
05 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

LMAP: A Protocol to Automate the Setup of Logical Networks / Scandariato, R.; Lago, Patricia; Risso, FULVIO
GIOVANNI OTTAVIO. - (2002), pp. 461-466. (Intervento presentato al convegno 10th IEEE International Conference On
Networks (ICON 02),).

Original

LMAP: A Protocol to Automate the Setup of Logical Networks

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1417044 since:

IEEE

LMAP: A PROTOCOL TO AUTOMATE THE SETUP
OF LOGICAL NETWORKS

Riccardo Scandariato, Fulvio Risso and Patricia Lago
Dipartimento di Automatica e Informatica, Politecnico di Torino

Corso Duca degli Abruzzi, 24, 10129 Torino - Italy

ABSTRACT
This paper presents the Logical Membership Announcement

Protocol (LMAP), a new signaling protocol that handles the
construction of logical topologies (e.g. overlay networks) in a
straightforward way. LMAP defines both a way to disseminate
membership information into the network and a way to determine
the adjacencies that must be established between members to
create the logical topology. LMAP represents a building block
for upper-layer distributed services (e.g. Virtual Private
Networks, BGP peering, and more) that rely on a logical
topology to achieve their functionality. Moreover, appropriate
protocol extensions can be used to transport information that is
meaningful only to the service application.

This paper presents the key points behind LMAP, it describes
how LMAP works, it makes a comparison with other proposals,
and it shows some preliminary results proving its robustness and
its excellent scalability.

I. INTRODUCTION
A logical network is a network that groups together a set of

entities (e.g. users) that are somehow connected between them.
One of the most common applications of logical networks is the
overlay network, i.e. a network with custom characteristics
(quality of service, security) spanning over another ‘base’
network, which has a wider acceptance and which provides data
exchange between two endpoints.

Significant examples of overlay networks are the early days’
Internet (a data network built on top of the telephony network),
the modern x-bones (MBone, 6Bone X-Bone), or Virtual Private
Networks (VPNs) [3].

A general solution to setup logical networks will have to
address two important problems. First, it needs a simple and
straightforward mechanism to disseminate membership
information. Term “membership” implies the establishment of a
logical association between a networked entity (e.g. an host) and
a community. A community is directly related to a group of
applications (the service) that need to exchange data between
them (e.g. a set of routing daemons participating to a BGP
domain). Moreover, membership dissemination is intended as a
collaborative process through which each entity declares its
membership and receives membership information from peers
involved in the same community.

The second problem concerns the automatic computation of
the logical topology the service is relying on. A logical topology
describes how members can mutually interact within the
community. For instance, members can interact directly, when
they exchange information without the mediation of other
members (e.g. two directly connected peers), or indirectly, when

the communication requires third-party members (like two clients
connected through a gateway).

Although these two steps are the basic building blocks for the
creation of a logical network, they are usually not enough in
order to make services operative. For example, a VPN host [3]
requires the knowledge of all the members involved in the same
VPN (the community). Further, members must be able to
exchange data by means of special paths. That is, the VPN
service needs to map the logical topology into a physical network
configuration (e.g. tunnel creation). The exploitation of
topological information is usually service-dependant. For
instance, differently from the VPN case, BGP peers [8] do not
create tunnels; instead, they setup TCP connections in order to
exchange routing data.

One solution to the problems above can be found in the
Logical Membership Announcement Protocol (LMAP), a simple,
general and extendible signaling protocol that we designed to
automate both the dissemination of membership information and
the setup of logical topologies within a community. LMAP is
designed to be a general-purpose protocol and it takes no
assumptions about the type of service it is supporting, the
semantics of the membership itself, or the way the logical
topology will be actually exploited. Furthermore, its modular
architecture accommodates for ad-hoc extensions to the base
protocol, enabling applications to encapsulate service-dependant
parameters within protocol messages.

This paper presents the design and implementation of the
LMAP protocol. Section II discusses the related work and points
out that other solutions, compared to LMAP, are targeted to
specific services. While Section III presents the overview of
LMAP basic functionalities, Section IV presents some advanced
features like its plug-and-play capabilities, the support for stub
networks, and more. Section V presents the applicability of
LMAP to VPN scenarios. Finally, conclusive remarks are given
in Section VI.

