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Estimating Dynamic Traffic Matrices by
Using Viable Routing Changes

Augustin Soule, Antonio Nucci, Senior Member, IEEE, Rene L. Cruz, Fellow, IEEE,
Emilio Leonardi, Member, IEEE, and Nina Taft, Member, IEEE

Abstract—In this paper we propose a new approach for dealing
with the ill-posed nature of traffic matrix estimation. We present
three solution enhancers: an algorithm for deliberately changing
link weights to obtain additional information that can make the
underlying linear system full rank; a cyclo-stationary model to
capture both long-term and short-term traffic variability, and a
method for estimating the variance of origin-destination (OD)
flows. We show how these three elements can be combined into
a comprehensive traffic matrix estimation procedure that dra-
matically reduces the errors compared to existing methods. We
demonstrate that our variance estimates can be used to identify
the elephant OD flows, and we thus propose a variant of our
algorithm that addresses the problem of estimating only the heavy
flows in a traffic matrix. One of our key findings is that by fo-
cusing only on heavy flows, we can simplify the measurement and
estimation procedure so as to render it more practical. Although
there is a tradeoff between practicality and accuracy, we find
that increasing the rank is so helpful that we can nevertheless
keep the average errors consistently below the 10% carrier target
error rate. We validate the effectiveness of our methodology and
the intuition behind it using commercial traffic matrix data from
Sprint’s Tier-1 backbone.

Index Terms—Network tomography, SNMP, traffic engineering,
traffic matrix estimation.

1. INTRODUCTION

TRAFFIC MATRIX is a representation of the volume of

traffic that flows between origin-destination (OD) node
pairs in a network. In the context of the Internet, the nodes
can represent Points-of-Presence (PoPs), routers or links. In
current IP backbone networks, obtaining accurate estimates of
traffic matrices is problematic. There are a number of impor-
tant traffic engineering tasks that could be greatly improved
with the knowledge provided by traffic matrices. As a result,
network operators have identified a need for the development
of practical methods to obtain accurate estimates of traffic ma-
trices. Example applications of traffic matrix estimation include
logical topology design, capacity planning and forecasting,
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routing protocol configuration, provisioning for Service Level
Agreement (SLAs), load balancing, and fault diagnosis.

Direct measurement of traffic matrices across an entire ISP
network is considered too cumbersome in terms of communi-
cation and computation overhead to be practical with the cur-
rent state of the art flow monitoring equipment [7]. Research in
this area has thus turned to statistical inference techniques. The
basic problem these techniques are applied to is the following.
The relationship between the traffic matrix, the routing and the
link counts can be described by a system of linear equations
Y = AX, where Y is the vector of link counts, X is the traffic
matrix organized as a vector, and A denotes a routing matrix
in which element a;; is equal to 1 if OD pair j traverses link
i or zero otherwise. The elements {a;;} take on values {0,1}
when traffic splitting is not allowed, but can take on fractional
values when traffic splitting is supported. In networking envi-
ronments today, Y and A are readily available; the link counts
Y can be obtained through standard SNMP measurements and
the routing matrix A can be obtained by examining IGP link
weights together with the corresponding topological informa-
tion. The problem at hand is to estimate the traffic matrix X.
This is not straightforward because the matrix A does not have
full rank, and hence the fundamental problem is that of a highly
under-constrained, or ill-posed, system.

A first generation of techniques were proposed in [1]-[3].
Model parameters are estimated using either Moment Gener-
ating methods [1], Bayesian methods [2] or Maximum Likeli-
hood estimation [3]. A common idea behind these approaches
to tackle the highly under-constrained problem was to introduce
additional constraints related to the second order moment of the
OD pairs. Estimation is then carried out with two batches of
constraints, one on the first order moment and one batch for
the second order moment. However, the combined set of con-
straints is not solvable without an assumption on the relation-
ship between the mean and variance. For example, in [1], [2]
the authors assume that the volume of traffic for a given OD
pair has a Poisson distribution, thus with an identical mean and
variance. Cao et al. [3] assume instead that the traffic volume for
OD pairs follows a Gaussian distribution, and that a power law
relationship between the mean and variance exists. A compara-
tive study of these methods [4] revealed that these methods were
highly dependent upon the initial starting point, often called a
prior, of the estimation procedure. Hence a second generation
of techniques emerged [4]-[6] that proposed various methods
for generating intelligent priors.

In practice, all of these statistical inference techniques for es-
timating traffic matrices suffer from limited accuracy. The mag-
nitude of estimation errors are distributed over a range, however,
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in short we can say that the errors typically fall between 10 and
25%. Also these methods yield outliers such that some OD pairs
can have errors above 100%. It has been difficult to drive the
estimation error down below these values. Some carriers have
indicated that they would not use traffic matrices for traffic en-
gineering unless the inference methods could drive the average
errors below the 10% target.

The fundamental difficulty in the traffic matrix (TM) estima-
tion problem is due to it being under-constrained. The natural
question to ask is whether or not there is anything we can do to
increase the rank of the underlying linear system. In this work
we propose the idea of deliberating changing the link weights
so as to alter the shortest path routes used between ingress and
egress nodes. The idea is by that doing this and collecting new
SNMP link measurements under these altered routing states, we
collect more measurements that are linearly independent of the
existing measurements, thereby increasing the rank of the basic
system Y = AX. In order to do this, an algorithm is needed to
select which weights to change and by how much their values
should be altered [9].

Such an algorithm cannot be used alone to create a solution
to the TM problem because it would lead to a solution that
is neither complete nor practical. The solution is not complete
because the routing configuration changes would have to be ap-
plied over a multi-hour period (discussed below). The traffic
itself during such time periods is non-stationary and thus the
underlying traffic model used in the inference solution needs
to be able to capture long-term traffic behaviors. The solution
may not be practical because carriers want to conduct a limited
number of such routing configuration changes to avoid further
complicating the management of commercial networks. In this
paper, we develop a methodology for traffic matrix estimation
solution that resolves both of these problems.

Our methodology leads to two algorithms, the first allows
one to estimate all the OD flows in a traffic matrix with high
accuracy by combining cyclo-stationary models with routing
changes. The second algorithm yields a method for estimating
only the elephant flows in a traffic matrix. This can be done
with very few routing changes thus rendering the method prac-
tical while maintaining good accuracy. A comparison of these
two methods illustrates the tradeoff between practicality (lim-
ited routing changes) and accuracy.

Our contributions are multiple.

e We propose the idea of changing routing configurations in
order to increase the rank of the linear system used for traffic
matrix estimation. This reduces the inherent ill-posed nature of
the basic problem.

e We provide an identifiability result for a TM estimation
method that incorporates route changes. We prove that the first
order moment of the OD flows is always identifiable under a
proper sequence of routing configuration changes for any bidi-
rectional biconnected topology. In other words, it is always pos-
sible to obtain a full rank system for such a topology.

e We develop a new model for OD flows that captures their
behavior over long time periods (e.g., multiple hours or days).
This enables traffic matrix estimation methods that may take a
long time to collect all the data needed to estimate accurately.
Our OD flow model contains two critical components, diurnal
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patterns that capture (long-term) cyclo-stationary behavior and
a fluctuations process capturing short-term variability.

e We derive a closed form solution to estimate the covariance
of the TM based on our underlying OD models. To the best
of our knowledge, this is the first time that an estimate for the
covariance of a TM has been proposed. We also prove that under
certain conditions the variance will always be identifiable, i.e.,
that a unique solution exists.

e We explain how to incorporate our three solution enhance-
ments (route changes, cyclo-stationary models and variance es-
timators) into a complete traffic matrix estimation methodology.
Depending upon how these enhancements are combined, our
methodology yields two different solutions, one for estimating
the entire traffic matrix and one for estimating the elephant OD
flows only. By switching the goal (and solution) to focus only on
heavy OD pairs we render our solutions more practical. This is
because with fewer variables to estimate, fewer weight changes
are needed and less data needs to be collected. By incorporating
the well accepted idea, that tiny flows are unimportant for most
traffic engineering tasks into our methods, we show how TM es-
timation can be simplified while retaining accurate estimates of
the heavy flows.

e We propose the first method that does not require an as-
sumption about the relationship between the mean and the vari-
ance of OD flows.

