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Abstract — Most Unix systems provide a set of
system calls that allow applications to interact with the
network directly. These primitives are useful for example
in packet capture applications, which need to grab the
data flowing through the network without any further
processing from the kernel. WinPcap is a newly proposed
architecture that adds these functionalities to Win32
operating systems. WinPcap includes a set of innovative
features (such as packet monitoring and packet injection)
that are not available in previous systems. This paper
presents the details of the architecture and it shows its
excellent performance.

1 Introduction
Applications for network analysis rely on an

appropriate set of primitives to capture packets, monitor
the network and more. While almost all Unix flavours
have kernel modules that support at least packet capture,
Windows capabilities are not satisfying. There are some
available APIs, each one with his own kernel-module;
however they suffer of severe limitations. Netmon API,
for instance, is not freely available and its extensibility is
very limited; moreover it does not allow sending packets.
IP filter driver is available only on Windows 2000 and it
does not support other protocols but IP; it allows
controlling and dropping packets but it does not allow
monitoring and generating them. PCAUSA [11] offers a
commercial product that provides an interface for packet
capture and includes a BPF-compatible filter. However
the user interface is quite low-level and it does not
provide abstract functions like filter generation.

The growing diffusion of Windows for tasks that
traditionally relied on Unix workstations makes these
missing features a non-negligible problem, thus limiting
the number and the quality of analysis and security tools
on that platform. Our efforts focused on the creation of a
powerful and extensible architecture for low-level
network analysis on Win32 platform, called WinPcap.
This architecture is the first open system for packet

capture on Win32 and it fills an important gap between
Unix and Windows. Furthermore WinPcap puts
performance at the first place, thus it is able to support the
most demanding applications.

Packet filtering is made up of a kernel-mode
component (to select packets) and a user-mode library (to
deliver them to the applications). Last component
provides a standard interface for low-level network access
and allows programmers to avoid kernel-level
programming. WinPcap includes an optimized kernel-
mode driver, called Netgroup Packet Filter (NPF), and a
set of user-level libraries that are libpcap-compatible.
Libpcap [1] API compatibility was a primary objective
in order to create a cross-platform set of functions for
packet capture. WinPcap makes the porting of Unix
applications to Win32 easier and it enables a large set of
programs to be used on Win32 at once, just after a simple
recompilation. Moreover, since the importance of traffic
monitoring, WinPcap provides highly specific system
calls for that.

This paper is structured as follows: Section 2 shows
the original BSD packet capturing components; Section 3
presents the general structure and the main components of
WinPcap, while Section 4 focuses on the implementation
issues; a comparison of the performance between BPF
(for FreeBSD) and NPF is given in Section 5. Finally,
Section 6 summarizes the results and presents some
conclusive remarks.

2 BSD Capturing Components
The system primitives for packet capture and network

analysis should be powerful, in order to have excellent
performance, abstract, to limit the complexity of the
interface between user applications and the kernel, and
low-level, in order to get and send data directly to the
network interface without any interaction with other
software layers.

The BSD-proposed approach for packet capture
(Figure 1) can be seen as the sum of three main
components. The first block, Berkeley Packet Filter
(BPF) [2] is the kernel-level component for packet



capture. BPF has been widely recognized having the best
implementation compared to other similar components
available on Unix and it can be seen as a device driver
that interacts with the network interface through the
interface’s driver.

Its architecture is made up of the following
components. The Network Tap [3] is a function
dedicated to snoop all packets flowing through the
network. It is followed by the Filter, which analyzes
incoming packets in order to detect whether a packet is
interesting for the user (the user can set capture filters to
receive only a subset of the network traffic). A packet
satisfying the filter is copied to the kernel buffer, which
is subdivided in two small buffers (store and hold) that
are used to keep the captured packets for a while. These
blocks of memory (whose size is usually 32Kbytes in
recent BSD kernels) are allocated at run time at the
beginning of the capture process. The first buffer (store)
is used to keep the data coming from the network adapter
and the second one (hold) is used to copy the packets to
the user buffer. When the store buffer is full and the hold
buffer is empty, BPF swaps them. In this way the user-
level application does not interfere with the adapter’s
device driver because the former clears out the hold
buffer while the latter fills in the store one.
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Figure 1. BSD Capturing Components.