II. RELATED WORK
To date, the setup of a logical network is mainly carried out

manually; few efforts have been done to automate the
dissemination and discovery of membership and to seamlessly
configure logical topologies. Some proposals exist indeed, but
they are usually targeted to specific services; hence they do not
provide a general approach in order to be portable across
different services.

We evaluate existing proposals against the following lists of
characteristics that are required for a complete topology setup
solution:
1. Discovery: automatic discovery of other members in the

network;
2. Topology: full control of topology that has to be deployed;
3. Configuration: intuitive configuration of members;

 2

4. Extensibility: applicability to a wide range of distributed
services.

Main efforts were done in the area of overlay networks. In

particular, key contributions can be found in the X-Bone project
[10] and the Resilient Overlay Networks project (RONs) [1].

X-Bone is a distributed architecture for dynamic creation of
virtual networks. The architecture is made up of two main
modules: a resource daemon (RD), which resides on every
network node, and a centralized overlay manager (OM), which
coordinates tunnel setup and network route configuration.

The administrator requests the creation of a new overlay to
the OM through a web graphical interface. Then, the OM creates
the overlay in two steps. First, it invites the network nodes to
participate to the new overlay by means of multicast messages.
Second, the OM configures the nodes (which answered the
invitation) through a secure TCP connection. Finally, the RD
performs the actual node configuration (e.g. interface setup).

According to our list of characteristics, we can observe that
from the discovery perspective no member discovery (in the strict
sense) is used by X-Bone, since members are centrally
configured. Hence, there is no need for members to know each
other. Rather, discovery is used (though multicast) by the OM in
order to contact the RDs.

Concerning topology, the X-Bone architecture is oriented
toward the creation of the overlay in a ‘do-what-I-mean’ fashion
(e.g. an overlay creation request can be expressed as the
following statement: “Create a star of 6 nodes”). Hence, X-Bone
does not offer a punctual control on which nodes will be involved
in the overlay (multicast invitations are issued until a sufficient
number of nodes replies). Additionally, X-Bone creates overlays
according to few topology patterns, which mainly are busses,
rings, and stars: hence, complex topologies cannot be managed
easily. In X-Bone, no configuration is needed at the node side,
since configurations are managed centrally by the OM, and
pushed in nodes through a TCP connection. Obviously, this
simplifies network management, but it introduces a single point
of failure (the OM). At last, extensibility has not been addressed
since X-Bone is only applicable to VPN scenarios.

Beside the comparison above, X-Bone presents some
interesting features, such as the ability of creating stacked (i.e.
hierarchical) overlays, or its use of TTL-scoped multicast
messages (used by X-Bone for invitation messages), interesting
to isolate signaling traffic.

The RON project focuses on the use of overlay networks as a
mean of increasing robustness of wide area networks. In
particular RON proposes a fast mechanism to recover link or path
failures by exploiting alternative routes offered by the overlay
(overcoming the slow convergence time of traditional routing
protocols, e.g. BGP). A resilient network is made up of few
nodes (RON routers) in a wide network. Nodes execute a link-
state routing protocol to disseminate reachability information
between them, and repeatedly probe available paths (i.e. virtual
link). If a fault is identified on an adjacency the traffic is re-
routed on an alternative path by means of the overlay.

Concerning our list of characteristics, discovery is provided
through a dynamic announcement-based membership protocol. A
new RON node has to know at least one peer in the overlay;
afterwards, announcements are broadcasted to other peers
through the overlay network itself. The solution for topology is
quite limited: topology is built by a routing protocol, thus only

full meshes are allowed (each node in a resilient network of N
nodes has N-1 virtual links). The topology setup configuration is
quite simple, since just a peer must be provided to the RON node.
More complex is the configuration of routing policies used at the
edge of a RON node; but this is a service-dependent issue
(therefore not applicable to this work, being LMAP service-
independent). At last, RON does not address extensibility: the
solution is specifically targeted to fault-recovery, although it can
be adapted to the VPN case.

Another topology setup mechanism (again, peculiar to VPNs)
was suggested by the IETF in [7]. It proposes to carry some
additional information in BGP (an extended community attribute)
in order to define the role (hub, spoke, or mesh) of the BGP
speaker. BGP routers create an adjacency only if it is compatible
with their attributes (e.g. an hub brings up a new adjacency with
a spoke). However, this proposal does not allow the dynamic
discovery of BGP peers, since they must be explicitly configured.
Moreover the use of a simple role attribute is of no help in the
creation of complex topologies. In summary, we can observe that
no membership discovery is provided and peers must be
configured explicitly (by means of their IP address). Further,
only simple topologies (meshes, stars) can be created, the same
configuration burden of BGP is required and the solution only
works for BGP-based VPNs (therefore no extensibility is
addressed).

