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Abstract. In the present paper we describe some methods for
verifying and evaluating probabilistic forecasts of hydrologi-
cal variables. We propose an extension to continuous-valued
variables of a verification method originated in the meteo-
rological literature for the analysis of binary variables, and
based on the use of a suitable cost-loss function to evaluate
the quality of the forecasts. We find that this procedure is
useful and reliable when it is complemented with other veri-
fication tools, borrowed from the economic literature, which
are addressed to verify the statistical correctness of the prob-
abilistic forecast. We illustrate our findings with a detailed
application to the evaluation of probabilistic and determinis-
tic forecasts of hourly discharge values.

1 Introduction

Probabilistic forecasts of hydrological variables are nowa-
days commonly used to quantify the prediction uncertainty
and to supplement the information provided by point-value
predictions (Krzysztofowicz, 2001; Ferraris et al., 2002; To-
dini, 2004; Montanari and Brath, 2004; Siccardi et al., 2005;
Montanari, 2005; Tamea et al., 2005; Beven, 2006). How-
ever, probabilistic forecasts are still less familiar to many
people than traditional deterministic forecasts, a major prob-
lem being the difficulty to correctly and univocally evaluate
their quality (Richardson, 2003). This is especially true in
the hydrological field, where the development of probabilis-
tic forecast systems has not been accompanied by an analo-
gous effort towards the proposition of methods to assess the
performances of these probabilistic forecasts. In contrast, the
usual choice when evaluating probabilistic predictions of hy-
drologic variables has been to adopt verification tools bor-
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rowed from the meteorological literature (e.g.,Georgakakos
et al., 2004; Gangopadhyay et al., 2005).

However, this meteorological-oriented approach has two
drawbacks: first, most of the methods developed by the me-
teorologists were originally proposed for the probabilistic
predictions of discrete-valued variables, and the adaptation
of these techniques to deal with continuous-valued variables
can reduce the discriminating capability of the verification
tools (e.g.,Wilks, 1995; Jolliffe and Stephenson, 2003). For
example, a continuous-valued forecast can always be con-
verted into a binary prediction by using a threshold filter
(e.g.,Georgakakos et al., 2004; Roulin, 2007): this allows
one to use verification tools developed for binary variables,
but it also reduces the amount of information carried by the
forecast, and the usefulness of its verification. A second
problem with the usual hydrological approach to probabilis-
tic forecast evaluation is that it disregards some other avail-
able tools: more specifically, other verification methods ex-
ist, proposed in the last decade in the economic field (e.g.,
Diebold et al., 1998), but these methods have been usually
ignored by the hydrologists, notwithstanding their relevance
for the problem under consideration.

The purpose of this paper is to overcome these two prob-
lems and to provide an efficient approach to probabilistic
forecast verification; in order to do that, we first need to de-
scribe some existing forecast verification tools. We do not
have the ambition of fully reviewing the vast literature in the
field, and we will limit ourselves to describe some methods,
which in our opinion are the most suitable for application in
the hydrological field (Sect. 2). This serves as a basis for
developing, in Sect. 3.1, a simple cost-loss decision model
which allows one to operationally evaluate a probabilistic
forecast of a continuous-valued variable. We then consider
in Sect. 3.2 the approach of the economists to forecast eval-
uation, and discuss its merits and drawbacks, with special
attention to its applicability to hydrological predictions. The
two approaches are compared in Sect. 4 through an example
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1268 F. Laio and S. Tamea: Verification tools for probabilistic forecasts

Table 1. Forecast verification tools, subdivided by the type of predicted variable (columns) and the forecast outcome (rows). We refer to
Sect. 2 for details and references about the methods.

Discrete predictands 
Multicategory Binary 

Nominal Ordinal 

Continuous 
Predictands 

Deterministic 
forecast 

HIT RATE, 
THREAT 

SCORE, … 

PEARSON’S 
COEFF. OF 

CONTINGENCY

GOODMAN 
AND KRUSKAL 

G STATISTIC 

MSE 
MAE 

Interval forecast
NOT 

APPLICABLE 
NOT 

APPLICABLE 
NOT 

APPLICABLE 

TESTS FOR THE 
CONDITIONAL AND 

UNCOND. COVERAGE

Probabilistic 
forecast 

BRIER SCORE 
CONVERSION 

TO BINARY 
TABLES 

RANKED 
PROBABILITY 

SCORE 
THIS PAPER! 

of application to the forecast of hourly discharge values. Fi-
nally, in Sect. 5 the conclusions are drawn, aimed at pro-
viding some guidelines for the use of probabilistic forecast
evaluation methods in the hydrologic field.

