solution, with respect with the existing
(i.e. original) FreeBSD code. Improvements were introduced
both in the kernel space, and to application programs in the user
space. Consequently to the introduction of new features in the
kernel, we also modified the interface provided by some sys-
tem calls, in order to provide applications with the new kernel

capabilities.
At the kernel level, the most important modification intro-

duced the support for the on-demand creation of multiple rout-
ing tables, and for the tagging of interfaces. This features are
exported by modified versions of thesocket() andioctl()
system calls (an the modified versions of the related structures
and ancillary functions). These features are exploited by util-
ity programs (such asroute andifconfig respectively), and
routing applications (such aszebra-ospfd, [8]), that were both
modified. We also upgraded thesysctl() system call, provid-
ing bulk access to the routing table. This call is mainly used by
thenetstat program to get all the routing table at once. Hence
we modifiednetstat, which is now capable of accessing the
different tables. Obviously, the main part of the work was dedi-
cated to the modification of routing mechanisms (table manage-
ment) and forwarding functions (ip_input(), ip_forward())
in the kernel space.

The following sections detail the introduced variants to the
FreeBSD system. In particular, Sections III-A and III-B present
the improvements to the routing and forwarding modules re-
spectively, while Section III-C presents the improvements we
made to the user-space routing applications.

A. Multiple tables

FreeBSD supports many network protocols, such as IPv4,
IPv6, IPX, etc. Since each one uses a single (and pecu-
liar) addressing scheme, the protocol is internally identified by
means of itsaddress familynumber. For instance, the con-
stantAF INET identifies the IPv4 protocol, while the constant
AF OSI identifies the OSI protocol. The kernel assigns a ded-
icated routing table to each protocol (family), and tables are
implemented as Patricia’s trees, which are data structures op-
timized for longest-prefix-match searches. Tables are stored in
a thert tables[AF MAX+1] array, whereAF MAX is a constant
representing the number of defined address families (i.e. the
number of supported transport protocol). Each element of the
array contains a pointer to the radix node of the correspond-
ing tree-based table: for instancert tables[AF INET] points
to the IPv4 routing table. Tables are created and initialized at
system startup by theroute init() function, which iteratively
calls thern inithead() function, once for each family.

In order to support multiple routing tables for theAF INET
family, we defined an additional array as follows

(sys/socket.h) #define VPN_MAX 100
(net/route.h) struct radix_node_head *

vpn_rt_tables[VPN_MAX+1];

The maximum number of tables (and hence VPNs) is is limited
by theVPN MAX constant, since the array is statically allocated.
To support a higher number of VPNs, the kernel must be re-
compiled with a different constant value. This choice is due to
efficiency reasons. Further, the first element is not used, since
the zero value is reserved to identify the base IP table. This
design trick considerably reduces the number of modifications
to the original kernel code (as explained later). Note that table
structures are not created at startup time as above: initially, the
vpn table array is empty, and Patricia’s trees are created and ini-
tialized on-demand when a new VPN must be supported by the

local node.
Once the multiple table support was introduced, we modi-

fied the interface providing the read/write access to the tables.
User space programs communicate with kernel functions that
manage the routing tables by means ofrouting messagesex-
changed throughrouting sockets. Routing messages are data
structures defined in kernel headers that the programs fill in
accordingly to the operation they want to execute on the table
(e.g. route add, route delete, read, etc.). Routing sockets are
created through the standardsocket() system call, by specify-
ing proper arguments. To allow the selection of the target table
to which the operations must be executed, we introduced a new
field (so vpnid) in the socket{} data structure, as shown in
Figure 5.

(sys/socketvar.h)
struct socket {
short so_state; /* internal state */
caddr_t so_pcb; /* control block */
...
u_int so_vpnid; /* VPN_ID - ADDED */

}

Fig. 5. Socket data structure with VPN identifier

Theso vpnid field is initialized to zero by thesocreate()
function, when a new socket is requested through thesocket()
call. If the field is unmodified, all the routing messages will af-
fect the base IP table (recall that VPN 0 is reserved). Thus, to
select a table, the application program must set theso vpnid
field to a non-zero value, corresponding to the desired tar-
get table. To this aim, a modified version of theioctl()
system call is provided, which accepts the newSIOCSVPNID
(set) andSIOCGVPNID (get) arguments. Alternatively, the
VPN ID can be set/read by means of a modified version of the
setsockopt()/getsockopt() calls, respectively (which ac-
cept the newSO VPNID socket level option). A sample code
showing the use of the modified socket interface is provided in
Figure 6.