III. PROTOCOL OVERVIEW
LMAP is a signaling protocol that automates the

dissemination of membership information. Such information
defines the set of network systems that are participating to a
given community. Moreover LMAP decreases the configuration
effort in managing the logical topology on which a service must
be deployed.

A. Membership dissemination

Each community is identified by a globally unique identifier
(the Community ID), and it is associated with a unique multicast
network address (community group). Each member maintains the
association between the two values; the assignment of the
multicast groups has to be done by means of a special procedure
that is outside the scope of this work1. Globally unique multicast
addresses must be used only for communities that span several
administrative domains. Otherwise, addresses can be reused
across distinct domains, hence reducing the risk of address
shortage.

Each LMAP node announces itself as a member of a given
community by means of advertisement messages directed to the
community group. Since each LMAP node (that can be either a
router or an host) joins only the group of interest, it receives only
the desired announcements: this choice avoids overloading nodes
with useless membership information. Each announcement
reaches all other network members in the same community and it
is repeated periodically in order to refresh membership (soft-state
model). The announcement can make use of a scope limiter (for

1 For instance, when a new service is created, its multicast group can

be advertised by means of SAP [4]. Alternately, a group address can be
requested to a multicast address allocation server by means of MDCAP
[5]. The assignment procedure should also consider scenarios in which a
community crosses multiple administrative domains.

 3

example the time to live contained into the IP packet) in order not
to flood the entire network.

Note that for membership dissemination and topology
construction to work properly, not all systems in the network
must run LMAP, but only those that want to participate in the
service. In general, systems in the network are classified as
service members (i.e. systems that participate in a given
community and adopt LMAP to announce their membership) and
service-unaware systems.

B. Creation of the logical topology

The logical topology can be seen as a group of nodes and a
set of adjacencies among them. Instead of explicitly declaring
adjacencies, LMAP implicitly deduces them from the definition
of the role played by members of a shared logical topology, e.g.
the hub of a star. The immediate advantage of this approach is
that administrators can identify roles instead of adjacencies,
which are hard (and time-consuming) to define, and can be
computed automatically by the protocol. For instance, in Figure 1
(in which the logical topology is made of labeled nodes and
dashed lines between them) we can easily identify a mesh among
nodes C, E, D, and the two leafs A and B attached to E.

Moreover, the definition of every kind of topology (full
meshes, partial meshes, trees, etc.) can be easily established by a
proper role configuration. Again, in the example above, we have
a complex topology composed by a star (A, B, E) plus a full
mesh (C, D, E).

In LMAP, member role information is carried inside
membership announcements. LMAP defines two role-types: hub
(the member will establish direct adjacencies with all other
members) and leaf (the member will establish adjacencies only
with hub members). Although the resulting topology seems to be
simply a star, we will show that an arbitrary topology is
permitted by properly defining the role-ambit, a parameter
additional to the role-type. For instance, role “Hub_01” (hub
number one) has a type equal to “Hub” and an ambit equal to
“1”.

Logical topology is established through a simple algorithm:
an adjacency exists between two members if and only if the
corresponding roles match according to one of the following
construction rules:
• For the same role-ambit, both members have role-type

Hub.
• For the same role-ambit, one member has role-type Hub

and the other member has role-type Leaf.

Service-unaware
systems

Service
members

A E

B

D

C

Figure 1. Network with LMAP members.

The logical topology will result from the roles assigned to the
network members and it can be arbitrary. For instance, Table 1
shows a possible set of roles realizing the sample topology drawn
with dashed lines in Figure 1.

Member Role combo Adjacencies

A Leaf_01 E (Hub_01)

B Leaf_01 E (Hub_01)

C Hub_02 D, E (Hub_02)

D Hub_02 C, E (Hub_02)

E
Hub_01

 Hub_02
A, B Leaf_01);

 C, D (Hub_02)

Table 1. Role combos referred to Figure 1

As shown in Table 1, a member can be assigned with more
than one role for the same community and that set of roles is
called role combo. There is only a single rule that role combos
must obey to: a member cannot contemporary be Leaf and
Hub for the same role ambit. For instance, role combo “Hub_01
Hub_02 Leaf_03” is valid, while “Hub_01 Hub_02
Leaf_02” is not.