Libpcap is the main component from the
programmer’s perspective because it hides the interaction
between the application and the OS kernel. Libpcap
exports a set of functions that can be linked to the user’s
application and that provide a powerful and abstract
interface to the capture process. It includes the filter
generation, the management of the user-level buffer (that
remains hidden to the application), the interaction
between user and kernel mode. The User-level Buffer is

used to store packets coming from the kernel and, being at
user level, it prevents the application from accessing
kernel-managed memory. Functions provided by
libpcap are available only for capturing purposes: this
library does not allow sending packets or monitoring the
network.
Libpcap works in user-space and, being less OS-

dependent, it has been successfully ported to several
Unix. On the other hand, BPF has been implemented only
in a few OS (basically BSD-derived). The lack of a BPF
filtering machine in the kernel (for example Solaris1)
means that all the packets have to be transferred to
libpcap at user level and that this library has to emulate
the functionalities of BPF (filtering and buffering).
However native kernel-level packet filtering is far more
efficient because the system avoids copying non-
interesting packet from the network interface to the user
level. Moreover, the kernel-level filtering decreases the
number of system calls and the number of context
switches between user and kernel level because only
useful packets are copied to user-level.

3 Architecture of WinPcap
Since BPF has been proved being a powerful and

stable architecture, the basic structure of WinPcap (shown
in Figure 2) retains the most important modules shown in
Section 2: a filtering machine, two buffers (kernel and
user) and a couple of libraries at user level. However,
WinPcap has some substantial differences in the structure
and in the behavior of the capture stack, and can be seen
as the evolution of BPF.
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Figure 2. WinPcap and NPF.

1 Solaris has the CMU/Stanford Packet Filter (CSPF) in the kernel;
however libpcap does not include a CSPF code generator because
CSPF does not support advanced features like variable-length headers.



The filtering process is started by a user-level
(libpcap-compatible) component that is able to accept
a user-defined filter (i.e. “picks up all UDP packets”),
compile them into a set of pseudo instruction (i.e. “if the
packet is IP and the protocol type field is equal to 17, then
return true”), send these instructions to the filtering
machine, and activate that code. On its hand, the kernel
module must be able to execute these instructions;
therefore it must have a “BPF virtual machine” that
executes the pseudo-code on all the incoming packets.
This kernel-side BPF-compatible filtering machine is a
key point for obtaining good performance.

An important architectural difference between BPF
and NPF is the choice of a circular buffer as kernel buffer.
Our implementation of the circular buffer has been
optimized to copy blocks of packets at a time. This
mechanism is more difficult to manage because data
copies no longer have fixed sizes (libpcap uses the
same size for kernel and user buffer, 32KB) and because
the amount of the bytes copied is updated while
transferring data from kernel space to user space instead
of after. Indeed, the copy process (started at user level)
frees the portion of the buffer already transferred because
the capture portion of the kernel may interrupt it, since it
runs at higher priority and it could monopolize all the
CPU time. Our implementation of the buffer allows all the
memory to be used to store network bursts, while a couple
of swapping buffers (such in BPF) allows only half of the
memory to be used.

The entire kernel buffer is usually copied by means of
a single read(), thus decreasing the number of system
calls and therefore the number of context switches
between user and kernel mode. Since a context switch
requires saving the state of the task (CPU descriptor and
task state segment, approximately some hundreds bytes),
large transfers decrease the overhead of the process.
However a too large user buffer brings no advantages
because the context switch overhead becomes negligible
while the allocated memory increases linearly.

WinPcap kernel buffer is larger (default 1MB) than
BPF one. A small buffer penalizes the capturing process
especially in case the application is not able to read as fast
as the driver captures for a limited time interval. Such
situation is common when data has to be transferred to
disk or when the network has bursty traffic. Vice versa,
user buffer is smaller and its default value is 256KB. Both
kernel and user buffer can be changed at runtime2.