At the kernel level, we modified the functions that pro-
cess routing messages. Messages are first received by the
route output() routine. In case of read requests (RTM GET is
specified in message headers, similar to line 7 of Figure 6), it
calls thernh lookup() function; otherwise, if the message re-
quests a table modification (RTM ADD, RTM DELETE), it calls the
rtrequest() routine. This latter, selects the target table on the
basis of the address family of the route to be added or deleted.

We modified the default behavior of theroute output()
function. Since, thertrequest() cannot infer the VPNID
from its input arguments, we were obliged to redefine the func-
tion asvpn rtrequest(), which receives the VPNID as its last
arguments. If the message is directed to the base table, this argu-
ment is zero. On the contrary, theroute output() function re-
ceives (as input argument) the pointer to the socket that transmit-
ted the routing messages. Hence, it can extract the VPNID from
the socket structure and can pass it to thevpn rtrequest().
This latter selects the proper table corresponding to the received

1. unsigned int vpnid = 5;
2.
3. struct {
4. struct rt_msghdr header;
5. char body[512];
6. } msg;
7. msg.header.rtm_type = RTM_ADD;
8.
9. int s = socket(PF_ROUTE, SOCK_RAW, 0);
10. ioctl(s, SIOCSVPNID, &vpnid);
11. // Alternatively ...
12. // setsockopt(s, SOL_SOCKET, SO_VPNID,
13. // &vpnid, sizeof(vpnid));
14.
15. write(s, (char *)&msg, sizeof(msg));

Fig. 6. Sample code adding a route to VPN table no. 5

VPN ID and executes the requested operation. Note that, if the
table does not exists yet, the function dynamically creates and
initializes a new Patricia’s tree. To limits the number of mod-
ified line of code in function redefinition, we used a macro as
shown in Figure 7. The adoption of macro redefinition, together
with the association of the VPN zero to the base network, made
modifications simpler and clearer. This strategy was used exten-
sively throughout the code.

(bar.h)
1. // void foo(int, int);
2. void vpn_foo (int, int, u_int);
3. #define foo(a, b) (vpn_foo(a, b, 0))

(bar.c)
1. void
2. //foo(a, b)
3. vpn_foo(a, b, vpnid)
4. int a;
5. int b;
6. u_int vpnid;
7. {
8. ...
9. }

Fig. 7. Example of code modification

Routing messages can also be generated by the kernel itself
upward the applications, e.g. when a network interface goes
down. Another example is the static configuration of a route
through theroute command. In this case, the kernel is respon-
sible for the notification of the table update event to the rout-
ing daemons. These messages are sent to all the applications
that have an open routing socket for the same transport proto-
col of the modified table. Applications specify the protocol they
are interested in via the third argument of thesocket() sys-

tem call (zero means all protocols). The upward messages are
processed by theroute output() routine, which in turn calls
theraw input() function. As above, we redefined this latter as
vpn raw input(), which dispatches the messages according to
both the protocol and the VPNID of open routing sockets.

B. Forwarding virtualization

Figure 8 sketches the kernel functions processing IP pack-
ets during forwarding. When a network interface receives an
IP packet, it places the packet in the input queue. When the
ip input() function is scheduled, it fetches a packet from the
queue head and processes it. For instance, the function analyzes
the presence of eventual IP options, and if the packet is directed
to a non local destination, it is passed to theip forward() rou-
tine for delivery. Packets are stored in a data structure called
struct mbuf that contains both the packet data and related in-
formation, such as the ingress interface that received the packet.
If the packet is tunneled,ip input() passes thembuf to the
gif input() routine, which decapsulates the packet (i.e. it
strips the outer header off) and replaces the ingress interface
in mbuf by putting the propergif interface that terminates
the tunnel, in place of the physical interface (e.g.eth0). Fi-
nally, gif input() queues the packet again. Next time, the
ip input() will pass the decapsulated packet directly to the
ip forward(), and thembuf will point to the gif ingress in-
terface. Thembuf is available to both theip input and the
ip forward() routines as input argument, hence both can ob-
tain a pointer to the ingress interface (being it a physical inter-
face for access VPN router, a virtual one for VPN core nodes).