The usage of roles to specify the logical topology is much
more powerful (and simpler) than other methods. For instance, a
method often used consists in listing explicitly the members to
which an adjacency must be established. However, this method
requires a greater configuration effort. For instance, in a full
mesh of N nodes, LMAP requires the configuration of the same
role in all the N nodes (O(N) complexity), in place of (N-1)
different adjacencies in all the N nodes (O(N2) complexity).
Additionally, this method is error prone and time-consuming:
adding a new member requires updating the configuration of all
members that must establish an adjacency towards it. For
instance, let us suppose a star topology where the hub is a single
point of failure. Replacing the hub (or adding a backup hub for
redundancy) requires changing the configuration of all the leaf
members. LMAP straightforwardly solves the problem: once the
new node is assigned with the original node’s role, topology is
automatically recomputed (with no changes in leafs).

LMAP nodes are not obliged to keep track of the entire
logical topology: they have just to record their adjacencies (i.e.
peers). Additionally, depending on how the LMAP protocol is
implemented, it can keep track of either the full logical topology,
or just local adjacencies. Note that keeping track of the full
logical topology can be possibly unfeasible if the announcements
were scope-limited.

LMAP does not foresee an explicit recovery algorithm in
case of network failures (e.g. network partitioning). Nevertheless,
the normal operating mode (i.e. based on properly configured
timers) will guarantee at run-time the consistency of the LMAP
database. On the contrary, LMAP explicitly foresees mechanisms
that speed-up topology re-computation. For example,
membership changes are immediately notified to the group.
Additionally, LMAP defines an explicit leave message. Such
features are particularly useful in dynamic environments where
membership joining and leaving occur frequently, but they are
not detailed in this paper (see [9] for further details).

C. LMAP Application Programming Interface
Application-level software that wants to exploit LMAP

capabilities needs a standard interface to interact with the
associated LMAP instance (i.e. a daemon implementing LMAP).
To this aim, LMAP provides a simple set of primitives to
Join() and Leave() a community, to Add() and

 4

Remove() service-dependent parameters to LMAP
announcements, and to Get() the information contained in the
LMAP database (e.g. the current community topology). The
service application, in turn, must provide the LMAP instance
with a handle to a Notify() function. The latter is called by
the LMAP instance in order to notify the service application of
any change occurred in the LMAP database. A change can
consist in a new announcement that has been received, a
modification in the service parameters of a previously recorded
member, and alike.

IV. ADVANCED FEATURES
This Section illustrates the advanced features of LMAP.

A. Plug and play

The LMAP protocol includes some mechanisms to ease the
configuration of members, in order to assure plug and play
capabilities. To this aim, the protocol reserves the role Hub_0.
When an LMAP instance is executed with no role combo, it will
automatically configure the Hub_0 as the default role. As a
consequence, if no role is specified for all members, a full mesh
topology is established between members. LMAP also reserves a
default multicast address that can be shared among all the
communities. If an LMAP instance is executed without any
community group, it will automatically use the default group.
Obviously, among all LMAP announcements sent over the
default group, each LMAP instance needs to select only those
related to its own community. To this aim the LMAP node can
check the Community ID Object, a community identifier
contained in each announcement. While distinct multicast
addresses make LMAP more scalable, the default address leads
LMAP to be possibly started without any setup information
(except the Community ID).

B. Unicast support

Although multicast is a powerful way to disseminate
memberships, it could not be widely available. For instance,
some transit domains that interconnect multicast-aware networks
could not support multicast forwarding. LMAP offers an option
to overcame these issues by providing unicast support. In this
case, members exchange the LMAP messages by using unicast
packets. A small number of modifications are required in order to
support unicast operations. Basically, unicast peering
relationships must be explicitly configured in LMAP members
that face a unicast-only domain. Unicast LMAP differs only in
the way membership is disseminated (i.e. announcements only
reach the configured peers), while logical topology computation
still relies on roles. That is, an adjacency between two members
is established on the basis of matching roles, even though a
unicast peering is configured between them. Thereafter, the
protocol follows the same timings of multicast mode, i.e. the
member still refreshes membership; however refresh messages
are replicated to all unicast peers. In order to simplify the
configuration burden in the unicast mode, LMAP does not
exclude the possibility to download the configuration (i.e. the
unicast peering relationships) from a central server by means of a
reliable TCP connection. The deployment of a configuration
server is clearly discouraged because of scalability and reliability
problems, but it could be helpful in some specific cases.