The size of the user buffer is very important because it
determines the maximum amount of data that can be
copied from kernel space to user space within a single
system call. On the other hand, we noticed that also the

2pcap_setbuff() allows the user to choose the size of the kernel
buffer. BSD allows changing the buffer size by using the sysctl
debug.bpf_bufsize shell command. However libpcap overwrites
these settings and sets always the kernel buffer to 32Kbyte.

minimum amount of data that can be copied in a single
call is extremely important. In presence of a large value
for this variable, the kernel waits for the arrival of several
packets before copying the data to the user. This
guarantees a low number of system calls, i.e. low
processor usage, which is a good setting for applications
like sniffers. On the other hand, a small value means that
the kernel will copy the packets as soon as the application
is ready to receive them. This is excellent for real time
applications (like, for example, an ARP redirector) that
need the better responsiveness from the kernel. The great
part of the existing capture drivers has a static behavior
that privileges one of the two aspects. On the other hand,
NPF is completely configurable and it allows users to
choose between either best efficiency or best
responsiveness (or any intermediate behavior). WinPcap
includes a couple of system calls that can be used to set
both the timeout after which a read expires and the
minimum amount of data that can be transferred to the
application. Packets are copied either when the minimum
amount of data is available or the read timeout has
expired. By default, the timeout is 1 second and the
minimum amount of data is 16K. This capability is often
called “delayed write”3.

In general memory copies have to be kept the lowest
because of their overhead. WinPcap has the same copy
overhead of the original libpcap/BPF and packets are
copied two times (from network driver to the kernel, then
to user space). Moreover the filtering is performed when
the packet is still into the network driver’s memory, thus
avoiding any copy of non conformant packets in a similar
way as the BSD bpf_tap() function does.

3.1 Statistics mode
Packet capturing and network analysis are CPU-

intensive tasks because of the high amount of data to
process and copy. Our tests will show that the simple
operation of capturing small packets on a Fast Ethernet
LAN may overwhelm the CPU power of a modern
workstation. This prevents from performing any real-time
processing on the captured data without losing a large
amount of packets. This situation is obviously even worse
on faster networks, which require the use of specific
hardware to perform the capture.

The most famous approaches to improve speed include
improved filtering engines [7] [8] [9] and 1-copy4

architectures, which avoid copying packets between

3 This has not been implemented in Windows 9x and the driver
transfers packet from kernel to user space as soon as possible; therefore
the CPU load might be higher than in Windows NT/2000.

4 A packet needs always to be copied from the NIC to the device
driver memory. A 0-copy process is obtained when no further copies
are performed. A 1-copy process is obtained when the packet is copied
one more time before being received by the user-application. Standard
tools use a 2-copy process, in which the packet is copied from the device
driver memory to the kernel buffer, then to the user one.



kernel space and user space by mapping the kernel buffer
in the application’s memory [10]. However a 1-copy
process decreases the amount of data to be copied but
may not be able to decrease the number of system calls
between user and kernel mode. If the user reads one
packet at a time, the number of system calls (i.e. the
number of context switches) is still high and it could
vanish the advantages of a shared buffer.

A new idea can be applied keeping in mind that
monitoring does not require the packet to be transferred to
the application. WinPcap moves monitoring capabilities
inside the kernel, thus avoiding any data transfer (and
processing) at user level. WinPcap implements a kernel-
level programmable statistical module by using the
filtering machine available in the NPF, which becomes
also a powerful classification engine rather than a simple
packet filter. Applications can instruct this module to
monitor an arbitrary aspect of the network activity (for
example network load, amount of traffic between two
hosts, number of web requests per second, etc.), and to
receive results from the kernel at predefined intervals.

Statistic mode avoids packet copies and it implements
a 0-copy mechanism (statistic is performed when the
packet is still in the NIC driver’s memory, then the packet
is discarded). Moreover, the number of context switches
is kept the lowest because results are returned to user-
level by means of a single system call. No buffers (kernel
and user) are required, therefore they are not allocated
when monitoring is launched. As a result, statistics mode
is an extremely efficient method to monitor the network
and it is able to work without problems on fast networks
with the well-known libpcap syntax.

WinPcap offers to the programmer a new set of system
calls and high-level functions that can be used to launch a
monitoring process, making this capability easy to use for
a programmer that already knows the libpcap API.