With our methods we can drive the average error rates down
into a whole new range, namely below the 10% target; and often
we reach 4 or 5% average error rates (depending upon the sce-
nario). To the best of our knowledge, this is the first paper that
consistently achieves errors below this 10% barrier.

Our composite solution to the traffic matrix estimation
problem involves many elements. Part 1 of our solution was
presented in [9] where we first proposed the idea of changing
link weights so as to increase the rank of the system. In that
paper we showed that the problem of finding a minimal set of
link weight changes to achieve full rank is NP-hard and we
provided a heuristic algorithm for determining which links
are most advantageous to change and by how much a weight
value should be altered. Part 2 of our solution appeared in
[10], that presents our cyclo-stationary models, the variance
estimator, and explains how the models and routing changes
are incorporated into a traffic matrix estimation procedure.
In this journal version of our work, we present (in a single
paper) the entire methodology (derived from the previous two
papers), with a more comprehensive perspective. To do this
we include all the steps of the methods, including the Viable
Routing Changes algorithm (VRC-heuristic), for completeness.
However, we have removed some discussions on subtle points,
examples illustrating the effect of steps in the weight change
selection algorithm, and so on. This journal version also differs
from the previous two papers in that it contains our result on
identifiability of the first order moment, which has never been
presented before.

II. PROBLEM STATEMENT

The network traffic demand estimation problem can be for-
mulated as follows. Consider a network represented by a col-
lection V = {1,2,...,V} of nodes, and a set of L directed
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links £ C V x V. Each node represents a set of co-located
routers (PoP). Each link represents an aggregate of transmis-
sion resources between two PoPs. (We assume there are no self
directed links, e.g., there are no links [ of the form [ = (4,14).)
We consider a finite time horizon consisting of K disjoint mea-
surement intervals, indexed by k € [0, ..., K — 1]. We refer to
each measurement interval as a snapshot. In each snapshot we
change the link weights, i.e., the paths followed for some OD
pairs, and this gives a different image of OD pairs traversing
the network. We assume the routing remains unchanged within
the same snapshot, while two different snapshots are character-
ized by two different routing scenarios. Within each snapshot,
we collect multiple consecutive readings of the link counts using
the SNMP protocol at discrete time 7, indexed from 0 to N, — 1.
Each reading constitutes one sample. Each snapshot lasts for
N, x 5 minutes because SNMP reports link counts every 5 min-
utes.

Consider an origin destination (OD) pair p = (v1,v2), with
v1 # w9, where vy denotes a traffic source (ingress node) and v
denotes a traffic sink (egress node). Let X, (k, n) be the amount
of traffic associated with OD pair p (i.e., originating at node
v1 and departing the network at node vs) during measurement
interval k at discrete time n. We assume that the measurement
intervals are long enough so we can ignore any traffic stored in
the network. Let P denote the set of all OD pairs; there are a total
of |P| = P = V2 — V OD pairs.! We order the OD pairs p and
form a column vector X (k, n) whose components are X, (k, n)
in some pre-defined order.

Let Y;(k,n) be the total volume of traffic that crosses link
! € L during measurement interval & at time n. Y (k, n) repre-
sents the column vector whose components are Y;(k, n) for all
l € L.Let A; (k) be the fraction of the traffic X,,(k,n) from
OD pair p that traverses link [ during measurement interval k at
time n. Thus, Yi(k,n) =3 p A1,(k) X, (k, n). Forming the
L x P matrix A(k) with elements {A; ,(k)}, we have in matrix
notation

Y(k,n) = A(k)X (k,n) Vk € [0,K — 1] and n € [0, N, —1].
ey

In the literature, the Y (k,n) vector is called the link count
vector, while A(k) is called the routing matrix. In IP networks,
the routing matrix A(k) during each measurement interval k
can be obtained by gathering topological information, as well
as OSPF or ISIS link weights. Link counts Y (k, n) are obtained
from SNMP data.

A general problem considered in the literature is to compute
an estimate of the traffic matrix X (k, n) for each k and n given
the observed link count vectors Y (k,n) for each k and n, as-
suming that the routing matrix A(k) does not change in time,
ie., A(k1) = A(k2)Vk € [0, K — 1], and that X (k,n) is a
sample of a stationary (vector valued) random process. Further-
more it is generally assumed in prior work that the components
of X (k,n) are uncorrelated. The general problem is non-trivial
since the rank of A(k) is at most L and L < P, i.e., for each k
the system of equations (1) is under-determined.

Tn our analysis we neglect local traffic, i.e., traffic that enters and leaves
the network at the same node, since it does not contribute to the load on any
inter-PoP link.

Snapshot 0

Snapshot 1

Fig. 1. Example: impact of routing changes.

The problem we consider in this paper is broader because we
will allow the routing to change, so that we may indeed have
A(ky) # A(ks), and we will consider the case when X (k,n)
does not come from a stationary process.

III. ROUTE CHANGES

We now explain, via an example, why the idea of changing
the routing can help increase the rank of the system.

A. Essence of the Idea

Consider the network shown in Fig. 1 composed of five nodes
interconnected by six unidirectional links. Each link has an as-
sociated weight and the traffic from each OD pair is routed along
the shortest cost path. For simplicity, we consider only five OD
pairs (indicated by arrows). On the left of Fig. 1 we represent the
network in its normal state, when no link weight changes have
been effected. Snapshot O would generate the following system
of linear equations:

YanB

1100 0] o
Yan 00100XAB
YBD_OOOOOXAC
YBC_01010XAE
Yo 00001XBC
Ype 00100 EC

The rank of routing matrix A(0) is four. Two of the five OD
pairs ((A, E) and (£, C)) can be estimated exactly because in
this simple example they do not share their links with other OD
pairs. On the right of Fig. 1 we show the effect of decreasing
the weight of link [ = (A4, D) from 5 to 3 (snapshot k& = 1).
This perturbation in the weights causes the rerouting of the OD
pair (A, C) through the new path {(A, D), (D, FE),(E,C)}.
This snapshot generates a new system of linear equations, i.e.,
a new routing matrix A(1), that can be appended to the pre-
vious set. One line of the new routing matrix would look like
Yap = [10000] [Xap ...]¥. We can see that adding this
to the original system of equations adds a new linearly inde-
pendent equation into the system. As a consequence, the new
system [A(0)T A(1)T]T is full rank and all five OD pairs can
be estimated exactly.

B. Identifiability of First Order Moment

In this section we prove that the first order moment problem
is always identifiable under a proper sequence of routing con-
figuration changes for any bidirectional biconnected topology,
i.e., it is always possible to select a proper sequence of routing
configurations to obtain a full rank aggregate routing matrix A.
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We start considering a bidirectional ring topology:

Theorem 1: On any bidirectional ring topology the first order
moment estimation problem can be made identifiable under a
proper sequence of minimum cost routing configurations.

Proof: Consider a bidirectional ring with V' nodes. Let the
nodes be numbered from 0 to V' — 1. Let L7 identify the unidi-
rectional link from node v to node |v + 1|y,2 while L, be the
unidirectional link from node v to node |v — 1]y .

We start by setting the link costs in the following way:
m(Ly) = e < 1, m(Lf) = M > V, forv > 0, and on the
reverse ring we set up all the link costs to 1, i.e., (L, ) = 1.
Under this routing configuration, the link L(J{ is shared only
by traffic flowing from node O to node 1; thus OD pair 0 — 1
is identifiable. In a similar way we can identify any OD pair
v — |v + 1|y, by setting the proper routing configuration.

