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Transition between stable states in the dynamics of soil 
development 
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Abstract. 

The dynamics of soil development and erosion is stud- 
ied through a stochastic soil mass balance in which the 
soil production by bedrock weathering is expressed as 
a state-dependent deterministic function, while the ero- 
sion by landslides is modeled as a marked Poisson pro- 
cess. For a range of values of the parameters the dy- 
namics is bistable and the noise drives the transitions 

from a state to another through a potential barrier. The 
rates of such a transition are analytically estimated and 
their dependence on the system parameters is briefly 
discussed. 

The analysis of the dynamics of soil development in 
a hillslope is crucially important to the understand- 
ing and modeling of the process of landscape evolution. 
This dynamics has been traditionally studied [Kirkby, 
1971; Ahnert, 1988; Dietrich et al, 1995; Roering et al., 
1999] through a soil mass balance equation in which 
the variability in time of the soil thickness, h, was ex- 
pressed as the difference between the rates of the pro- 
cess of soil production (at the interface between regolith 
and bedrock) and erosion (at the ground surface). The 
former is usually given by a deterministic function, of 
the soil depth [Carson and Kirkby, 1972; Heimsath et 
al., 1997]. This approach has lead to important contri- 
butions to the modelling of the spatial [Dietrich et al., 
1995; Roering et al., 1999] and temporal [Carson and 
Kirkby, 1972] variability of soil depth. When the land- 
scape is subject to shallow landslides soil erosion is a 
discontinuous process, frequently controlled by the hy- 
droclimatic (random) forcing [Iida, 1999]. A stochastic 
model of soil development has been recently suggested 
[D'Odorico, 2000] through a stochastic soil mass bal- 
ance in which soil production is given by a determinis- 
tic function,/(h), and erosion is modeled as a stochastic 
process in time, consisting of a sequence of marked Pois- 
sonian occurrences [e.g., Wu and Swanston, 1980], rep- 
resenting serious and abrupt erosive events (e.g., land- 
slides). The deterministic function,/(h), accounts also 
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for those erosive processes (e.g., rainsplash, rainwash, 
etc.) which are always (gradually) active in time (at 
least if observed at the timescales of landscape evolu- 
tion) and which are therefore suitable for a deterministic 
modeling. Thus the soil mass balance finally reads as 

dh 

d--• = l(h) + f(t) (1) 
where l(h) (Fig. la) can be expressed [D'Odorico, 2000] 

n b)(1 z(n)- + (for 0 < n < 
f(t) is a marked Poisson process f(t) = 
In the above p• and Ps are the bulk densities of the 
parent rock and the soil, respectively; P0 measures the 
rate of bedrock weathering; d is the maximum thickness 
of the regolith above which the rates of soil production 
are negligible; b is a dimensionless parameter controlling 
the shape of/(h); 5() is the Dirac-delta function; t = 
r•-r•_• is an exponentially distributed random variable 

= xe (2) 

and "/i is a random variable ("/i < 0) with exponential 

distribution, O("/i)- -•Exp(-•). To maintain the 
bound at h = 0, O("/i) is more properly represented as 
a state-dependent distribution 

{ -•e-• -h < V• -< 0 (3) o(v) - 5(v• - h)e• v• -< -h. 
The rationale behind the above soil production func- 

tion (Fig. la) comes from the observation that above 
a certain value of the soil thickness, say d, the rates of 
bedrock weathering are negligible [e.g., Ahnert, 1988; 
Dietrich et al, 1995; Heimsath et al., 1997]. At the 
same time the biogenic mechanical weathering by tree 
roots is weaker in shallow soils, where significant veg- 
etation seldom grows [Carson and Kirkby, 1972]. The 
dynamics discussed in this paper is bistable only when 
the soil production function has the characteristics de- 
scribed above (i.e. a maximum for a positive value of 
h). Equations (1-3) represent a stochastic differential 
problem, that has been integrated [Rodriguez-Iturbe et 
al., 1999; D'Odorico, 2000], providing the steady-state 
probability distribution of soil thickness, h. It was ob- 
served that there are (likely) ranges of values of the pa- 
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Figure 1. a) Example of a possible soil production 
function: L(•) - ,xl(n) (( _ 0.1' b - 0.05) b) Non- d • ' 

dimensional potential function (b = 0.05; ( = 0.1; 
( = -1); c) States of equilibrium- X2 (stable) and X• 
(unstable)- as a function of I•½1, for b- 0.05. 

rameters in which such a distribution may be bimodal 
with the implication that the system has two prefer- 
ential states corresponding to weathering-limited and 
transport-limited dynamics [Gilbert, 1877] and that, be- 
cause of the random forcing, the system may fluctuate 
between these two regimes, without ever (asymptoti- 
cally) converging to any steady-state condition. 