3.2 Packets injection
Both BPF and NPF provide writing capabilities that

allow the user sending raw packets to the network.
However libpcap does not use these calls, thus BPF is
never used for this purpose; Unix applications often use
raw sockets for that. On the other side, Win32 provides
raw sockets only in Windows 2000 and they are quite
limited; therefore WinPcap is the first library that
provides a standard and consistent set of functions for
packet injection for all the Win32 flavors. Besides, NPF
adds some new functions that allow sending a packet
several times using a single context switch between user
and kernel mode. Data is copied to the kernel and then
sent to the network by means of a single NDIS call.

While WinPcap provides a new set of functions to
exploit these features, it does not provide a powerful
abstraction for creating packets that need to be generated
by hand or by means of other existing tools. However,

users can use the Windows version of the well-known
Libnet Packet Assembly Library [4], which adds a layer
for packet construction and injection on top of WinPcap.

4 Implementation issues

4.1 WinPcap modules
WinPcap is made up of three modules, one at kernel

level and two at user level; userland modules come under
the form of Dynamic Link Libraries (DLLs).

First module is the kernel part (NPF) (a VXD file in
Windows 95/98/ME and a SYS file in NT/2000) that.
filters the packets, delivers them untouched to user level
and includes some OS-specific code (timestamp
management) as well.

Second module, packet.dll, is created to provide a
common interface to the packet driver among the Win32
platforms. In fact, each Windows version offers different
interfaces between kernel modules and user-level
applications: packet.dll deals with these differences,
offering a system-independent API. Programs based on
packet.dll are able to capture packets on every Win32
platform without being recompiled. Packet.dll includes
several additional functionalities. It performs a set of low-
level operations like obtaining the adapters’ names5 or the
dynamic loading of the driver, and it makes available
some system-specific information like the netmask of the
machine and some hardware counters (the number of
collisions on Ethernet, etc.). Both this DLL and the NPF
are OS-dependent and change between Windows 95/98
and NT/2000 because of the different OS architectures.

Third module, WPcap.dll, is not OS-dependent and it
contains some other high-level functions such as filter
generation and user-level buffering, plus advanced
features such as statistics and packet injection. Therefore
programmers can have access to two types of API: a set
of raw functions, contained in packet.dll, which are
directly mapped to kernel-level calls, and a set of higher
level functions that are provided by WPcap.dll and that
are more user-friendly and more powerful. The latter DLL
will call the former automatically; a single “high-level”
call may be translated in several NPF system calls.
Programmers will normally use WPcap.dll; direct access
to packet.dll is required only in limited cases.

4.2 WinPcap and Windows networking
Win32 networking architecture is based on NDIS6 [5]

(Network Driver Interface Specification) standard, the
lowest level networking portion of the Windows kernels.
NDIS is a specification for building network interface
(NIC) drivers and protocol drivers and to handle the

5 Windows does not have the widely used ifconfig Unix utility;
this functionality is provided by packet.dll.

6 WinPcap requires the version 3.0 of NDIS at least.



interaction among them. It provides a set of primitives
that hide the underlying technology from the upper layers
so that a single instance of a protocol stack should be able
to exploit different network technologies.

Intuitively, the core of the capture process must run at
kernel level and it must be able to access the packets
before the protocol stack processes them. BSD executes
the capture system before any protocol: BPF is invoked
directly by the network card’s driver and it requires NIC
device drivers to be compliant to something that could be
called “BPF driver specification”. In other words it
requires device drivers to have an explicit call to the BPF
tap function, which controls all the packets received (and
sent) by the network interface and makes a copy of the
ones that satisfy the filter. Such a solution was clearly
impossible when creating the WinPcap capture
component, because Windows has nothing similar to the
BPF driver specification and it does not allow modifying
the OS and the NIC drivers in order to add that feature.
Therefore, WinPcap locates the network tap as a protocol
driver7 on top of the NDIS structure. Support for different
media types is not automatic because NDIS does not
isolate completely the underlying layers from the NPF;
therefore it has to be built in such a way to support
explicitly different media.