As a second step, we apply a new routing configuration as
follows: 7(Lg) = n(Lf) = e < 1, 7(L}) = M > V, for
v > 1,and w(L; ) = 1 for all the links belonging to the reverse
ring. Under this new routing configuration, the only OD pairs
sharing link LE')' are 0 — 1 and 0 — 2. However, since OD
0 — 1 was already identified this traffic configuration allows us
to identify 0 — 2. In an analogous way all the v — |v + 2|y
can be identified.

By iterating this procedure, its is clear that all the OD pairs
can be well identified. Moreover, with a similar procedure it is
possible to make identifiable each OD pair under the constraint
that costs are assigned to undirected links, i.e., links sharing the
same end-points must have the same link costs. Fig. 2 shows an
example of two routing configurations that allow to identify the
OD pairs 0 — 1 and 0 — 2. [ |

We now generalize previous arguments to every bidirectional
biconnected topology:

Theorem 2: On any bidirectional biconnected topology the
first order moment estimation problem can be made iden-
tifiable under a proper sequence of minimum cost routing
configurations.

Proof: Consider a V -node topology, and two generic nodes
v; and v;; since the topology is biconnected there must exist two
completely disjoint paths p; and p, from v; to v;; due to the
bidirectionality of the topology the concatenation of p; and p2
forms a bidirectional ring. Let us set the cost of all the incoming
links to the ring (not belonging to the ring) to H > V, and all
the cost of outgoing links from the ring to ¢ < 1. We set the
cost of all other links that are not in the ring to 1. In this way we
isolate the ring from the entire topology and we can apply the
same procedure explained previously to identify each OD pair
whose origin and destination belong to such a ring. Then we can
select two other nodes and repeat this procedure until all the OD
pairs are identified.

A similar procedure can be applied for the more realistic sce-
nario of a bidirectional biconnected topology under the con-
straint that costs are assigned to undirected links. [ |

Note that on topologies which are not biconnected, the first
order moment estimation problem can not, in general, be made
identifiable by changing the routing. Consider a V'-node bidi-
rectional tree topology as a counter-example. In such a topology

2where |.| s denotes the module M operator.
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Fig. 2. Simple example showing how our procedure helps identify the first
order moment of every OD pair, in a V-node bidirectional ring. On top the costs
are assigned to each directed link. On the bottom the costs are assigned to each
undirected link.

the number of links L is V' — 1. Clearly for each OD pair only
one possible route exists. Let A be the resulting routing matrix
for the only possible routing strategy on the tree topology. We
have then rank(A) < L=V -1 < P.

C. Practical Issues

To make use of this idea in a network, an algorithm is needed
that can identify which link weights should be changed and by
how much each weight should be altered. Our proposed algo-
rithm, (presented in [9], and included in the Appendix herein
for completeness) focuses on finding the minimal number of
weight changes needed to reach full rank. We seek a minimal
set of changes for the following reason. Consider the implica-
tions of the idea of changing link weights to increase the rank
of the system. In practice, network operators cannot change link
weights in rapid succession, it requires updating router config-
uration files across the entire network. Keeping the number of
changes small thus eases the network management.

There is a second reason why we may need to wait an hour
or more before switching between routing configurations. Once
the weights have been changed, and the routing protocol has
converged in computing new routes, we need to collect mul-
tiple samples of SNMP link counts under the new routing. It
was shown in [3] that it is typically advantageous to use around
10 consecutive SNMP samples to take advantage of link corre-
lations when making OD flow estimates. This implies 10 con-
secutive samples under the same snapshot. For these reasons
it is likely to be a few hours (at least) between weight change
events. In such time periods, the traffic is not stationary, and this
has profound implications for the OD models used in TM esti-
mation (addressed in Sections IV and VI).

IV. TRAFFIC DYNAMICS

To understand traffic dynamics and what this may mean for
OD traffic models, we begin by some exploratory analysis of
our traffic matrix data. Our data includes one month of OD pair
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Fig. 3. Examples of representative OD flows: large on the left, medium on the
middle and small on the right.

measurements collected in Sprint’s IP backbone network by en-
abling Netflow on all the incoming links from gateway routers
to backbone routers. The version of Netflow used (called Ag-
gregated Sampled Netflow) deterministically samples 1 out of
every 250 packets, and stores the 5-tuple from the sampled IP
packet headers. Using local BGP tables and topology informa-
tion we were able to determine the exit link for each incoming
flow. The resulting link-by-link traffic matrix is aggregated to
form both a router-to-router and a POP-to-POP traffic matrix.

Fig. 3 shows the evolution of six OD pairs in time across a
week (excluding weekends). Here we show three types of be-
haviors and provide two OD pairs per type as illustrative exam-
ples. The two OD pairs on the left (top and bottom) are large
and exhibit a regular cyclo-stationary behavior in time. There
is a strong periodicity at intervals of 24 hours that fits the ex-
pected diurnal patterns. On the right we plot two OD pairs with
extremely low mean rate (note the y-axes are different on each of
these plots) and see that these flows are characterized by a very
noisy shape. These OD pairs have mostly lost their cyclo-sta-
tionary shape and tend to be very bursty. The two OD pairs in
the middle column, are in between these two behaviors: some
retain small diurnal patterns while others become dominated by
noisy behavior.

We examined our OD flows, ordered from largest to smallest
by mean, and found that the heaviest 30% of our flows carry
95% of the total network traffic. This “elephant and mice” be-
havior has been observed countless times before in link traffic,
web traffic and so on. It is not surprising that we find the same
here in IP backbone OD flows. As we will see, focusing only
on estimating the elephants flows makes the procedure easier to
implement and thus more practical. Other traffic matrix studies
have argued that the little flows (and errors in estimating them)
can be ignored because network administrators only care about
estimating the large flows correctly [5], [11]. The very small
flows are not important because capacity planning tasks, route
selection, load balancing, failure provisioning should be tailored
to work for the vast majority of the traffic (put differently, for the
heavy flows); but there is no need to optimize them for the last

OD pair 60 OD pair 28

fel
o
~

Sampled OD (MB/s)
» IS o
o o o

W
O

w
o
-

24h 72h 120h 24h 72h 120h

Fluctuation Process (MB/s)

d A vV o v » o ®
-

-2
24h 72h 120h 24h 72h 120h

Fig. 4. Top: two example real large OD pairs (dotted lines) and their diurnal
patterns (continuous lines). Bottom: the fluctuation process for the two OD pairs
obtained by removing the diurnal trends from the original signals.

5% of the load. In our data, selecting OD flows whose means
are above a threshold of 3 MB/s, yields enough “elephant” or
heavy flows so as to capture 95% of the total network load. We
consider these flows in the latter portions of the paper that focus
on estimating the heavy flows.

Fig. 3 hints that OD flows contain (at least) two sources of
variability, namely diurnal patterns and a noisy fluctuations be-
havior. The figure shows these two behaviors across different
flows. In fact, in the elephant flows both of these sources of
variability often appear within each flow. To see this consider
the two sample OD flows plotted in the top portion of Fig. 4.
The real OD pairs are plotted with dotted lines. We used five
basis functions of a Fourier series to filter out the diurnal pat-
terns, represented by continuous lines. This represents the first
component of an OD flow. The signal that remains after the di-
urnal pattern is filtered out is shown in the bottom plots. We call
this latter component of an OD flow the fluctuations process.

We thus propose the following traffic model for origin-des-
tination flows. An OD flow model should contain two distinct
components, one for the diurnal trend and one for the fluctu-
ations process. The diurnal trend can be viewed as determin-
istic and cyclo-stationary, while the fluctuations process can be
viewed as a stationary zero mean random process. The station-
arity of the fluctuations process is evidenced in the figure by
a pretty consistent absence of any cycle trends over long time
scales (hours and days). We said that one of our goals is to esti-
mate the variance of the traffic matrix. In fact, what we will be
estimating is the variance of this fluctuations process.