C. Support for stub networks

The LMAP protocol is designed to allow the construction of
arbitrary (possibly complex) topologies. However, there are
particular scenarios where simplicity of configuration would be
more useful than flexibility in topology construction: e.g.
services based on a client-server paradigm. Figure 2 shows
clients in a stub network (e.g. a LAN) that want to participate to a
service deployed in the core network (e.g. a provider). To limit
network traffic, service requests/data originated by clients can be
concentrated by a near-site gateway (labeled as server), rather
than being directly sent in the core side. The gateway, in turn,
announces itself over the core network (dashed arrow), by
avoiding interactions between the two sides. Indeed, clients are
not interested in the core topology of the service: they just want
to know which is the gateway that will forward service traffic on
their behalf. In this case, the topology is implicit and quite
simple: clients just connect to the gateway, with the result of a
starred topology (dashed lines). Furthermore, clients need a
seamless configuration since they typically run on hosts owned
by non-technical users.

ServerClients

Core
Network

Stub
Network

Figure 2. Stub network scenario

LMAP includes two additional features to implement the
above scenario. First, members (server and clients) in the stub
network use a well-known multicast address called shared group
whose scope can be limited2, e.g. to the LAN. The use of a well-
known group makes client configuration easier and avoids
multicast packets generated by the core network to be received in
the stub side too. Second, to preserve the plug-and-play
capabilities, the Leaf_0 role is also reserved for the default
configuration of LMAP clients. That is, when a LMAP instance
is executed specifying the client behavior, the protocol assumes
the Leaf_0 as the default role. As a consequence, the only
information that must be specified for client stations is the
community through the Community ID.

As shown in Figure 2, the server node participates to both the
core and stub side. Hence it must have two different role combos
(one for each side), to which it applies the construction rules
independently, by matching each combo with announcements
received from the corresponding side. When an LMAP instance
is executed specifying the server behavior, the protocol assumes
Hub_0 as the default role for the stub side. Concerning the core
side, the LMAP instance uses the configured combo/group
parameters (if present) or it applies the default values as
described in Section IV.A.

Further, the server may enforce some coupling mechanisms
between the two sides: the server may use clients’
announcements to activate its membership within the core
network. Similarly, when no more announcements are received

2 How scope is limited is an implementation issue. Groups can be

confined by using administratively scoped addresses [6]. Alternatively,
TTL thresholds can be configured on the server node.

 5

from clients, the server may deactivate its membership; i.e. it
may stop announcing itself, causing the pruning of the server
(and of the attached stub network) from the logical topology.
This behavior is conceptually akin to the interaction between
IGMP and multicast routing protocols at the LAN-WAN edge.

D. Extensibility
LMAP is a supporting protocol for the upper-level services,

able to carry service-dependent information. However, it makes
no assumptions about the service itself. That is, LMAP
implements a way to disseminate memberships and it distributes
service information with no further elaboration.

LMAP messages are made of an envelope containing many
objects, each one carrying a piece of information (e.g. a role).
The base protocol defines its own set of objects, which are used
for membership dissemination and topology setup and that are
processed by the LMAP instance internally. Further, LMAP can
transport service-specific data in its announcements though a
generic Service Object that is completely transparent from the
LMAP standpoint.

The Service object is passed by the service to the LMAP
instance, and then inserted into announcements. The format of
this object is application-specific, allowing a wide range of
choices (from binary to XML). These objects are not modified or
interpreted by the LMAP protocol: optional objects are extracted
and delivered to the upper-layer service application upon
reception of an announcement. The service application parses
and processes objects’ content according to the service-
dependent logic.

For example, a service application running on a server
member can elaborate and compact the information learned from
clients over the shared group. Then, the compacted information
can be passed back to the LMAP instance for core-side
dissemination. In certain cases, in fact, better performances can
be gained by aggregating service-specific objects coming from
different clients into a bulked announcement over the core
network. Such practice is transparent to LMAP, since service-
specific objects are interpreted at the application level. However,
in order to perform these elaborations, LMAP should be coupled
(through the LMAP API) with the service module that resides on
the network node.

V. EXTENSIONS FOR VPN
PROVISIONING

This Section shows the applicability of LMAP to the VPN
provisioning service. Section V.A briefly describes provisioned
VPN. Further details can be found in [2]. Section V.B explains
how LMAP can be used in the context of VPN provisioning,
demonstrating LMAP extensibility.