2 General issues in forecast verification

Before describing the tools for verifying a probabilistic fore-
cast, we need some definitions. Suppose that a time series
of measurements of a variablex is available, sampled at reg-
ular intervals,{xi}, i=1, .., N . A portion of the time series
of sizen, which we call “testing set”, is forecasted, obtain-
ing an estimatêxi of the actual valuexi . The predictions are
carried out using the information available up to a time step
i−h, whereh is the lead time, or prediction horizon, of the
forecast. Three different kinds of forecasts, with increasing
level of complexity, can be carried out: if the result of the
prediction is a single value for each predicted point, one has
a deterministic forecast,̃xi ; if the prediction consists of an
interval [Li(p), Ui(p)] wherein the future valuexi is sup-
posed to lie with coverage probabilityp, one has an inter-
val forecast (Chatfield, 2001; Christoffersen, 1998); finally, if
the whole probability distribution of the predictands,pi(x̂i),
is estimated, one has a probabilistic forecast (Abramson and
Clemen, 1995; Tay and Wallis, 2000).

A second important discrimination regards the form of
the variable under analysis:x can be a a continuous-valued
variable, which is the most typical case in hydrology; or a
discrete-valued variable, i.e. a variable that can take one and
only one of a finite set of possible values (the typical case
is the prediction of rainfall versus no rainfall events). When
the predictands and forecasts are discrete but not binary vari-
ables, a further distinction occurs between ordinal and nom-
inal events, depending on the presence of a natural order be-
tween the classes whereinx is partitioned (seeWilks, 1995,

for details). The available verification tools depend upon the
kind of forecast and predictands under analysis, as presented
in Table1. In all cases, the verification process requires that
the obtained forecasts (x̃i , or {Li(p), Ui(p)}, or pi(x̂i)) are
compared to the real future values,xi , for all points belong-
ing to the testing set. We will now rapidly describe some
of the verification tools available in the different situations,
separating the cases when the predictand is a discrete vari-
able from those when it is a continuous one.

2.1 Discrete-valued predictands

Most of the methods for the analysis of discrete binary or
multicategory predictands originate from the meteorologi-
cal literature (seeWilks, 1995, or Jolliffe and Stephenson,
2003, for a detailed review). Consider a situation in which
the variablex can be partitioned intok mutually exclusive
classes,C1, ..., Ck. Verification of deterministic forecasts of
discrete predictands (row two, columns two to four in Ta-
ble 1) requires the representation of the results through a
contingency table, i.e. a table whose(r, c) cell contains the
frequency of occurrence of the combination of a determinis-
tic forecast falling in classCr and an observed event in class
Cc. Verification in this case is carried out by defining a suit-
able score to summarize in a single coefficient the informa-
tion contained in the contingency table. Examples of these
scores are the hit rate and the threat score for binary variables
(Wilks, 1995), the so-called G statistic for multicategory or-
dinal variables (Goodman and Kruskal, 1954; Kendall and
Stuart, 1977, p. 596), and the Pearson’s coefficient of con-
tingency (Goodman and Kruskal, 1954; Kendall and Stuart,
1977, p. 587) for multicategory nominal variables. As for the
interval forecasts of discrete variables (row three, columns
two to four in Table1), these are seldom performed, due to
inherent difficulty of combining the fixed coverage probabil-
ity of the interval prediction and the coarse domain of the
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discrete variable.
We now turn to the probabilistic forecast of discrete vari-

ables, and consider the case of ak-classes ordinal vari-
able (row four, column four in Table1). The probabilis-
tic forecast of thei-th point in the testing set,xi , has now
the form of a vector{pi,1, ..., pi,k}, where pi,j>0 (with
j=1, . . . , k) represents the probability assigned to the fore-
castx̂i falling in classCj . Analogously, one can define the
vector {oi,1, ..., oi,k}, with oi,j=1 if xi ∈ Cj , andoi,j=0
in the reverse case. A commonly adopted verification tool
in this case is the Ranked Probability Score (Murphy, 1970,
1971; Epstein, 1969; Wilks, 1995) which takes the form

RPS=
1

n

n∑
i=1

{
k−1∑
m=1

[
Pi,m − Oi,m

]2

}
(1)

wherePi,m=
∑m

j=1 pi,j is the cumulative distribution func-
tion (cdf) of the forecastŝxi , while Oi,m=

∑m
j=1 oi,j is the

corresponding cdf of the observationsxi (which actually de-
generates into a step function, taking only 0 and 1 values).
The rationale behind the use of the RPS as a verification tool
for ordered multicategory predictands lies in the fact that it is
sensitive to distance, i.e. it assigns a higher score to a forecast
which is “less distant” from the event, or class, which actu-
ally occurs (seeMurphy, 1970). In the particular case when
k=2 (binary predictand, row four, column two in Table1) the
ranked probability score reads

RPS
∣∣
k=2 =

1

n

n∑
i=1

[
Pi,1 − Oi,1

]2
=

1

n

n∑
i=1

[
pi,1 − oi,1

]2 (2)

which is called the Brier score. Finally, the rather uncommon
case of multicategory nominal variables is usually treated
by converting the contingency table into binary tables (see
Wilks, 1995).