In the literature, it has been common to assume a fixed
known relationship between the mean and standard deviation of
an OD flow. The most common assumption is on the existence
of a power law relationship between the two parameters. Fig. 5
shows the relationship between mean and standard deviation
for our OD pair data sorted by their mean (from smallest to
largest). The points on the plot do not approximate a straight
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Fig. 5. Standard deviation of traffic fluctuations versus the mean traffic vol-
umes for all the OD pairs (in Mbytes/s).

line as the assumption on the existence of a power law would
entail. Note that this is a log-log plot, hence, the deviations from
the straight line can be quite large. The best linear fitting for this
data corresponds to a power law with exponent approximately
equal to 0.78, that implies a variance power-law coefficient
equal to 1.56. One of the difficulties with this assumption is
that different researchers, with different datasets from different
networks, each compute different values for this coefficient
[31, [4]. Moreover, the coefficient varies per OD pair [4]. It is
unclear how estimation errors are impacted by methods relying
on this assumption.

In our work, we need not make any such assumption. Instead
we remove the power law assumption and choose to estimate the
variance directly, and do so independently of the mean. Being
able to estimate the covariance of the TM has significant conse-
quences: (1) we avoid having to make questionable assumptions
about the relationship between the mean and variance; and (2)
we can use our estimate to define a method for identifying the
elephants flows. To see this, note that what Fig. 5 does confirm
is the hypothesis that OD flows with large variance are also the
ones with large mean. Hence there is an implication that the
order of magnitude of the standard deviation is closely related
to the order of magnitude of the mean for an OD flow. We will
make use of this observation to help identify the top flows.

V. METHODOLOGY

Our composite methodology makes use of three new ideas:
route changes, cyclo-stationary models and variance estimates.
Before describing the details of our models and estimation pro-
cedures, we give here an overall summary of how these ideas
are combined to build a composite methodology and some vari-
ants of it. In this paper we essentially propose two solutions,
termed Algorithm 1 and 2, plus a variant of Algorithm 1. Algo-
rithm 1 (below) can be used when one wants to estimate all the
OD flows, while Algorithm 2 can be used if the one wants only
to estimate the elephant OD flows.
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Algorithm 1 Estimate all OD flows

1) Collect enough SNMP data to estimate the variance of
OD flows.

2) Use VRC-heuristic to select minimal set of weight
changes so as to generate full rank system.

3) Apply route changes and collect SNMP data from each
snapshot.

4) Expand linear system to include all SNMP data and all
routing configurations. process.

5) Use basic inference technique (pseudo-inverse or
Gauss-Markov estimators) on full-rank expanded linear
system.

We discuss what we mean by “enough SNMP data” in step 1
in Section VI-C. If one estimates the OD flow variances, then
the Gauss-Markov estimator can be used in Step 5. A variant of
this algorithm can be used if one does not have enough data to
estimate the variances. In that case step 1 can be omitted and
the pseudo-inverse estimator should be used in Step 5. The ad-
vantage of this variant is that it does not require any knowledge
about traffic fluctuation statistics; however, the disadvantage is
that it may be less accurate than the solution with the variance
estimator. In the mathematical development of our methods, we
also derive a closed form solution for evaluating the goodness of
our variance estimate. This is included herein for completeness,
although we do not evaluate it due to lack of space.

Algorithm 2 Estimate heavy (elephant) OD flows

1) Collect enough SNMP data to estimate the variance of
OD flows.

2) Identify heavy flows. Use threshold policy (defined below)
to select all OD flows whose variance is above threshold.
Call the set X7,. Reduce linear system by setting to zero
all non-elephant flows.

3) Use VRC-heuristic to select minimal set of weight
changes so as to make reduced system full rank.

4) Apply route changes and collect SNMP data from each
snapshot.

5) Expand linear system to include all SNMP data and all
routing configurations.

6) Use basic inference techniques (pseudo-inverse or
Gauss-Markov estimators) on full-rank modified linear
system.

A key component in Algorithm 2 is to identify the top largest
OD flows (in advance of estimating their average volume). As
observed earlier, a weak relation exists between the order or
magnitude of the standard deviations and the order of magnitude
of the means. By selecting the flows with the largest variance,
we can be reasonably assured that we have identified the flows
that are largest in mean. We then set the estimates for the small
flows to zero and consider them known. We thus have fewer vari-
ables to estimate as only the large flows remain. Having a system
with fewer unknowns, we can run our algorithm for finding the
key link weight changes to increase the rank of the system. We
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TABLE 1
GLOSSARY OF NOTATION
Notation Definition
L, 1 number of network links, link index
P,p number of OD pairs, OD pair index
K, k number of measurement intervals (i.e., snapshots),

snapshot index
N number of SNMP samples collected in a snapshot

Yi(k,n) traffic volume (bytes) on link / during measurement
interval k at discrete time n

Y (k,n) link count vector

Xp(k,n) | traffic volume of OD pair p during measurement
interval k at time n

X(k,n) | traffic matrix organized as a vector at time n
during snapshot &

A(k) routing matrix during snapshot &

A block form of routing matrix including A(k) Vk

Wy(k,m) | fluctuation/noise process for OD pair p at
time n in snapshot k&
W(k,n) | noise column vector
t time index, t = kNs; +n
C block-form routing matrix relating OD fluctuations
to link counts
B covariance matrix of noise W
rp(t) autocorrelation of OD pair p over time lag ¢
r(t) vector of OD pair autocorrelations.
r(0) is vector of OD variances
R(t) matrix form with ~(¢t) on diagonal & 0’s elsewhere
Cy(t) link correlation matrix
~y(t) link covariance matrix ordered as a column vector
r matrix whose rows are component-wise products of
all pairs of rows of A
bn(-).0n basis function & coefficient of Fourier expansion
Ny number of basis functions in cyclo-stationary model

expect to need fewer snapshots now since there are fewer vari-
ables to estimate.

Comparing the performance of these two solutions will illus-
trate an important tradeoff. In algorithm 1 we expect high esti-
mation accuracy since the system is upgraded to full rank. How-
ever, this may require many snapshots (over 20). Algorithm 2
enables a smaller number of snapshots but potentially at the ex-
pense of accuracy in the estimates. Because the small flows are
set to zero, their bandwidth will be redistributed to other flows,
thus increasing estimation errors. This tradeoff is quantified in
Section VIIL.

VI. MODELS AND ESTIMATES

Since we have an OD pair model that includes a diurnal pat-
tern and a fluctuations process, to populate the traffic matrix
with mean estimates now corresponds to extracting the main
trend in time (i.e., a time-varying mean) of the OD pairs, while
estimating the variance collapses to estimating the variance of
the fluctuation process. (The notation introduced throughout this
section is summarized in Table 1.)

A. Incorporating Routing Changes

We now show how to incorporate the different A(%k) matrices
(from different routing configurations) and all the SNMP data
collected under each of the snapshots, into a expanded (block
matrix) linear system. Our traffic matrix estimate here is for the
variant of Algorithm 1 without the variance estimates. In order
to build our solution step by step, we assume for the moment that
{X(k,n)Vk € [0,K — 1] and n € [0, N; — 1]} is a realization

of a segment of a stationary discrete time random process. We
model each OD pair as follows:
X(k,n)=z+W(k,n) Vke[0,K—-1]andn € [0, N, —1]
@)
where x is a deterministic column vector representing the mean
of the OD pair, while {W (k, n)} are zero mean column vectors,
i.e., E[W(k,n)] = 0, representing the “traffic fluctuation” for
the OD pairs at discrete time 7 in the measurement interval k.
We define W, (k,n) as the p*" component of W (k,n). Recall
that the equation relating the OD traffic flows, routing, and link
counts is as follows:

Y(k,n)=A(k)X (k,n) Vk € [0, K — 1] and n € [0, N, — 1].