In some bistable systems the dynamics can be studied 
in terms of a potential function [Poma and Masoliver, 
1993]: the existence of two preferential states means 
that the potential has two minima (stable states) or po- 
tential wells, separated by a maximum (unstable state) 
or potential barT•er. In the absence of the external forc- 
ing the system would tend to either one of the potential 
wells, depending on the initial condition. The noise in- 
duces the transition of the dynamics between the two 
preferential states through the potential barrier (noise- 
induced transitions). The properties of such a dynamics 

are generally characterized through the rates of these 
transitions [Po•d and Masoliver, 1993]. 

In this paper we study the rates of transition from a 
stable state to another as well as their dependence on 
the rates of the processes of soil production and removal. 
Normalizing h by d in equation (1) we have 

•--• = x•(x)+ •(t) (•) 
•t 

where X - •, F(t) - Ei(i 6(t- ri), L(X) - •(X + 
b)(1-X) 2' with (- •2 (i- 2 and , , • 
(•i) represents the ratio between the average (actual) 
landslide depth and the maximum thickness of the re- 
golith; I•½l measures the ratio between rates of erosion 
due to landsliding, and soil production due to bedrock 
weathering. 

A potential function can be defined for h [D'Odor•co, 
2000] as (see equation (1)) 

•(•) - - f• (•(•) + <•(t)>) • - - f•(•(•) + •x)• (•) 
in a way that -v•(h) gives the average rate of change 
of the soil thickness (i.e. •>); in dimensionless terms, 
equation (5) becomes 

-õ(t,-2)x :• 4 x(t,+(½) (6) 

Fig. lb shows a plot of (6) for an assigned set of pa- 
rameters: the potential has a maximum at X• and two 
minima at X• = 0 and X2. Values ofx• and X2 are 
shown in Fig. lc as functions of • and (. Notice how 
for I•l > • • 0.172, V(h) has only one minimum (at 
X1 - 0), corresponding to a weathering-limited dynam- 
ics with completely denuded ground. 

The rates of transition from X• to X2 (forward transi- 
tion; Fig. 2a) can be studied following the approach by 
[Masoliver, 1987; Porra and Masoliver, 1993], leading 
to the equation 

1 xi dx eM(x ) •- • • L(x) o• dx' e -•(X') (7) 

where T• is the average time needed for a forward tran- 

sition (i.e X• -• X2) and M(X) - •+fx ax' _ ' ' œ(x') -- 

+ , ( l--x) (l+b) 2 ß 

The average time of backward transition (i.e. from 
X2 to Xx; Fig. 2b) can be estimated in a similar way 
[Masoliver, 1987; Porra and Masoliver, 1993] leading to 
the equation 

(8) 
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Figure 2. Forward (a) and backward (b) transitions 
between the two stable states, X• and X2: The trajec- 
tories between the two stable states consist of temporal 
intervals of soil development interrupted by instanta- 
neous erosive events. 

The above analytical solutions have been derived 
without accounting for the bound that the dynamics 
has at h = 0 (i.e., X = 0). Nevertheless it is straight- 
forward to observe that the existence of such a bound 

(corresponding to a condition of completely denuded 
hillslope) may affect only the rates of forward transition 
from X• to X2 and not vice versa. In fact, the back- 
ward transitions (Fig. 2b) occur only as random jumps 
(erosion), here modeled by the Poisson process. The 
bound at h = 0 (completely denuded ground) would be 
crossed at the same time as the level h• = d X• (in fact 
X• = 0), without affecting the estimation of the average 
time needed to reach X1 starting from X2. Nevertheless, 
the existence of the bound at h = 0 affects in general 
the rates of forward transition from X1 to X2. To ac- 
count for this, a "modified" soil production function, 
L•(X) can be used 

{ x >_ o cx+b x:<0. (9) 
If ]cl is large enough, X = 0 becomes a reflecting barrier 
since a (fictitious) instantaneous (i.e. c -, -c•) soil 
production would keep X in the positive domain almost 
always with the exception of a finite number of instants. 
For negative values of X the function M(X ) becomes 