2.2 Continuous-valued predictands

Consider now the situation when the variable to forecast is a
continuous one (column five in Table1). When the prediction
is deterministic, the assessment of the quality of the fore-
cast requires that a suitable discriminant measure between
the forecasted and observed values is calculated, a good pre-
diction being the one that minimizes the discrepancy. Com-
monly used measures are the mean squared error,

MSE =
1

n

n∑
i=1

[x̃i − xi ]
2 , (3)

and the mean absolute error,

MAE =
1

n

n∑
i=1

|̃xi − xi | . (4)

Before considering the main point of the paper in Sect. 3
(verification of probabilistic forecasts of continuous vari-
able), we consider the case of an interval forecast of the

form {Li(p), Ui(p)} (Table1, row three, column five). De-
fine an indicator functionIi which is equal to 1 ifxi ∈

{Li(p), Ui(p)}, while Ii=0 in the reverse case. Standard
evaluation methods of interval forecasts consist in comparing
the actual coverage1

n

∑n
i=1 Ii of the interval, to the hypo-

thetical coveragep. A likelihood ratio test for the hypothesis
1
n

∑n
i=1 Ii=p is proposed byChristoffersen(1998) to verify

the (unconditional) coverage of the interval. However, this
test has no power against the alternative that the events in-
side (or outside) the interval come clustered together. This
shortcoming can be avoided by verifying that theIi values
form a random sequence in time; we refer toChristoffersen
(1998) for a discussion of this problem and a description of
an appropriate joint test of coverage and independence.

3 Verification tools for probabilistic forecasts of contin-
uous variables

The main focus of the present paper is on the evaluation of
probabilistic forecasts of continuous variables, which are fre-
quently the object of investigation in the hydrological field.
Two approaches to the problem are considered. The first
one is adapted from analogous methods developed by the
meteorologists when dealing with binary variables (Murphy,
1969; Wilks, 1995; Palmer, 2000; Richardson, 2003), and it
is based on the comparative evaluation of the forecasts in
terms of their operational value, or economic utility. This ap-
proach requires that the decision-making process of individ-
ual users is considered, and a cost-loss function is specified
by the forecaster; the evaluation of the forecast involves a sin-
gle statistic which measures the overall value of the predic-
tion. Details on this approach are presented in Sect. 3.1. The
other approach is preeminently used by the economists (e.g.,
Diebold et al., 1998; Berkovitz, 2001; Noceti et al., 2003),
who avoid to measure the overall quality of the prediction
and concentrate on the evaluation of the formal correctness
of the uncertainty description provided by the probabilistic
forecast. Suitable statistical tools are developed for this pur-
pose, as detailed in Sect. 3.2.

3.1 Determining the operational value of probabilistic pre-
dictions

As mentioned, the approach of the meteorologists to proba-
bilistic forecast evaluation requires the definition of a cost-
loss function to determine the value of the forecast. This ap-
proach has been originally proposed byMurphy (1969) and
Epstein(1969) for the evaluation of probabilistic forecasts
of discrete-valued variables. The modification of this frame-
work to deal with the evaluation of probabilistic forecasts of
continuous-valued variables represents one of the purposes
of this paper.

Suppose that the forecast user knows that the cost of
the precautionary actions to guarantee protection against an
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x OVER-DESIGN UNDER-DESIGN χ

2ξ

ρ(x, χ)

2(1-ξ)

Fig. 1. Examples of quadratic (dashed line), absolute-value (dotted
line) and asymmetric (continuous line, see Eq.6) cost-loss func-
tions. The variableχ on the horizontal axis is the “design” value,
while x is the real future value.

hypothetical eventχ is C(χ), whereC(·) is an increasing
function. The variableχ represents a sort of design value,
that is fixed by the decision maker based on the forecast
outcome: if the prediction is deterministic,χ is necessarily
equal to the point forecast,χ=x̃; if the prediction is prob-
abilistic, then theχ value can be chosen among the pos-
sible forecast outcomes. In particular, the decision-maker
will take a decision that minimizes the total expenditure of
money. In order to do that, also the economic lossesL, due
to the actual occurrence of an eventx, need to be defined:
L is supposed to be zero if the observed event is lower than
the design event,x<χ (in fact, in this case the precautionary
actions guarantee protection), and to increase with(x−χ)

whenx>χ . The overall cost-loss function is the sum of the
cost and loss terms, and depends on both the observed and
the design event,CL(x, χ)=C(χ)+L(x, χ).