3)

To incorporate all the SNMP samples from all of the snap-

shots, we build our expanded system by defining the following
matrices, using block matrix notation.

- Y(0,0) A(0)
v=| von_-v | a=| a0
LY(K - 1,N, - 1) A(K — 1)
- W(0,0)
W= W (0, N,)
L W(K —1,N, —1)
FA0) 0 ... 0
0 AW0) ... 0
C= . . . .
Lo 0 A(K 1)

In the new A matrix, each A(k) matrix is repeated N, times
(for each SNMP sample), since the routing is assumed to stay
the same within the same measurement interval k. We define
M;, to be rank of matrix Aj. In terms of dimensions, Y is a
LN K -dimensional column vector, A isa LN,K x P dimen-
sional matrix, W is a K N, P-dimensional column vector, and
Cisa LN;K X K NgP matrix. Putting (3) into matrix form,
using (2), we obtain

Y = Az + CW. 4

Our aim is to estimate x, denoted z, from the observations
Y (0,0),...,Y(0,N;—1),...,Y(K —1, Ns— 1). Throughout
the remainder of the paper, we assume the VRC-heuristic is suc-
cessful and that A is of full rank. One possible approach for syn-
thesizing our estimate & is to minimize the Euclidean norm of

Y - Az, ie.,
& = argmin {(Y — A2)T(Y — 4z)} 5)
(ATA)"1ATY. 6)

This is the Pseudo-Inverse estimator, and does not require
knowledge of the statistics of the traffic fluctuations W.
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B. Incorporating Variance Estimates

We point out that the components of the link measurement
vector Y will have different variances, due to the varying
number of OD pairs traversing each link and the differences
in the variance of the traffic fluctuations of individual OD
pairs. Intuitively, a component of the link measurement vector
should be weighted more heavily if it’s variance is smaller. We
were thus motivated to try to improve the above estimate by
estimating (next subsection) and incorporating (this subsection)
these variances. We now derive our estimate for the traffic
matrix when the variances are known (for Algorithm 1). Let B
be the covariance matrix of W, i.e.,

B =EWWT]. (7

Let ¢ denote the discrete time across all the measurement in-
tervals, from 0 to 7' — 1 where T' = (K Nj) is the total number
of samples collected across the whole experiment. There exists
a bijective relationship between the discrete time index ¢ and
the pairs of temporal indexes k and n, i.e., t = kN + n, where
k = |t/Ns| andn = t—|t/Ns | Ns. Then the covariance matrix
B can be written as:

RO) R R(T - 1)
R(1)  R(0) R(T - 2)
= : : : (8)
R(T—1) R(T-2) R(0)

where R(t) is the P x P matrix defined by

R(t) = [ry(t)] = diag (B [W,()W,(r + D). (9)
We assume in (9) that the traffic fluctuations across OD-pairs
are uncorrelated, i.e., E[W, ()W, (t +t)] = 0if p # p'.

With this definition, the covariance matrix of Y is equal
to CBCT. Assuming (for now) that B is known, the best
linear estimate of z given Y, in the sense of minimizing
E[(Y — A2)T(Y — Az)] with respect to z is known as the
best linear Minimum Mean Square Error (MMSE) estimator.
The best linear MMSE estimate of  can be obtained from the
Gauss-Markov Theorem [12], and is stated as

~lAT(cBCT)
(10)

Note that the estimate & in (10) reduces to the pseudo-in-
verse estimate when C BCT is the identity matrix. If W has a
Gaussian distribution, it can be verified that the estimate in (10)
is in fact the maximum likelihood estimate of x. This estimate
has the following nice property:

Corollary 3: Regardless of whether or not W is Gaussian,
the estimate in Proposition 10 is unbiased, i.e., E[Z] = z, and
furthermore we have

& =#(Y,B) = (AT(CBCT)™' A)

#(Y,B) =z + (AT(CBCT)" A) " AT(CBCT)"'cW
and E[(2 — z)(2 — 2)T] = (AT(CBCT)=1A)~L

The proof of this is straightforward and can be found in [10].
Note that this last equation allows us to estimate the accuracy
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of our estimate # of z given Y and B. In particular, the p?
element of the diagonal of the matrix E[(# — z)(Z — x)7] is
the mean square error of our estimate of the pt" element of the
traffic matrix.

C. Estimating the Covariance of Traffic Fluctuations

We now present a method for obtaining an estimate of the co-
variance function of the fluctuations process {W'}. We highlight
two nice characteristics of our method. First, it does not require
any knowledge of the first order moment statistics. Previous ap-
proaches assumed to know exactly the mean to recover the co-
variance and vice-versa. As a consequence, our method does not
suffer from potential error propagation problems introduced by
the first order moment estimation. Second, the estimate does not
require any routing configuration changes. Instead, it relies on
a large number of measurements of the link counts under the
same routing configuration.

We define the link correlation matrix as Cy(t) =
E[Y(T)YT(r + t)]. For two links [ and m, each entry of
this matrix is given by

Api [Xi + Wi)] A j [X5 + Wi(T +1)]

P

>

i=1,j=1,j7#i

'[Vj*u "tvj"

Il
-

Al,,‘,Amﬂ;T,i(t) + Al,LAm,JE[XJE[XJ]

K2

In the previous statement we assumed that each OD pair is
independent. By using a matrix notation, we can thus write

— AR()A” + E[AX]E[AX]"
= ARWAT + E[Y (1) E[Y (r +1)]"

Oy ()
(11)

The link covariance matrix is thus given by Cy (t) —
E[Y (7)]E[Y (7 +t)]T. This can be estimated directly from the
sequence of link measurements contained in the link measure-
ment vector Y. Once the link covariance matrix is known, we
can estimate R(¢) as follows:

N

f(t) = arg min||Cy (t) - AZAT - B[Y (D] E[Y (7 + t)]THz'

Notice that we can rewrite (11) as v, (t) = I'r(t), where 7, (¢)
is the link covariance matrix, Cy (t) — E[Y (7)|E[Y (T + t)]7,
ordered as a L?-dimensional column vector, I" is a L? x P matrix
whose rows are the component-wise products of each possible
pair of rows from A, and r(¢) is a P-dimensional column vector
whose elements are 7, (¢). With this formulation, an estimate of
r(t) can be obtained using the pseudo-inverse matrix approach:
F(t) = (TTT) Ty, (1). (12)
Our estimate of the variance of the fluctuations process for
each OD-pair is given by the components of 7(0). Using a stan-
dard estimate for the link covariance matrix, we obtain

Z (TTT) 7, (7)

13)
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where the components of 4, (7) are y; (7)Y, (7) — §1Ym,, and for
each link / we define

| T2
o= T ;}yz(T)-

To examine the accuracy of the estimate for 7(¢), we can de-
rive the following after some algebraic manipulations:

E [(#(t) = r(t)" ((t) = r(1))]

where @ = [(ITT)~'TT)T[(I'TT)~1T'7], and ||®|| is the norm
(i.e., determinant) of ®. Equation (14) can be used to relate the
confidence on the r(t) estimate to the fourth order moments of
link-count statistics, which can be evaluated through standard
statistical techniques.

D. Incorporating Cyclo-Stationarity

Next, we present out cyclo-stationary model for traffic
matrices and explain its impact on the associated estimation
problem. We now forgo our previous assumption that { X (¢)}
is a random process with constant mean as in (2). Instead we
define our OD flow traffic with

Xt)y=zt)+W() Vtel|0,T-1]. (15)
where { X (¢)} is cyclo-stationary with period N—in the sense
that X (¢) and X (¢ + N) have the same marginal distribution.
More specifically, we assume that {z(¢)} is a deterministic
(vector valued) sequence, periodic with period N, and that
{W(t)} is a zero-mean stationary random process. In this
framework, estimating the traffic matrix now corresponds
to estimating x(¢) for all ¢ given the observations Y(t),
0<t<T=KN,.