Fig. 8. Forwarding module in FreeBSD

Theip forward() invokes thertalloc ign() to lookup the
(base) routing table, and then sends the packet to the proper out-
put interface. Transmission is mediated by theip output()
that, for example, decrements the packet TTL and finally in-
vokes the interface driver transmission routine.

To virtualize the forwarding process, we modified the de-
fault behavior of theip forward() routine. First, we added
the VPNID to the interfaces by inserting an additional field
to the ifnet{} data structure, as illustrated in Figure 9. We
instructed theif attach() routine (which is called to initial-
ize all the interfaces, even for the dynamically created ones) to
set theif vpn field to zero. We modified theioctl() system

(net/if_var.h)
struct ifnet {
char *ifname; /* name, e.g. eth, gif */
u_short if_index /* numeric abbreviation */
...
u_int if_vpnid; /* VPN_ID - ADDED */

}

Fig. 9. Interface data structure with VPN identifier

call (and theifioctl() ancillary function), which now accepts
theSIOCSIFVPNID andSIOCGIFVPNID parameters to set/get the
interface VPNID field. The modified version ofifconfig
(which now accepts thevpnid switch), uses this system call,
as shown in Figure 10.

1. struct ifreq ifr;
2. int s, vpnid;
3. char ifname[16] = "eth0";
4.
5. s = socket (AF_INET, SOCK_DGRAM, 0);
6. vpnid = 5;
7.
8. /* specify interface */
9. strcpy(ifr.ifr_name, argv[2]);
10.
11. /* set interface VPN-ID */
12. ifr.ifr_vpnid = vpnid;
13.
14. ioctl(s, SIOCSIFVPNID, (caddr_t)&ifr);

Fig. 10. Code sample inifconfig to set the VPNID on eth0

The ip forward() was modified in order to call the
vpn rtalloc ign() if the VPN ID of the ingress interface
is set to a non-zero value. Thevpn rtalloc ign() (and
the ancillary functions) is a redefined version of the standard
rtalloc ign(), which selects the correct table by using the
if vpnid field before looking up for the next hop. As a final
result, packet forwarding is done by jointly considering both the
destination address and the VPNID.

C. Routing daemons

This point can be seen as less important compared to the pre-
vious ones because it does not involve the modification of the
operating system. Indeed, it involves the modification of an ex-
ternal software that cooperates with the OS to compute the best
path to the destination which, in our case, varies according to
the VPNID.

From this perspective, there are two models available in the
literature. In thepiggybackmodel a single routing daemon is
able to compute the best path for all the VPNs. The routing
daemon must be heavily modified since it must exchange, in its
routing message with the peer routers, the VPNID of each des-

tination. Vice versa, in thevirtual router model, each router
keeps several routing daemons active on the same machine.
These daemons are completely independent (ships in the night
approach) and each routing daemon exchanges only routing in-
formations related to its VPN with the other peers.

The first model is probably more efficient, but it requires non-
trivial modifications in the routing protocols. Vice versa, the
second model allows the deployment of off-the-shelf daemons,
with minimal modifications (you must assure that each routing
daemon receives only the messages related to it). Our prototype
uses a modified version of the Zebra [8] daemon that has a new
starting parameter (the VPNID), which is used only to interact
with the operating system (update routes or query for informa-
tion). The remaining part of the daemon (routing messages, etc.)
are kept unchanged. This modification allows the routing dae-
mon to update on the part of the routing table that is related to
its VPN, while to interact to unmodified daemons.