The location of the network tap influences the behavior
of the capture driver. For example, Point-to-Point
Protocol (PPP) uses some auxiliary protocols (LCP, Link
Control Protocol, and NCP, Network Control Protocol) in
order to configure and maintain the link up. These packets
do not reach the NDIS upper layer because they are
generated by the underlying software levels, therefore the
network tap cannot capture them. The particular extension
of the Linux kernel for packet capture, Packet Socket,
suffers from the same problem because PPP packets are
handled inside the PPP device and not handed to the main
networking code. Vice versa, BPF tap is able to capture
everything that is being transmitted on the wire because
the call to the tap is drowned in the write() and read()
functions of the NIC driver.

The interaction with NDIS is quite complex and this
makes the NPF more complicated than the original BPF:
BPF interacts with the system through a single callback
function; on the other hand, NPF is a part of the protocol
stack and it interacts with the OS like any other network
protocol. However, NPF is able to obtain excellent results
and the tap is even faster than the BPF one. Like BPF,
also NPF applies the filter when the packet is still into the
NIC driver memory. Another optimization is the

7 NDIS allows the creation of another type of network driver, called
intermediate driver, which is located between NIC and protocol drivers.
However the implementation of the NPF as an intermediate driver does
not bring any advantage unless in some limited cases. What it is certain,
instead, is that intermediate drivers are not supported by earlier version
of NDIS specification (3.0/3.1) and that their architecture is more
complex than protocol drivers.

synchronous behavior of the NPF. Asynchronous calls are
not supported, therefore user-level accesses are always
blocking. It follows that NPF does not require a queue in
which user-level request are buffered, thus making the
driver faster. Moreover a carefully engineered NIC driver
can help performance because only a portion of the packet
can be transferred from NIC memory to the NDIS driver;
a full copy can be avoided if no protocol drivers require
the packet.

NPF demonstrates that a “high level” and “clean”
capture driver, built coherently with the rest of the
networking code, can be as fast as an ad-hoc
implementation. Moreover, it proves that it is possible to
add an efficient capture facility to an OS without
modifying the structure and the interfaces of the kernel,
which is essential in commercial systems.

4.3 User-level libraries and porting issues
Porting libpcap to Win32 has been relatively easy

because of the compatibility between the interfaces
exported by BPF and NPF. Basically we had to create a
new pcap-win32.c file8 with Windows-dependent
code and to write some headers (like those present in the
BSD kernel tree in the net and netinet folders) and
system calls (getnetent(), getnetbyname(),
etc.), not available through the Windows Sockets API.
This porting resides mostly in the WPcap.dll module,
which uses the packet.dll file instead of accessing directly
the NPF. In this way, capture applications that use
WinPcap (like WinDump) are independent from the
Windows version on which they are running. Since
WinPcap is not only a libpcap porting, it adds some
Win32 specific functions in a separate folder. This
guarantees to be able to integrate next releases of
libpcap as well.

WinPcap has some differences from libpcap
because of the OS. For example, Win32 applications
cannot use the select() function on a NPF device in
order to know if there are packets that needs to be read,
because this function does not work on a normal file in
Windows. WinPcap implements a new event, shared
between kernel and user mode, that provides a result
equivalent to the select() one.

5 Performance
This Section aims at giving some indications about the

performance of the WinPcap architecture on different
OSes. Results obtained by WinPcap on Windows 98 and
Windows 2000 are compared to libpcap/BPF on
FreeBSD 4.1.

The testbed (shown in Figure 3) involves two PCs

8 Libpcap keeps major differences among various operating systems
in a special file called pcap-XXX.c, where XXX is the name of the
operating system.



directly connected by means of a Fast Ethernet link. This
assures the isolation of the testbed from external sources,
therefore allowing more accurate tests. A Windows 2000
workstation generates traffic using a custom tool based on
WinPcap, guaranteeing high data rates. Packet sizes have
been selected in such way to generate the maximum
amount of packets per second, which is usually the worst
operating situation for a network analyzer. Average value
has been calculated by repeating the tests several times in
order to get accurate results.