We shall assume that z(¢) can be represented as the weighted
sum of 2V, + 1 given basis functions, i.e.,

2Ny

2(t) =Y Onb(t) (16)

where for each h, ), is a P x 1 vector (of “coefficients”), and
bn(+) is a scalar “basis” function that is periodic with period N.
In particular, we will consider a Fourier expansion where

_ [ cos(2nth/N),
ba(t) { sin (2wt(h — Ny)/N),

ifO<h<N,

if Ny +1 < h <2N,
(17)

Substitution of (16) into (15), and then (3), we obtain

2N,

Y (t) = A() (Z O bn (t)) + A(k)W (t)

= A(1)f + AW ()

where we define the (2N}, + 1) P x 1 vector 6 according to

fo
61
P (18)

Oan,

and A’(t) is the L x (2N, + 1) P matrix defined as

A(t) = [A(K)bo(t)  A(k)ba (2) A(k)ban, (8)]. (19)

Next we redefine the matrix A to be of dimension LT X
(2Np, + 1) P as follows:
A'(0)
A'(1)

A= (20)

A’(T: ~1)

The matrices C and W are defined as before. With this nota-
tion we have an equation similar to (4), namely

Y = A6+ CW. (21)

Thus, we can use the same estimate, from (10) as before, (or
from (6)) to estimate # when the covariance B is known (un-
known), respectively. Then we estimate () for each instant ¢
using (16). Our covariance matrix estimator in Section VI-C can
still be used to obtain the covariances in the system described
by (21). Our estimates for cyclo-stationary OD flows can be ap-
plied to the entire traffic matrix (Algorithm 1) or just the ele-
phant flows (Algorithm 2).

E. Identifiability of Second Order Moment

In this section we prove that is always possible to estimate the
covariance function without requiring any routing configuration
changes for any topology.

Theorem: For a general connected topology the rank of I is P
under any minimum cost routing in which link costs are strictly
positive.

Proof: We will prove the theorem by contradiction. If the
rank of I" is smaller than P then ker I' # 0,3 i.e., there exists
a non-null vector V, € RF such that 'Vy = 0. Let T < P be
the number of non-null components of V4. Let V be the vector
space of dimension 7" generated by all the vectors which have
null components in correspondence to null components of V.

We consider the correspondence F' : V — R which maps
any vector V € V into a vector W € RT by discarding null
components of V. Let I be the matrix obtained by I' by dis-
carding the columns that in the multiplication I'V with V' € V
would not contribute (since multiplied by null elements of V).
By construction I'V = I'W for any V € V. Finally let W, the
vector which corresponds to V; though F'. We notice that every
component of Wy is not null.

Let us consider the set Z,; of OD pairs which correspond
to the elements of W,. We will show that there exists at least
a pair of links in the network which are jointly crossed by just
one OD pair in Z,4. Thus, the row of I’ which corresponds to the

3We recall that, given a linear operator I', ker I" denotes the set of vectors
whose image through I' is 0, i.e., v € ker " iff I'v = 0.
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considered pair of links must contain only one element different
from 0. As a consequence, necessarily, it results that f‘WO #0,
in contradiction with the previous assumptions.

Indeed, let us compute path-cost (sum of the link weights)
for any OD pair in Z,4. Let 2,4 be an OD pair in Z,4 which
corresponds to a maximum path cost. Consider the first and the
last link (I and m respectively) spanned by the z,4 path.

We claim that z,4 is the only OD pair in Z,4 which crosses
both links [ and m. By construction z,4 crosses both [ and . In
addition we show by contradiction that no other OD pairs can
cross | and m. Assume 2/, # z,q crosses both links [ and m
then there are only two possibilities: 1) [ is the first and m the
last link of the zg 4 path; in this case, however, both the origin and
the destination of 2/ ; would be coincident with the origin and
the destination of z,4 then contradicting the fact that 2/ ; # z,q;
2) either [ is not the first link or mm is not the last link of the path
spanned by 2/ ,; in this case, however, the path cost of 2/, is
larger than the path cost of z,4 (since the sub-path of 2/ ; from
[ to m necessarily has the same cost of the whole z,4 path) thus
contradicting the fact that the path cost of z,4 is maximum. H

VII. RESULTS

We now evaluate our two algorithms using the traffic ma-
trix data from Sprint’s commercial Tier-1 backbone. In both
solutions, we used a pseudo-inverse estimator as our basic in-
ference method in the last step. We used this, rather than the
Gauss-Markov estimator because (as explained later), we did
not have enough months of Netflow data to do a proper compar-
ison using Gauss-Markov estimators.

1) Evaluation of Algorithm 1: Estimating the Whole Traffic
Matrix: We now assess the accuracy of the mean estimation
when the traffic matrix is computed using Algorithm 1. For our
network scenario considered, the VRC-heuristic algorithm de-
termined that K = 24 snapshots were sufficient to identify all
the OD pairs. Of these 24 snapshots, 22 of them involve only
one link weight change at a time, while the last two involve two
simultaneous link weight changes.

For illustrative purposes, we first look at our estimates over
time for six particular OD pairs (see Fig. 6). For each flow, these
graphs show the temporal shapes of the real, de-noised, and es-
timated OD pair. The de-noised OD pair refers to an OD pair
with everything filtered out except the first 5 basis functions
of Fourier series; put alternatively, this illustrates how well a
simple Fourier model captures the changing mean behavior. Our
model fits these flows extremely well. It is interesting that the
quality of the estimation obtained decreases as the average rate
drops. The two on the right do suffer from larger errors. Note
that these two OD flows (#28 and #105) were the worst case
performing OD flow estimates from within the heavy flow cate-
gory. Our method exhibits the same behavior as other methods
in that it estimates large flows well and has difficulty as the flows
get smaller and smaller.

The gain of our method comes in terms of the actual estima-
tion errors achieved for these top flows. To examine estimation
errors in general, we use the following two metrics. First, we
examine the difference between the {\sl first component} of the
Fourier series, i.e., the continuous component, for the Netflow
data and the estimation provided by our models. Since this part
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with N, = 100.

of our estimate would be used to populate a traffic matrix, we
compute the relative error of this estimate. Second, since we
have a temporal process, we need to examine the errors in esti-
mation over time. We thus use the difference in energy between
the estimate X p»(t) and the real data X,(¢). In particular, we use
the relative L2-norm to estimate the goodness of the model fit-
ting, |1 ,(1) — X, (031X, (DII3

Fig. 7 shows our first metric on the difference of the first com-
ponent of the Fourier series for the real data (x-axis) and the esti-
mated OD pairs (y-axis) for the elephant flows when Vg, = 100
samples per snapshot are used. The average error is 3.8%. This
is a large improvement over other methods whose average er-
rors typically lie somewhere between 11%-23%.4 Some carriers
have indicated that they would not use traffic matrices for traffic
engineering unless the inference methods could drive the av-
erage errors below the 10% barrier. We believe that this is the
first study to achieve this.

It is hard to compare numbers exactly because different studies use different
amounts of total load. However, we capture more total traffic than most other
studies that typically include 75% or 80% of the network-wide load.
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Among these flows, the worst case relative error across all
OD pairs is 28%. If we look carefully at the figure, we can see
that all the flows have less than 10% relative error, except for
four outliers. These outliers correspond to OD pairs whose av-
erage rate is less than 5 MB/s, i.e., among the smallest OD flows
within the “heavy” ones represented here. For 90% of these top
flows (i.e., excluding these four outliers), the average error drops
below 2% and the worst case relative error drops to 4.6%. (See
the first column in Table II for 24 snapshots.) We remind the
reader that small OD pairs (those whose rate is under 3 MB/s)
do not appear in the figure but are considered in the system and
are thus a part of the overall computation.