An example can help to follow the reasoning: consider
the case whenx is the water stage at a given point along
a river, andχ is the design value selected by the decision-
maker on the basis of the information provided by the fore-
caster. The larger isχ , the more impactive and expensive
are the necessary precautionary actions (emission of flood
warnings, closure of roads and bridges, temporal flood proof-
ing interventions, people evacuation, etc.); this explains why
C(χ) is taken as an increasing function ofχ . If x over-
comesχ , some losses will also occur; as the distance be-
tween the observed and hypothesized values,(x−χ), in-
creases, the losses become more and more relevant, includ-
ing disruption of cultivated areas, inundation of civil infras-
tructures, flooding of inhabited areas, loss of human lives,
etc. As a consequence,L(x, χ) is an increasing function of
(x−χ) whenx>χ . Once the cost-loss function is defined,
it is still necessary to determine the optimal design value,
χ∗, i.e. the value that minimizes the total expenses. How-

ever, the future valuex is obviously not known, which com-
plicates the optimization problem. This is where the proba-
bilistic prediction turns out to be useful: in fact, the decision
maker can use the probabilistic forecastp(x̂) to represent
the probability distribution of the future events,f (x). Un-
der this hypothesis, he/she will be able to calculate the ex-
pected expensesCL(χ)=

∫
allx̂ CL(x̂, χ)p(x̂)dx̂, and to take

the decisionχ∗ that minimizesCL(χ) (e.g.,Diebold et al.,
1998; Palmer, 2000; Richardson, 2003). The decisionχ∗

will depend upon the probabilistic forecast throughp(x̂), and
a better prediction will decrease the actual expenditure of
moneyCL(x, χ∗)=C(χ∗)+L(x, χ∗). This provides a gen-
eral framework for the comparison of probabilistic forecasts
based upon their operational value.

We proceed in our description by specifying the above pro-
cedure for the case of a simple cost-loss function, which we
propose here to evaluate probabilistic forecasts of hydrologic
variables. We supposeC(χ) is a linear function,C(χ)=c·χ ,
wherec is a constant, andL(x, χ) is a stepwise linear one,
L(x, χ)=H(x − χ)·l·(x − χ). HereH(·) is the Heavyside
function, which is equal to one for positive arguments and
zero otherwise, andl is a constant (note thatl>c, since oth-
erwise one would spend more money to guarantee protection
than what is eventually lost, which is an anti-economic prin-
ciple). The cost-loss function reads

CL(x, χ) = c · χ + H(x − χ) · l · (x − χ). (5)

A linear transformation of Eq. (5), obtained by subtracting
c·x and dividing byl/2,

ρξ (x, χ) = 2ξ(χ − x) + 2H(x − χ) · (x − χ)

= |χ − x| + 2(ξ − 0.5)(χ − x). (6)

is a completely equivalent cost-loss function (a similar func-
tion is used byEpstein(1969) and byMurphy (1970) when
dealing with binary or multicategory variables), but it is more
suitable to evaluating predictions. In fact, it depends on a
single parameter, the cost-loss ratioξ=c/l<1, and it attains
a null value whenχ=x, i.e. when the hypothetical value is
equal to the actually occurred one (perfect forecast).

An example of such cost-loss function is reported in Fig.1,
continuous line, where it is compared to an absolute value
cost loss-function,ρabs(x, χ)=|x−χ |, and to a quadratic
cost-loss function,ρquad(x, χ)=(x−χ)2. The main differ-
ence is in the fact that theρξ function assigns different
weights to under-design and to over-design, which is more
appropriate when environmental (hydrological) variables are
predicted. In this case,ξ values lower than 0.5, giving rise to
cost-loss functions similar in shape to the one in Fig.1, are
to be preferred: in fact, the losses are expected to be much
greater than the costs of protection. Also note that theρξ

function is the generalization of the absolute value cost-loss
function, asρξ converges toρabs when ξ=0.5 (this is an-
other reason why it is convenient to useρξ rather thanCL

from Eq.5).

Hydrol. Earth Syst. Sci., 11, 1267–1277, 2007 www.hydrol-earth-syst-sci.net/11/1267/2007/
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Once the loss function is defined, one can search for the
optimal design valueχ∗. By taking the expected value of
Eq. (6), one obtains

ρξ (χ) = 2ξ

(
χ −

∫
allx̂

x̂p(x̂)dx̂

)
+2

∫
∞

χ

(x̂−χ)p(x̂)dx̂, (7)

whose derivative with respect toχ , equated to zero, provides
the optimal decisionχ∗

P(χ∗) = 1 − ξ ⇒ χ∗
= P −1 (1 − ξ) (8)

that depends only on the cumulative distribution function of
the forecasts,P(·), and on the cost loss ratioξ<1. Of course,
the same result would have been obtained by using Eq. (5) as
the cost-loss function (this is why the two formulations are
equivalent). In contrast, if a similar procedure is adopted
with the absolute value or the quadratic cost-loss function
(Fig.1), the median and the mean of the forecasts distribution
are respectively selected as the design valuesχ∗.