A. Provisioned Virtual Private Networks

As depicted in Figure 3, a provisioned VPN is a connectivity
service offered by a provider to its customers (sites or single
users). Virtual connectivity among VPN clients (circled) is
implemented inside the provider network by establishing a proper
mesh of tunnels (dashed lines). Network nodes interconnected by
tunnels are called VPN routers (darker) and they constitute the
so-called “virtual topology” (i.e. the topology of the VPN). VPN
routers are configured in order to route data generated by

customer stations belonging to a VPN, to the correct destination.
VPN traffic is forwarded through the tunnel mesh (see arrows).

Tunnel VPN router

VPN client

VPN
data

VPN site

Provider

Stub Side Stub SideCore Side

Figure 3. Provisioned VPN example

VPN routers are mainly placed at the edge of the provider
network. These routers (called provider edges in the literature)
act as access point for customers residing in the stub side. These
routers identify which VPN the customer traffic belongs to on the
basis of the incoming interface and/or traffic filters that match the
traffic characteristics (i.e. values of TCP/IP header fields). After
having classified the incoming traffic, they must decide to which
outgoing tunnel (in the core side) they must forward the traffic,
mainly on the basis of the destination address of packets.
Forwarding to an outgoing tunnel implies the encapsulation and
optionally the encryption of the traffic itself.

There can also be VPN routers placed in the core of the
network. These routers act as tunnel switches, in that they switch
customer traffic from an incoming tunnel to the proper outgoing
tunnel (again on the basis of the destination address). Note that
traffic classification is straightforward, since traffic comes in
from tunnels that are implicitly associated to the corresponding
VPNs.

Summarizing, a proper set up of a provisioned VPN requires
configuring the following information:
• Membership: VPN routers must be aware of the set of

VPNs they are serving.
• Dissemination: VPN routers must propagate their

membership to other VPN routers in the core side.
• Topology setup: tunnel topology must be settled among

VPN routers.
• Classification: access VPN routers must identify which

ingress traffic belongs to which VPN, in order to deliver it
accordingly.

LMAP provides an optimized solution to all the above items.
Additionally, LMAP allows the decoupling of VPN setup steps
from the VPN-layer routing. Hence, no changes are needed for
routing protocols, since they do not carry VPN-related extra
information.

B. Operating provisioned VPNs with LMAP

As depicted in Figure 3, a provisioned VPN requires
configuration both in the stub side and in the core side.

Concerning the stub side, interaction between VPN clients
and the access router does not (typically) require the setup of a
tunnel topology. Mainly, clients have to signal their intention to
join a given VPN. Additionally, a client may decide that just a
part of its traffic must be routed on the VPN. In summary, it
needs to inform the access router of both its intention to join a
VPN, and which traffic belongs to the VPN. These operations
can be carried out effortless by LMAP thanks to its support for

 6

stub networks: as soon as a client joins a VPN it sends an
announcement to the shared group. Then the access router (acting
as a server) receives the announcement and adds the site to the
VPN topology. Obviously, if there were other clients already
members of the same VPN, the access router can drop
announcements of further clients because the site was already
inserted in the topology.

The server gathers the whole traffic of a VPN client through
the same network interface. Since the client may participate to
multiple VPNs, it inserts proper filtering information into the
Service Object of each announcement in order to specify which
traffic belongs to which VPN. This indicates the server a way to
recognize the different VPN flows.

Joining of customers to a given VPN is realized through
standard LMAP signaling in the provider network. VPN routers
(both access and core) must be configured with a proper set of
roles according to the topology that the customers desire.
Membership exchanges of LMAP announcements (sent through
the per-VPN community group) lead to the setup of the tunnel
mesh. Since VPN routers can use different tunneling technology,
announcements can carry tunneling parameters in the Service
Object. These parameters list all tunneling technologies (with a
corresponding preference) that are supported by each member
and they can be used to automatically agree on which tunneling
technology (if any) to adopt during the tunnel setup.

Once tunnels have been established, a VPN-dedicated routing
protocol can be activated on top of them. This does not require
any modifications to the base routing protocol activated on the
base network. As a result, members of the VPN will be able to
exchange traffic securely with low administrative effort.