Fig. 8 shows the L2-norm relative error cumulatively. In most
of our calculations the number of basis functions we used was
Ny = 5 and the number of samples per snapshot used was Ny, =
100. This figure shows that the worst case L2-norm relative error
was 56% corresponding to OD pair #28 (the second worst case
is 44%, corresponding to OD pair #105). We see that 85% of the
flows had an L2-norm error of less than 10% (see OD pairs #56
and #39 as an example). Fig. 6 helps us understand the effects
of the L2-norm error. As we can see our model captures the
diurnal trends correctly for the heavy OD pairs, but can suffer
with relatively “small” OD flows.

We highlight the difference between our two error metrics.
Others have reported relative errors on their mean estimates
where the means are computed over some specific interval
(often fairly long). Our L2-norm relative error is an error rate
on our estimation (or fitting) of the dynamic OD flow varying in
time; put alternatively it summarizes “instantaneous” errors in
OD flow modeling. We cannot compare the value of this latter
metric to other studies because they have not tried to build a
model capturing the temporal behavior.

The performance of our method is influenced by the number
of samples per snapshot and the number of basis functions used
(see Fig. 8). Intuitively, a larger number of basis function IV,
will lead to a better quality estimate, although at the cost of a
larger number of samples. The number of samples Ny plays an

important role independently of the number of basis functions
implemented. The more samples collected, the more is learned
about the temporal evolution of each OD pair, and a better esti-
mation can be provided. For a fixed number of basis functions,
going from Ny = 10 to Ny = 100 yields a substantial improve-
ment. In our experimentation, using more than 5 basis functions
yielded insignificant gains and thus we decided to set N, = 5
for the remainder of our evaluation.

2) Evaluation of Algorithm 2: Estimating Elephant OD Pairs
Only: We start by estimating the variance (Step 1) of the OD
flows using (13). For Step 2, we order the OD flows by size of
variance. By relying upon our observation that flows that have
large variance are also typically large in mean, the task now is to
set a threshold and select the “heavy” flows above this threshold.
Two issues arise when doing this.

As discussed in Section VI, the nice feature about our vari-
ance estimator is that it does not require any routing changes.
However, a large number of SNMP samples are required to force
the relative error of the variance estimate to be under 5%. We
selected the 5% target arbitrarily. After some experimentation
we found that roughly 25,000 samples were needed to achieve
this target level of accuracy. In a real network this implies one
needs about 3 months worth of SNMP data. In commercial net-
works obtaining this much historical data is not a problem as
all ISPs store their SNMP data for multi-year periods. Although
we had plenty of months (years) of SNMP data, we did not have
3 months of Netflow data available to us that would have been
needed to do a complete validation of this method.

We therefore decided to use pseudo-real data for this evalua-
tion. We call this pseudo-real data because it is generated based
on a model fitted to actual data (but only one month’s worth).
To create sample OD flows, we filter out the noise from each of
our sampled OD pairs and keep only the first five components of
the matched Fourier series. We generate sample OD flows, over
longer periods of time, using this Fourier series model to which
we add a zero mean gaussian noise with a power-law variance
whose coefficient is set to 1.56 (in accordance with the empir-
ical data observed in Fig. 5). We route this traffic (according to
the original A matrix, i.e., snapshot k¥ = 0) and generate what
would be the resulting SNMP link counts for the 3 month pe-
riod under study. This last step is the same as the methodology
presented in [6].

We compare our estimate of the standard deviation (std) to
the standard deviation of the pseudo-real data in Fig. 9. The top
plot is for the elephant flows, while the bottom plot includes
the comparison for small flows. The variance estimate for the
medium and large OD flows is quite good in that it achieves
an average estimation error of less than 5%. As expected, it is
harder to estimate the variance of the smaller OD pairs and we
see the errors can span a large range. This challenge cannot be
met by merely increasing the number of samples because it is
due to the difference in order of magnitude of large and small
OD pairs. As a consequence, a small error in the std-estimate of
large OD pairs will be spread across multiple OD pairs causing
large errors in the std-estimate of small OD pairs.

Without a method for extracting exactly the top 30% largest
OD pairs from the rest, we rely on a simple threshold scheme for
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Fig. 10. Number of snapshots needed versus OD pairs eliminated.

now. We keep all OD pairs whose rates are above a threshold set
to be two orders of magnitude lower than the largest OD pair.
OD pairs below this threshold are set to zero.

We are now ready to examine the impact of removing the
small OD pairs on the number of snapshots required. Having
isolated the top OD flows, our methodology next uses a heuristic
algorithm to select the sequence of snapshots needed—however,
this time we seek identifiability on a much reduced set of OD
pairs. Fig. 10 depicts the number of snapshots required as a func-
tion of the number of OD pairs set to 0. Recall that as more
OD pairs get set to zero, there are fewer variables to estimate
and so we expect the number of snapshots to be decreasing. We
start with 24 snapshots, when all OD pairs are considered by the
heuristic, and ending with 0 when no OD pair has to be identi-
fied. Note that only 5 snapshots are needed to disaggregate the
30% of largest OD pair carrying the 95% of network traffic. Re-
call that when we estimated the entire traffic matrix using Algo-
rithm 1, our algorithm requires 24 routing configurations. Here
we see that if we content ourselves with estimating 95% of the
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TABLE II
AVERAGE (ME) AND WORST-CASE (WC) RELATIVE ERRORS OF 1ST FOURIER
COMPONENT FOR 100%, 95% AND 90% OF HEAVY OD PAIRS

OD [%] | Snapshot=24 | Snapshot=16 | Snapshot=10
ME | WC | ME | WC | ME | WC

100% 379 | 28.04 | 896 | 57.31 | 10.88 | 58.40

95% 234 | 1548 | 5779 | 31.23 | 7.99 | 31.20

90% 1.72 | 930 | 4.54 | 22.51 | 6.78 | 24.85

load of the traffic matrix, then we can drop the number of needed
snapshots to 5, i.e., an 80% reduction! This is indeed a dramatic
decrease in the number of needed snapshots. With the number
of snapshots so small, ISPs are more likely to be able to execute
such a method. One of our key findings here is thus that by fo-
cusing only on large flows and being able to identify them, we
can enable a method (the weight change method) that appears
to be able to significantly improve the error rates as compared
to previous methods.

Finally we evaluate the impact of removing the small OD
pairs on the accuracy of estimation for the remaining top OD
flows. When flows are “removed” (i.e., set to zero) for the pur-
pose of our method, the traffic they carry still appears inside the
SNMP link counts. Thus, if we assume some OD flow has zero
rate, then its actual rate will be transfered to some other OD pair
retained in the estimation process. This will increase the inac-
curacy in the flows being estimated.

We provide summary statistics for our errors as a function of
the number of snapshots in Table II. Clearly both the average
relative error and the worst case error increase as the number of
snapshots is reduced. For example, the average error of 90% of
our heavy OD pairs goes from 2% to 5% to 7% as the number
of snapshots drops from 24 to 16 to 10 (respectively). Because
the errors are so low with the full rank all OD flows system,
even when few snapshots are used, the increased errors are still
within an acceptable range (i.e., below the 10% target). We be-
lieve that this method that reduces the number of snapshots yet
maintains acceptable error rates, has the potential to render the
route change approach practical.

VIII. CONCLUSION

In this paper we propose a new approach for dealing with
the ill-posed nature of traffic matrix estimation. We propose
three solution enhancers: an algorithm for changing link weights
so that the underlying linear system can be make full rank; a
cyclo-stationary model to capture both long-term and short-term
traffic variability, and a method for estimating the variance of
OD flows. We show how these three elements can be combined
into a comprehensive traffic matrix estimation procedure that
dramatically reduces the errors compared to existing methods.