The total expenses will now amount toρξ (x, χ∗)=|χ∗
−

x|+2(ξ−0.5)(χ∗
− x), and the operational value of different

predictions will be found from the averagedρ(x, χ∗) values
over then points in the testing set,

EC(ξ) =
1

n

n∑
i=1

ρξ (xi, χ
∗

i ) =
1

n

n∑
i=1

{
|P −1

i (1 − ξ) − xi |+

2(ξ − 0.5)(P −1
i (1 − ξ) − xi)

}
. (9)

The lower is the obtainedEC(ξ) value (EC stands for “ex-
pected cost”), the more valuable is the forecast. Note that,
when the prediction is deterministic,P(x)=H(x−x̃), and,
as mentioned,χ∗

=x̃ for anyξ . In this case Eq. (9) reads

ECdet(ξ) =
1

n

n∑
i=1

{|x̃i − xi | + 2(ξ − 0.5)(x̃i − xi)} , (10)

which is a discrepancy measure similar to the mean squared
error and mean absolute error defined in Eqs. (3) and (4).

A difficulty with Eq. (9) is that the expected cost depends
on the cost-loss ratioξ ; different predictions can thus be
ranked in different manners by different users, implying that
there cannot be an universally accepted “best” probabilis-
tic prediction. This can be especially problematic, since the
cost-loss function is seldom known, and, even when it is sim-
plified as in Eq. (6), it may be difficult to set a specific value
for the cost-loss ratioξ . Our preferred solution is therefore
to avoid fixing aξ value, but rather to graphically represent
how the expected costs, associated to different forecasting
systems, change withξ . Special attention should be paid to
the EC(ξ) curves in the part of the diagram whereξ<0.5,
corresponding to situations where the losses are very rele-
vant compared to the costs of the precautionary actions. We
also propose to re-scale theEC(ξ) curves with respect to the
cost of a “climatologic” mean-value deterministic prediction,
x̃i=x =

1
n

∑n
i=1 xi . By setting this value in Eq. (10) one ob-

tains that the expected cost of the climatologic prediction is

the mean deviationδ= 1
n

∑n
i=1 |xi − x|. Our proposal is to

plot EC(ξ)/δ versusξ , in order to be able to directly deter-
mine the value of the forecast compared to the mean-value
prediction: ifEC(ξ)/δ is lower (larger) than one, the fore-
cast is more (less) valuable than the climatologic prediction.
An example of application of this procedure is reported in
Sect. 4.

The idea of plotting theEC(ξ) curve is new (however,
Palmer(2000), Richardson(2003) andRoulin (2007) use a
similar graph for determining the value of probabilistic pre-
dictions of discrete variables); more frequently, the meteo-
rologists face the difficulty of setting an exact value forξ by
supposing thatξ is a random variable with a uniformU(0, 1)

distribution (e.g.,Murphy, 1969), and then taking the average
value ofEC(ξ) over the possibleξ values. This corresponds
to calculating the areaEC below theEC(ξ) curves,

EC =

∫ 1

0
EC(ξ)dξ =

1

n

n∑
i=1

∫ 1

0
ρξ (xi, χ

∗

i )dξ. (11)

Since the integral and summation terms interchange, we can
concentrate on a single addendum in the summation and elide
the subscriptsi for simplicity:

T =

∫ 1

0
ρξ (x, χ∗)dξ =

∫ 1

0
{|P −1(1 − ξ) − x| + (12)

+2(ξ − 0.5)(P −1(1 − ξ) − x)}dξ.

Substitutingy=P −1(1 − ξ) one has

T =

∫
∞

−∞

{|y − x| + [1 − 2P(y)](y − x)} p(y)dy =∫
∞

−∞

2[H(y − x) − P(y)](y − x)p(y)dy. (13)

Using the formula for integration by parts, and considering
thatH(y − x)−P(y)=0 wheny→±∞, one obtains

T =

∫
∞

−∞

[H(y − x) − P(y)]2dy, (14)

i.e. that
∫ 1

0 ρξ (x, χ∗)dξ is equivalent to
the continuous ranked probability score,
CRPS =

∫
∞

−∞
[H(y−x)−P(y)]2dy, which is sometimes

used to assess the performances of probabilistic forecasts of
continuous variables (Hersbach, 2000). As a consequence,
EC in Eq. (11) is also equivalent toCRPS (Hersbach, 2000,
Eq. 5). This equivalence is not surprising: in fact, the CRPS
is the limit of the ranked probability score in Eq. (1) for
an infinite numberk of zero-width classes (seeHersbach,
2000), and the RPS was obtained by applying to discrete
variables a cost-loss function which is similar toρξ in
Eq. (6) (Murphy, 1969, 1970). However, the manner how
we obtained the CRPS in Eq. (14) is novel, and allows one
to better understand what are its qualities and drawbacks.
In particular, Eqs. (12) to (14) demonstrate that the CRPS
is averaged over different cost-loss ratios, and, as such, its

www.hydrol-earth-syst-sci.net/11/1267/2007/ Hydrol. Earth Syst. Sci., 11, 1267–1277, 2007