VI. CONCLUSIONS
This paper presented the LMAP protocol, a new signaling

protocol that handles the construction of logical topologies.
The most important characteristic of LMAP, compared to

related work, is its flexibility. LMAP is service independent,
while neither X-Bone nor RON is.

Moreover LMAP is the only protocol that satisfies all the
requirements needed for the construction of a logical network
(i.e. discovery, topology, configuration, and extensibility). It does
not require a new node to already know a peer; instead it
automatically discovers other peers thanks to multicast
announcements. Then, it builds seamlessly the logical topology,
which can be arbitrarily complex, and it does not suffer of any
single points of failure thanks to a collaborative and distributed
approach to topology construction. Finally, member
configuration is really simple and it supports several services (as
exemplified in Section V.B for VPN support).

LMAP borrows some ideas from other existing protocols. For
instance, the support for stub networks (Section IV.C) shows
similarities with IGMP as each member announces itself on a
multicast group and these announcements are “grouped” by the
multicast access router. Membership dissemination uses some
ideas introduced in the Link State routing protocols such as
OSPF (each member sends announcements with a "flooding"
technique), even if it does not require for each member to keep
all the other members’ announcements.

A first prototyping implementation of LMAP has been tested
on FreeBSD, Linux, and Win32. To give a first glance on initial
performance evaluation and on-field operation of LMAP, some
considerations follow:

• When a new member joins a certain topology, time
convergence is of few seconds, and is directly dependent
from the underlying multicast support.

• When an existing member leaves a topology, time
convergence is equivalent to the scenario above, provided
that the “bye” procedure is correctly followed. This
procedure requires the generation of a predefined sequence
of packets stating the intention to leave the community.

• Topology convergence is ensured thanks to a refresh
mechanism that reissues announcements every three
minutes.

• If an existing member abandons a topology without
explicitly following the “bye” procedure, its entry remains
valid for a period that is (at most) 3,5 times the refresh time
(i.e. 10,5 minutes). This can represent a problem for
appliances based on an always up-to-date topology. To
meet this requirement, the refresh time can be configured in
each LMAP instance.

• The size of a typical announcement for an average host
playing two roles is about 100 bytes. If we consider a
topology of 1,000 members, this requires to manage a
traffic of about 4,5 Kbps for each host, which is far too low
to represent any problem.

• Moreover, if we think of a service (e.g. VPNs) and we add
service-dependent information (e.g. for VPN configuration)
a typical message will be heavier: for instance, a single
filtering information can be of 25 to 39 bytes in case of
IPv4 or IPv6 respectively; a VPN message defining two
filtering information can add 50 to 100 bytes to the size of
the announcement message reported above (see previous
point), thus doubling the necessary bandwidth (which
continues to be negligible being less than 9 Kbps).

To conclude, we believe that LMAP represents a promising
technology for constructing of logical topologies in an easy yet
robust way. Its flexibility and general applicability represent an
additional advantage, as exemplified for VPNs.

REFERENCES
[1] Andersen D., et al., “Resilient Overlay Networks”, 18th ACM

SOSP, Banff, Canada, October 2001
[2] Callon R., et al., “A Framework for Provider Provisioned Virtual

Private Networks”, draft-ietf-ppvpn-framework-04.txt, IETF
Internet Draft, February 2002

[3] Gleeson B., et al., “A Framework for IP Based Virtual Private
Networks” IETF RFC 2764, February 2000

[4] Handley M., et al., “Session Announcement Protocol” IETF RFC
2974, October 2000

[5] Hanna S., et al., "Multicast Address Dynamic Client Allocation
Protocol (MADCAP)", IETF RFC 2730, December 1999

[6] Meyer D., “Administratively Scoped IP Multicast”, IETF RFC
2365, July 1998

[7] Ould-Brahim H., et al., “Using BGP as an Auto-Discovery
Mechanism for Network-based VPNs”, draft-ietf-ppvpn-bgpvpn-
auto-02.txt, IETF Internet Draft, July 2001

[8] Rekhter Y., et al., “A Border Gateway Protocol 4 (BGP-4)”, IETF
RFC 1771, March 1995

[9] Scandariato R., Risso F., “Virtual Network Provisioning: LMAP”,
Politecnico di Torino Technical Report DAI-SE-2001-07-26, July
2001

[10] Touch J., “Dynamic Internet Overlay Deployment and Management
Using the X-Bone", 8th International Conference on Network
Protocols, Osaka, Japan, November 2001