We demonstrated that our variance estimates can be used to
identify the elephant OD flows, and we thus proposed a variant
of our algorithm that addresses the problem of estimating the
heavy flows in a traffic matrix. This is the first traffic matrix
paper to propose a solution that focuses only on elephant OD
flows. One of our key findings is that by focusing only on heavy
flows, we can simplify the measurement and estimation proce-
dure so as to render it more practical. This approach is more
practical because it requires fewer routing changes and less
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SNMP data collection (fewer measurement intervals). There is
a small price to way in terms of accuracy of estimation in this
case. However, we find that increasing the rank is so helpful that
we can nevertheless keep the average errors consistently below
the 10% carrier target error rate. Sometimes our errors reached
as low as 1 or 2% (depending upon the scenario evaluated). We
believe that this is the first proposed method to achieve average
error rates in this range.

One of the limitations of our work is that it takes a long time
to get a high confidence estimate of the covariance of the traffic
matrix. In our future work, we hope to explore ways to reduce
this measurement time.

APPENDIX

A. Viable Routing Changes Heuristic: VRC-Heuristic

The objective of the VRC-Heuristic is to identify the min-
imal set of snapshots needed so as to render the A matrix full
rank. The suggested changes must not degrade the network per-
formance customers experience. Thus, the proposed changes
should cause neither excessive link loads nor lead to end-to-end
delays that are larger than those specified in customer contracts.
We thus allow carriers to input a delay-limit and a load-limit
into our algorithm to ensure these constraints are met. Also op-
erators are likely to prefer changing one or two link weights
at the same time rather than changing a large numbers of links
simultaneously, to avoid pushing the network “too far” from
its operational working point. We limit the number of simul-
taneous weight changes to be three giving higher priority to
single link weight changes. After identifying many candidate
snapshots, our heuristic algorithm can be viewed as a cascade
of pruning steps to extract those snapshots that achieve the goal
while meeting the constraints.

Step 1: Pruning by Route Mapping. In this step we
identify a set of snapshots, where each snapshot corre-
sponds to an IGP weight change on a single link. Let
A = {éwh(p1),...,0wn(pp)} be the set of potential
IGP weight perturbations to apply to a given link [;, such to
force OD pair pj, to flow on it. Recall that P is the number of
OD pairs in the network. For each link [, € £, we determine
the set Ay, as follows. First, for an OD pair p, let f(p) be the
path length of the minimum cost path from the origin node
of p to the destination node of p under the initial set of link
weights W. Let 0, (p) be the length of the shortest path which
is constrained to use link [;,. For each [; and p, we define
dwn(p) = bo(p) — Ou(p) if Bo(p) — On(p) < 0, bwn(p) = -1
if o(p) — 01 (p) = 0 and link [}, lies along exactly one shortest
path for OD pair p, and éwp,(p) = 0 otherwise. We point
out that any link weight change must result in a new weight
that ties in the range [Wiin, Winaz], corresponding to the
range of weights allowed by the operator. Then, we prune
the set of link weight perturbations for link /5, to the set Ay,
where Ay, = {dwp(p) : dwp(p) < 0 and wy, + dwi(p) €
[Wmin7Wmar]7vp € P}

After considering all possible links /;,, we obtain a set of pos-
sible snapshots A = Uﬁzl = Ay, each of which corresponds
to a single weight change and results in traffic from an OD pair
being moved on at least one link.

Step 2: Pruning by Performance Constraints We now
evaluate the set of candidate perturbations to see if they meet
the delay-limit and load-limit constraints. We examine all the
entries in the set A and build the set of candidate snapshots as
a set of tuples S = {(I,, Wp;)} where each tuple represents a
deviation from the original weights set by setting the weight of
the link [}, to the value wy,;, defined as wp; = wy, + Awp(p;).
For each tuple, we compute the associated routing matrix Ap;.
For each candidate snapshot, we compute the new average
end-to-end delay for all OD pairs and link-load by using the old
TM available. If this violates the delay-limit or the load-limit,
then we set aside the snapshot. For those snapshots that are
within both the delay and load limits, we include them only if
the corresponding routing matrix Ay; is not identical to that of
a routing matrix for another included snapshot.

Step 3: Ordering the candidate snapshots. Now that we
have a set of candidate snapshots, we need to determine which
of those snapshots to include to generate our aggregate routing
matrix. Conceptually, we could consider all possible subsets of
the candidate snapshots, and compute the rank of the associated
aggregate routing matrix for each subset of snapshots. Since the
number of subsets is very large, this is computationally pro-
hibitive. Instead, in this step we construct an ordering of the
candidate snapshots according to a ranking function which re-
flects the the number of new OD pairs that become known ex-
actly as a result of the candidate snapshot. The intuition is to
pick snapshots that reveal many OD pairs exactly within a single
snapshot.

We introduce some new notation used to define our ranking
function. Let Ay; be the set of OD pairs whose routing is af-
fected by changing the link weight on link /;, to the new value
wp; = wp, + Awp(p;). Let Bri(p) be a binary variable that is
equal to 1 if the OD pair p uses the link /;, and O otherwise,
with respect to the new set of link weights after changing the
weight of link l}, to wy; as described above. Let Rp,;(p;) be the
set of new links along the path used by OD pair p; after applying
the IGP weight wy,, i.e., the set of links that are contained in a
shortest path for p; after changing the link weight wy, to wy; but
are not included in any shortest path for p; for the original set
of weights W. We define the ambiguity of p, after the weight
change (I}, wp;) to be

mui(pe) = miny, er,, Z Bri(p) Ywpi : (I, wpi) € S
pElLi /Pt

(22)
which takes the minimum of these per-link sums across all the
new links in the new path of OD pair p;. The quantity mp;(p¢) is
defined for a single OD pair p;. Our ranking metricfor changing
link [}, to the value wy,;, is defined over all ODpairs as follows.

Mhi = Z (1/ (Bmhi(pt) + 1)) thi : (lh7whi) €es
Pi€Th;
(23)
where B is a large parameter satisfying the constraint
P/(B+1) < 1.

In defining the ranking function we have assumed that is
better to know something exactly than simply to get new link
counts without any complete dissggregation. The snapshots are
then ranked according to the corresponding value of Mj; for
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each snapshot, where the snapshot with the largest value of
Myp,; is at the top of the list.

Step 4: Evaluation of candidate single link snapshots. We
now evaluate the candidate snapshots in the order defined in Step
3. Each entry (I, wp;) € S is evaluated sequentially by ap-
pending its associated routing matrix Ay; to the improved ag-
gregate routing matrix A and computing the rank of the com-
bined routing matrix. Only if the rank of the new A increases
then Ay, is kept in A; otherwise the snapshot is discarded. The
algorithm stops when the rank of the A matrix is equal to P.

Step 5: Multiple IGP weight changes and relaxation of re-
quirements. For large networks performing only single weight
changes might not be enough to guarantee that we have obtain
a full rank routing matrix A. If this is the case, then we apply
snapshots corresponding to weight changes on pairs of adjacent
links and repeat the above steps starting from Step 1. In this
context, a pair of links is defined to be adjacent if they are in-
cident to a common node. The process continues until the ag-
gregate routing matrix has full rank. If we exhaust all snapshots
corresponding to a pair of link weight changes then we try snap-
shots corresponding to triplets of links. We consider only triplets
of links that form “triangles”, i.e., triplets of links of the form
{(a,b), (b,c), (c,a)}. Moreover, for each triplet of links we only
consider two possible weight changes, i.e., changing the weights
of all three links to either W,,,;,, or all to W,,,.. The process
continues until the aggregate routing matrix has full rank. If we
reach this point and the rank of A is less than P, then we relax
the delay and load contraints.
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