Since the network will have several routing messages flow-
ing on it, each routing daemon bounds only to the virtual inter-
faces that are marked as belonging to the selected VPN: in other
words, each tunnel carries only the routing messages that are
related to the VPN it belongs to. Each router could have up to
NVPN + 1 routing daemons on it: the standard one (bound to all
its physical interfaces) for the base network, and one addictional
daemon for each locally served VPN.

IV. RELATED WORK

Several Internet Service Providers already have VPN provi-
sioning in place; the most important router vendors have their
solutions, and also the IETF community is working on that, try-
ing to standardize a general solution. However, all the solu-
tions available nowadays are based on the paradigm ”VPNs at
the edge, traditional IP routing in the backbone”. Also solutions
based on MPLS [9] can be seen as belonging to this paradigm,
since VPNs are supported by creating a new set of label switched
paths between ingress and egress routers so that multiple VPNs
never share the same path.

Although non-existing in the marketplace, the idea of chang-
ing the router forwarding path in order to support VPNs natively
has been examined by several projects in the literature. Among
the others, the most important one is the Virtual Network Ser-
vice project (VNS, [10]).

Although the technical solutions adopted in VNS seems to
be quite similar to ours, the purpose of VNS is different. VNS
was born to provide a private, secure, quality of service guaran-
teed channel between two end points. To do that, it uses IPSec
(tunnel mode) in order to encapsulate the original IP packet. It
follows that the intermediate routers on the path do not know
the real (and private) address of the packet. Since the original
IP address is hidden, the backbone routers should not need to
know the VPNID of the packet. However, VNS provides Qual-
ity of Service guarantees on a per-VPN basis; therefore inter-
mediate routers must know the VPNID of the packet. VNS, for
instance, inserts the VPNID into an optional field of the outer
IP header of the encrypted packet. Moreover, VNS modifies the
routing protocols in order to support different paths (from the
same couple ingress-egress routers) according to the VPNID.
Therefore, the forwarding path of each router has to be modi-

fied in order to take into account both the destination address
of the IPSec tunnel and the VPNID of the packet. It follows
that VNS implements both a modified forwarding path (through
multiple routing tables addressed by the VPNID) in order to
support per-VPN routing and a mechanism to specify the VPN
of each IP packet. Therefore VNS could support overlapped ad-
dress spaces as well as we do, although this was not an objective
of the project.

From the association between packets and VPNs, our present
implementation uses a statically defined mapping between in-
terfaces (also virtual, like tunnels) and VPNs, but this can be
changed to a more sophisticated method (the one in VNS, or the
MPLS tag, or even other ways) without changing the mecha-
nisms that are used to forward IP traffic2. In other words, VNS
wants to provide a way to create end-to-end VPN services; our
project focuses particularly on the forwarding path and it wants
to demonstrate an alternative way to create a VPN-aware IP net-
work.

V. CONCLUSIONS

This paper presented the design and the implementation of
an advanced support for provisioned virtual private networks,
based on the FreeBSD operating system. The introduced
new features allow FreeBSD to be adopted as an open-source
mean for developing concurrent VPNs. In our implementa-
tion we modified the kernel functionalities (e.g.socreate(),
rtrequest(), ip forward()), the system calls providing an
interface toward the kernel (e.g.ioctl(), setsockopt(),
sysctl()), and many user-space applications (e.g.ifconfig,
route, netstat, zebra).

The status of the current implementation is complete, and
test-bed was ran at Politecnico di Torino, demonstrating that
the implementation was working fine. Performances are not re-
ported in this paper because there are absolutely no differences
prior and after our modifications. In fact, FreeBSD already has
support for multiple routing tables because it can handle several
network-level protocols (IP, IPX, etc.) at the same time. The
overhead of our VPN support can be seen like another network
protocol, which results in a longerswitch instruction into the
forwarding path. The results confirms that the same operating
system forwards the same number of packets with or without
our modifications.