Ethernet 100Mbps
Full duplex Packet Capture

Traffic
Generator

Sender Receiver

Pentium II-400Mhz
128MB RAM, 6.4GB HD
3Com Fast Etherlink XL
Windows 98SE, eng
Windows 2000 pro, eng
FreeBSD 4.1 release

Pentium III-500Mhz
128MB RAM, 13GB HD
3Com Fast Etherlink XL
Windows 2000 pro, eng

Figure 3. The testbed used in the tests.

OSs under test are installed in different disk partitions
on the same workstation to avoid differences due to the
hardware. Traffic is sent to a non-existent host in order
not to have any interaction between the workstations. The
second PC sets the interface in promiscuous mode and
captures the traffic using different receiving tools
according to the test objectives. Depending on the test,
packets received are either dropped by filter, transferred
to the application or saved to disk.

The CPU load has been measured by using the top
program in FreeBSD, the task manager in Windows 2000
and cpumeter [6] in Windows 98. The first two tools
are included in the operating system, while the third one
is available on the Internet.

All the software under test was in the latest available
release9. Kernel buffer was the default one (1Mbytes) in
WinPcap, while libpcap was modified to use two
buffers of 512Kbytes (instead of the standard 32KB ones)
in order to exploit the same amount of kernel memory.

Even if these tests tend to isolate the impact of each
subsystem (filtering, copying overhead), results are not
able to show exactly the performance of the single
component. This is due to the impossibility to isolate each
component from interacting each one with the others and
with the OS.

5.1 Sending process
First test aims at evaluating the performance of the

sending process. This has been done only on Windows
2000 because Windows 95/98 code has not been

9 WinPcap and WinDump (whose porting was based on tcpdump
version 3.5.2 and libpcap version 0.5.2) version 2.1; tcpdump
version 3.5.2, libpcap version 0.5.2; BPF was the one implemented in
FreeBSD 4.1-RELEASE.

optimized for that. Figure 4 shows that maximum number
of packets per second has been reached when packet size
is 88 bytes. This is rather surprising because we should
expect the maximum number of packets per second when
packet size is minimized (64 bytes on Ethernet). However
this does not depend on the NPF so we did not make any
further investigation. CPU load never reaches 100% (the
sender machine is still ready to accept other commands)
and this confirms that the NPF is not the bottleneck.
Ethernet is loaded at almost full speed starting from
packet size of 400 bytes.

However our findings confirm that the sending process
is largely NIC-dependent. A different network card (with
a different NIC driver), tested in the same conditions, was
able to guarantee maximum 30K packets per seconds.
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5.2 Network tap and filtering process
Second test aims at the evaluation of the network tap

and the filtering process. Packets are received by the
network tap and checked by the filter. Since no packets
satisfy the filter, they are discarded without being copied
to the application. The filtering code is executed for each
packet; therefore CPU usage shows the impact of the
filtering process on the system under test. This test has
been repeated in two cases: a first filter involved 3 BPF
pseudo instructions, while a second one was more
complex and involved 13 pseudo instructions10 before
failing.

Results (Figure 5) show that Windows flavors have
similar behavior and almost all the packets are received
and examined by the filter. Windows 98 consumes more
CPU than Windows 2000, even if the load is still at
acceptable levels. FreeBSD is by far the worst platform:

10 Short filter was “ip6” and expensive filter was “ether src
2:2:2:2:2:2 and ether dst 1:1:1:1:1:1 and ip
and udp”. Packets were created to make the filter failing at the last
pseudo-instruction.



the amount of packets captured is about one half of the
number of packets sent and even the CPU load has the
highest value.

Notice that, since BPF and NPF are quite similar at this
level, part of the performance gap is probably due to the
OS: in particular, Windows (and above all Windows
2000) seems to be faster in handling hardware interrupts
and in all the operations made by NIC driver and NDIS
code before calling the NPF tap.

WinPcap "filtering" performance
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Figure 6. Delivering to the application performance.