1272 F. Laio and S. Tamea: Verification tools for probabilistic forecasts

indications can be misleading, due to the excessive weight
assigned in its calculation to expenses correspondent toξ

values larger than 0.5, which are rather unrealistic in the
hydrologic field. In our opinion, it is better to evaluate the
different predictions by plotting theEC(ξ)/δ curves, rather
than trying to summarize all information in a single statistic.

3.2 Statistically-oriented evaluation of probabilistic fore-
casts

The economists criticize the approach based on the evalua-
tion of the forecasts through the use of cost-loss functions
for the fact that the evaluation turns out to be user-dependent
rather than objective: in fact, two users with different cost-
loss functions may rank in a different manner two forecasts.
Moreover, they argue that the cost-loss function is seldom
known, which introduces an undesired element of uncer-
tainty in the evaluation (Diebold et al., 1998). The followed
approach is therefore to leave aside considerations on the
operational value of the probabilistic forecast, and simply
verifying if the forecast is correct under a statistical view-
point. A correct probabilistic forecast ofxi is one whose
probability density functionpi(x̂i) coincides with the true
distribution ofxi , fi(xi). Even if fi(xi) is not known (the
distribution changes withi, and only one sampled value is
available), it is feasible to build up a test of the hypothesis
H0 : pi(x̂i)≡fi(xi). The test is based on the probability in-
tegral transform,zi=Pi(xi), that consists in evaluating the
cumulative distribution function of the predictions in corre-
spondence to the observed valuexi (Berkovitz, 2001). Under
the hypothesisH0, the distribution ofzi is uniform,U(0, 1).
If one applies the probability integral transform to all points
in the testing set, a sample ofzi values is obtained. If the
probability forecast is correct, thezi values are mutually in-
dependent and identicallyU(0, 1) distributed. The test of the
hypothesisH0 can therefore be split into an independence
test and a goodness-of-fit test of theU(0, 1) hypothesis.

As for the independence, the usual suggestion is to look
at the autocorrelation function of thezi ’s and of their powers
z2
i , ..., z

m
i (e.g.,Diebold et al., 1998). This produces some

proliferation of the test statistics (one for each considered
power), with possible problems of interpretation of the re-
sults. Our proposal is to use instead the Kendall’sτ test of
independence (Kendall and Stuart, 1977). Consider the se-
quencez1, ..., zn, and their associated ranksR1, ..., Rn, i.e.
their position in the ordered vector of thezi ’s. Kendall’sτ

test of independence is based on the statistic

τ = 1 −
4Nd

(n − 1)(n − 2)
, (15)

whereNd is the number of discordances, i.e. the number of
pairs (Ri, Ri+1) and (Rj , Rj+1) that satisfy eitherRi<Rj

andRi+1>Rj+1, or Ri>Rj andRi+1<Rj+1.

Under the null hypothesis of independence and with
n>10, the standardized statistic

τst =
τ

στ

= τ ·

√
9n(n − 1)

2(2n + 5)
(16)

has a normal distribution with null mean and unitary variance
(Kendall and Stuart, 1977), which allows one to easily deter-
mine the limit values for the independence test. For example,
the 95% test of independence will be passed ifτst is below
1.645 (one-tail test).

Consider now the uniformity hypothesis: many goodness-
of-fit tests for this hypothesis exist (D’Agostino and
Stephens, 1986; Noceti et al., 2003). However,Diebold et al.
(1998) argue that it is better to adopt a less formal graphical
method, based on an histogram representation of the density
of thezi ’s. We agree that the graphical representation is more
revealing, but prefer a probability plot representation that
does not require a subjective binning of the data. The prob-
ability plot is a plot of thezi values versus their empirical
cumulative distribution function,Ri/n. The shape of the re-
sulting curve reveals if the data are approximatively uniform,
in which case the(zi, Ri/n) points are close to the bisector of
the diagram. Kolmogorov confidence bands can also be rep-
resented on the same graph in order to provide a more formal
test of uniformity. The Kolmogorov bands are two straight
lines, parallel to the bisector and at a distanceq(α)/

√
n from

it, whereq(α) is a coefficient, dependent upon the signifi-
cance level of the testα (e.g.,q(α = 0.05) = 1.358, see
D’Agostino and Stephens, 1986). The test is passed when
the curves remain inside these confidence bands.