However some issues need to be further investigated. The
main problem concerns the ARP module of standard FreeBSD.
Since ARP entries are cached within the IP base routing table,
this creates a conflict when a VPN access router is connected to
multiple sites that are using the same address space. The virtu-
alization of ARP caches and ARP lookups is needed (similarly
to the virtualization of tables and table lookups, as described
in Section III) in order to make the implementation more flexi-
ble. The second issues relates to the standard GRE module. By
now, it is not possible to define more than one tunnel bounded to
the same couple of physical interfaces between two peer VPN
routers. Obviously, this hampers the applicability of our imple-
mentation, since it is not possible to deploy two parallel tun-

2In this case the current implementation of the virtual routing daemon must
be changed as well because it relies on different interfaces (i.e. tunnels) to dis-
tinguish the routing messages belonging to different VPNs.

nels for two distinct VPNs without using different physical (i.e.
outer) addresses. Such problem could be overcome by patching
the GRE support, to integrate the adoption of the GRE key field.
By mapping the key field to thegif VPN identifier, the parallel
tunnels would be still distinguishable.

Besides this issues, further work can be undertaken in many
area. For instance, the Zebra support for multiple routing ta-
ble could be improved. Our current implementation requires
the instantiation of azebra router manager daemon (and a cor-
respondingospfd routing daemon) for each defined table. It
would be more manageable to have a single router manager and
let the routing daemons to specifies the table of interest for the
routing updates. This requires a deeper modification (with re-
spect of the current status), since the communication protocol
between the daemons and the manager should be extended.

A second major improvement concerns the identification of
VPN traffic at the access side. Currently, all packets incoming
from a tagged physical interface are associated to a single VPN.
In case of a client site belonging to multiple VPN, the site access
router must be connected to multiple interfaces of the provider
access router. Further, the site access router must be able to
distribute client packets of different VPNs towards the different
interfaces it is attached to. This requires additional capabilities
from the site access router, hence hampering the transparency
for the client. To this aim, a more sophisticated approach could
be used for traffic identification. Multiple traffic filters could be
applied to the access interface (instead of a single tag, which is
logically equivalent to a single wild-card filter). Filters could be
used to identify the membership of a packet to a given VPN on
the basis of protocol fields of the TCP/IP headers. This would
also allow a greater granularity to the traffic identification op-
eration. This solution would allow the site access router to be
attached to a single interface toward the backbone network, and
would simplify its task: it should have a single default route for
all non local traffic (rather than distributing packets on several
outgoing interfaces).

Finally, other possible evolutions are the support of IPSec tun-
nels to allow secure VPNs when needed and the integration of
a QoS module (e.g. ALTQ [11]) with the virtual forwarder, to
allow QoS-based forwarding on per-VPN basis.

ACKNOWLEDGMENTS

The authors would like to thank Angelo Calafato for his great
job in the implementation of the prototype.

REFERENCES

[1] B. Gleeson, et al.,A Framework for IP Based Virtual Private Networks,
IETF RFC 2764, Feb. 2000

[2] R. Callon (ed.), et al., A Framework for Layer 3 Provider Provisioned
Virtual Private Networks, IETF Internet Draft, Apr. 2002

[3] D. Farinacci, et al., Generic Routing Encapsulation (GRE), IETF RFC
2748, Mar. 2000

[4] G. R. Wright, W. R. Stevens,TCP/IP Illustrated, vol 2: The Implementa-
tion, Addison-Wesley, 1995

[5] S. J. Leller, et al.,The Design and the Implementation of the 4.3BSD UNIX
Operating SystemAddison-Wesley, 1989

[6] A. Calafato, Architectural Choices for Developing Virtual Networks(in
Italian), Master thesis, Politecnico di Torino, Jan. 2002

[7] FreeBSD 4.4 patches, On-line at http://softeng.polito.it/freebsd/
[8] Zebra Project Page, On-line at http://www.zebra.org
[9] E. Rosen, et al.,BGP/MPLS VPNs, IETF RFC 2547, Mar. 1999

[10] L.K. Lim, et al., Customizable Virtual Private Network Service with QoS,
Computer Networks, vol. 36, no. 2-3., pp. 137-151, Jul. 2001

[11] K. Cho, A Framework for Alternate Queueing: Towards Traffic Manage-
ment by PC-UNIX based Routers, Usenix 1998, New Orleans, Louisiana,
USA