5.3 Deliver-to-application performance
A third test involved the creation of a void application

that receives packets from WinPcap and discards them
without any further processing. This test aims at the
evaluation of the entire WinPcap architecture, including
the copy process from the interface driver to the kernel
buffer and then to the user one. There were no filters in
these tests. Results (Figure 6) show that WinPcap is able
to deliver almost all the packets received by the network
tap to the application and no packets are discarded
(dropped) inside the kernel. Vice versa, FreeBSD is not
able to bring all the packets to the application, especially
in case of the highest values of packets per second. Most

of the packets are lost without even reaching the filter;
moreover some 20% of the received packets are then
dropped by the BPF because the buffer is full.

As expected, CPU load decreases accordingly to the
increase of the packet size in both FreeBSD and Windows
2000. Windows 98 has a different behavior because it
does not have the delayed-write capability. This prevents
the kernel from being able to wait for a minimum amount
of data and copy a large block of data to user space within
a single system call.

Application-level performance (68 bytes dumped)
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Figure 7. Performance of the complete capturing
architecture, dumping 68 bytes of each packet to file.

Application-level performance (whole packet dumped)
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Figure 8. Performance of the complete capturing
architecture, dumping the whole packet to file.

5.4 Application performance
Fourth test involves the use of a simple application that

uses WinPcap to dump packets to file, which is a typical
operation performed by a sniffer. Figure 7 shows the
results when, for each packet, a “snapshot” of 68 bytes is
saved to file. All the systems suffer noticeable losses
when the network is overloaded by a large number of
packets per second: a certain amount of packets is lost for
the lack of CPU time (a new packet arrives when the tap
was processing a previous one), while others are dropped



because the kernel buffer has no more space to store
them. Figure 8 shows that results suffer of a non-
negligible worsening when the whole packet is dumped to
file.

5.5 Monitoring
An ad-hoc program has been used to test the

monitoring capabilities of WinPcap. Our tests confirm
that CPU load is considerably low and that the results
match exactly the ones already shown in Figure 5. Figure
6 shows that the overall cost of a void application that
captures at user level is far higher than kernel-mode
monitoring. The addiction of a further cost due to the
monitoring code will give to the user-level application
even worse results. In addiction, user-level monitoring
requires a non-negligible amount of memory.

6 Discussion
Tests confirm the excellent performance of WinPcap.

The packet generation process, even in presence of a
strange behavior (maximum number of packets per
second is reached with 88-bytes packets) is highly
optimized and it is quite easy to reach the maximum load
allowed by a Fast Ethernet LAN. The capturing process
also has an excellent implementation and it outperforms
the original BPF / libpcap implementations. Tests with
Windows 2000 show usually better results than the
Windows 98 ones because of the larger number of
optimizations present in that driver (for example the
delayed write capability).

While the third test is the one that gives an indication
of the overall performance of the WinPcap library, the
fourth test is the most interesting from the end-user point
of view. This test confirms also that other part of the OS
(the most noticeable is the file system managements) may
have an importance that is far larger than the packet
capture components. In fact, Windows 2000 is able to
receive almost all the packets on the network even if a
non-negligible part of them are discarded because the
impossibility to save them on disk. From this perspective,
FreeBSD (that saves data on the same FAT32 partition of
Windows 98 and 2000) shows excellent results compared
to the ones obtained in the previous tests. The comparison
among Windows 2000 saving on an NTFS or FAT32
partition shows that the file system technology itself is of
primary importance for the overall performance of the
capture process.

Notice that WinPcap has been used with the standard
kernel buffer (1MB); in presence of heavy traffic the size
of this buffer can be increased by the application through
a simple function, improving noticeably the overall
performance of the system. Vice versa, libpcap does
not offer a method to set the kernel buffer and we had to
modify it “by hand” in order to set it properly.

These tests show the excellent implementation of the

NPF as well as the validity of architectural choices, like
the circular kernel buffer instead of the original buffering
architecture, the delayed write implementation and the
update-space-during-copy in the kernel buffer. Among
the supported platforms, Windows 2000 is the best one
for high performance network analyzers. FreeBSD
performance are rather surprising: we repeated all the
tests with standard (32Kbytes) buffers but we did not get
the differences that we expected; a large size for the
kernel buffer does not seem to be able to influence
substantially the performance of the capture process.

WinPcap has been proved being an excellent choice
for the several applications that are based on high
performance packet filtering on Win32 platforms.
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