The probability plot representation does not only tell if the
uniformity test is passed or not, but also provides a tool to
investigate the causes behind deviations from uniformity. In
fact, the shape of the curves in the probability plot (see Fig.2)
is suggestive of the encountered problem, since the steepness
of the curves is larger where morezi points concentrate. In
the case of the continuous line in Fig.2, for example, the
zi points are concentrated in the vicinity of the end points
0 and 1. This corresponds to having the realxi values that
fall, more frequently than expected, on the tails of the distri-
bution of the forecasts. As a consequence, the probabilistic
prediction is “narrow”. Similar considerations apply to the
other curves in Fig.2. The probability plot representation
has already been used byDe Gooijer and Zerom(2000); in
contrast, it should not be confused with the apparently simi-
lar attributes diagram (Wilks, 1995), which is a tool for the
verification of probabilistic predictions of binary variables.

When using this approach to forecast verification, one
ends out with results concerning with the formal correctness
of the probabilistic prediction; however, these results do not
imply that the prediction is good: there can exist a prediction
that passes the independence and uniformity tests, but has no
operational value. In our opinion, the method should there-
fore necessarily be used together with some other method,
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like those described in Sect. 3.1, allowing one to understand
if the prediction is really valuable or not.

A final comment is necessary regarding multi-step-ahead
predictions (i.e., characterized by a prediction horizonh6=1).
In this case, serial correlation in thezi series is expected
up to a lagh−1 (Box and Jenkins, 1970), and the indepen-
dence and goodness-of-fit tests should be applied separately
to theh subseries{z1, z1+h, z1+2h, ...}, {z2, z2+h, z2+2h, ...},
..., {zh, z2h, z3h, ...} (Diebold et al., 1998). One obtainsh
τst statistics andh probability plots for each prediction. The
global tests will be obtained from the combination of the tests
performed on each of the subseries: however, the combina-
tion is complicated by the fact that theh subseries are mu-
tually (not internally!) dependent. When the samples being
tested are correlated, the correct significance level to have a
globalα-level test should be betweenα (linearly dependent
samples) andα/h (independent samples). In our opinion the
correlation between the subseries is strong, and it is thus bet-
ter to perform the tests on theh subseries with a significance
levelα, instead of using a levelα/h for each sub-test as sug-
gested byDiebold et al.(1998).

4 Application and discussion

The verification tools described in the previous sections are
applied to the probabilistic forecasts of a discharge time se-
ries, obtained with a prediction method developed byTamea
et al.(2005) andLaio et al.(2007), and based on local poly-
nomial regression techniques (Farmer and Sidorowich, 1987;
Fan and Gijbels, 1996; Cleveland and Loader, 1996; Porpo-
rato and Ridolfi, 1997; Regonda et al., 2005). We use this
prediction method as a mean to exemplify the described veri-
fication techniques; we therefore refer toTamea et al.(2005)
andLaio et al.(2007) for a detailed description of the pre-
diction method, which is here briefly introduced. A time
series of past values of discharge (and concurring average
precipitation over the basin) is required as input. The func-
tional relation between the values to be forecasted,xi , and
the regressorsxi−h (vector of past discharge and precipita-
tion values) is locally approximated by polynomials, whose
coefficients are estimated on a neighborhood of sizek of each
query point. The regressions obtained, different from point
to point, are applied to the respective query points to give the
deterministic prediction̂xi . The method produces forecasts
for the points in the testing set, provided that a setS of model
parameter values is assigned by the forecaster.

We use in our verification exercise four different types of
predictions, all based on the mentioned local polynomial re-
gression method. Two forecasting techniques are determin-
istic and two are probabilistic, as detailed hereafter.

1. Best deterministic prediction: it is the point forecast
obtained by selecting the parameter setSbest that pro-
duces the “best” deterministic predictions when the
method is applied to the calibration set, i.e. to a set of

0

1

1

OVER- 
PREDICTION

UNDER- 
PREDICTION 

LARGE  
FORECAST  

NARROW  
FORECAST 

zi

Ri/n

0

Fig. 2. Examples of the possible outcomes of a probability plot
representation of thezi=Pi(xi) values versus their corresponding
ranksRi (divided by the sample sizen). If the points lie close to
the bisector, the forecast is deemed reliable; otherwise, a problem
with the spread of the probabilistic forecast, or a prediction bias, are
detected.

discharge values selected for cross-validation purposes
(seeTamea et al., 2005).

2. Ensemble forecast: it is a probabilistic forecast obtained
by selectingq parameter sets rather than a single one
(we use in the following example theq = 100 sets that
minimize the mean absolute error over the calibration
set). Each of these sets is separately used to obtainq

different predictions for each pointxi in the testing set.
The empirical distribution function of this sample ofq

predictions is taken as representative of the distribution
characterizing the ensemble forecast.