M(X) = • + Lo•(x); for c --, --oo M(X) --* • and 
equation (7) reads as 

L(X) dx' e -M(X') - •c] . (10) 

Fig. 3a shows the average time, Ti, needed for a 
forward transition (equation (10)) between the stable 
states of the system; •TI is an increasing function of 
• in a wide range of values of • (0 < • < •+): for 
given /k and •, high rates of soil production, P0, lead 
to faster (forward) transitions to the transport-limited 
regime. At the same time, given P0, despite the increase 
of/kTf, with increasing values of •, Tf is a decreasing 
function of A. This fact can be better understood by 
recalling that the values of X2 and X• are functions of 
A. For given P0 and •, larger values of A correspond to 
lower values of X2 and shorter trajectories from X• to 
X2 (Fig. lc). 

ATf has a maximum (marked by "+" in Fig. 3a) 
for ( = (+ and, then, for ( > (+ it decreases with 
increasing values of (. In fact, also the height of the 
potential barriers for both forward and backward tran- 
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Figure 3. Average (normalized) times, AT, of forward 
(a) and backward (b) transitions as a function of the 
system parameters. The black points correspond to val- 
ues of ( above which I•l > r and the system is no more 
bistable (see Fig. lc); (c) Ratio between the heights of 
the potential barrier in the backward and forward tran- 
sitions. 
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sitions (Af = V(X•)- P(•l) and Ab = V(X•)- V(X2), 
respectively) are functions of 1•½[ (Fig. 3c): increas- 
ing values of [•1 correspond to decreasing values of Af 
with respect to Ab, a condition that favors the forward 
transitions and explains the decrease of T;, for • > •+; 
in fact, for ( = (+, • 0.144 and the barrier is the 
same in both directions (Af = 

For a given •, low values of • (i.e. low rates of erosion) 
should favor the forward transitions (see Fig. 3c), being 
Af << Ab. However, lower values of • correspond to 
long times of forward transition because of the larger 
distance between X1 = 0 and X2 (Fig. lc). Vice versa, 
high rates of soil erosion (i.e. high ,• and I'/I) shorten 
the distance between the two stable states, leading to 
faster transitions in both directions. 

The average time of backward transition is a decreas- 
ing function of both • and • (Fig. 3b). For given rates 
of soil erosion (i.e. ,• and I'/I) slow processes of soil pro- 
duction (i.e. small P0's) correspond to shorter times 
of backward transition and vice versa. Similarly, for 
given P0, high rates of soil erosion (either ,• or ['/I) cor- 
respond to lower values of ,•Tb (and to even lower Tb's). 
This is due to the interplay between losses (erosion) and 
yields (production) in the soil mass balance (as it is ex- 
plained, for example, by the dependence of the height 
of the potential barrier on the by-product I•1; see Fig. 
3c) but also on the shifting of the point of stable equi- 
librium along the X axis for different values of 
(Fig. lc). 

For a given value of I•½1 (i.e. for given Ab/A;•) and 
Ix2-Xll high values of • (i.e. low values of () correspond 
to shorter times of forward and backward transition. In 

fact, a backward transition occurs when, because of a 
strong erosion (high •), the system overcomes the po- 
tential barrier and falls in the potential well of X1. This 
leads the system to the complete denudation because of 
both the erosion and the lower rates of production (i.e. 
L(X)). At the same time a forward transition can be 
slowed down more by strong than by frequent events, 
and this can be explained again on the basis of the state- 
dependence of the rates of soil production through the 
function L(X). 

Conclusions 

A model of soil development is here studied through 
a stochastic soil mass balance in which the soil pro- 
duction is expressed by a state-dependent deterministic 
function, while the soil erosion by landslides is repre- 
sented by a marked Poisson process. The system is 
shown to be bistable in a wide range of values of the 
parameters and the two preferential states correspond 
to transport limited and weathering-limited dynamics. 
The average times of transition between the two stable 
states are analytically estimated and their dependence 

on the dynamical parameters is briefly discussed. The 
rates of backward transition are higher either with more 
frequent or with more intense erosive events. The ex- 
istence of a bound for the process of soil erosion (the 
amount of removable soil can not exceed that of the soil 

effectively present) as well as the dependence of the dis- 
tance between the stable states on the parameters of the 
system make the overall dynamics extremely non-linear 
and strongly affect the rates of transition between such 
states. This explains the possibility of having shorter 
forward transitions even with higher rates of erosion. 
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