3. Probabilistic forecast: the same as before, but with a
suitable parameter uncertainty representation attached
to each member in the ensemble; this is obtained by us-
ing thek residuals of the local polynomial regressions (k

is the so called “number of neighbors”). The residuals
are converted into out-of-sample errors by resampling
and inflating them with a multiplying factor accounting
for the prediction uncertainty, according withKendall
and Stuart(1977); finally they are summed up to the
point predictions in the ensemble (seeLaio et al., 2007,
for more details). A large sample ofx̂i,j , j=1, .., q · k

values is obtained, whose empirical distribution func-
tion is taken as the estimate ofpi(x̂i).

4. Median prediction: it is a deterministic prediction ob-
tained by taking,for each point in the testing set, the me-
dian of the above defined probabilistic predictionpi(x̂i)

as the estimator of̃xi .
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Fig. 3. An example of forecasts of an hourly discharge time series: portion of the testing set with predictions ath=6 h, showing the outcomes
of the four prediction methods described in Sect. 4 (seeTamea et al.(2005) andLaio et al.(2007) for all the details).
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Fig. 4. Representation of the expected cost from Eq. (9) (re-scaled
by the mean deviationδ) as a function of the cost-loss ratioξ , for
a 1 step-ahead(a) and a 6-steps ahead(b) hourly discharge predic-
tion. The four lines in each graph refer to four different forecasting
methods, described at the beginning of Sect. 4.

The prediction methods have been applied to the discharge
time series of the Tanaro river, in the northwest of Italy. The
catchment basin at the gauge station of Farigliano has an ex-
tension of 1522 km2 and an elevation ranging from 235 to
2651 m above the sea level. The hourly discharge time series
has been measured from 1997 to 2002. The testing set cov-
ers the period between 14 November 2002 and 27 Novem-
ber 2002, and corresponds to an important flood event. The
mean rainfall over the catchment is used as an endogenous
variable for the prediction. The mean rainfall is determined
from the data collected by eleven rain gauges located on the
basin. Both hydrometric and pluviometric data have been
collected by the Regional Agency for the Protection of the
Environment (ARPA-Piemonte), and are the same already
used byTamea et al.(2005). Prediction horizons of one and
six hours (corresponding toh=1 andh=6) are considered in
the following examples. A portion of the testing set with the
corresponding four types of prediction ath=6 is displayed in
Fig. 3, where the two series of point forecasts (1. and 4.) are
displayed together with the 90% bands from the two proba-
bilistic prediction methods (2. and 3.).

In Fig. 4 the expected cost from Eq. (9), re-scaled by us-
ing the mean deviationδ, is represented as a function of the
cost-loss ratioξ for the four predictions listed above. Note
that theEC(ξ)/δ values are much lower than 1, both for the
1-h ahead prediction (Fig.4a) and for the 6-h ahead predic-
tion (Fig.4b), demonstrating that all forecasting methods are
very competitive with respect to the climatological predic-
tion. The quality of the four prediction methods can now be
comparatively evaluated: the lower is the expected cost of a
forecast, the higher is its operational value. It is clear from
Fig. 4 that the two probabilistic methods outperform the de-
terministic ones, in particular in the part of the diagram that
is more important when dealing with flood events (large ex-
pected losses compared to the costs, i.e. lowξ values).
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It is also interesting to comment on the shape of the four
curves in the diagram: the relation between the expected cost
andξ turns out to be linear when the prediction is determinis-
tic; in fact, by settingP −1

i (1− ξ)=x̃i in Eq. (9), one obtains
the equation of a straight line, whose slope is two times the
bias of the prediction,1

n

∑n
i=1(x̃i − xi), and whose intercept

with the ξ=0.5 vertical line is the MAE of the forecast, a
measure of the spread of the prediction errors. As expected,
both the (negative) bias and the spread of the errors increase
when the prediction horizon passes from 1 to 6 h. The me-
dian prediction is better than the best deterministic prediction
for ξ<0.5, which is mainly due to the beneficial effect of tak-
ing an ensemble of predictions rather than a single one (see
Georgakakos et al., 2004; Tamea et al., 2005; Regonda et al.,
2005).

On the same diagram the probabilistic predictions tend
to have a parabolic shape, with null (or very low) val-
ues at the extremes and a maximum forξ≈0.5. The
reason for the low values at the extremes is the fol-
lowing: when ξ=0 the cost of the precautionary ac-
tions is null, and one can therefore always take an action
that protects against any possible occurring flood. An-
alytically, when ξ=0, one hasP −1

i (1−ξ)=max(x̂i) and
EC(ξ=0)= 1

n

∑n
i=1

{
|max(x̂i) − xi |−(max(x̂i)−xi)

}
; the

only terms contributing to the expected cost are therefore
those when the actually occurred valuexi is greater than the
maximum predicted value, max(x̂i), which never happens for
the more reliable probabilistic prediction, and only rarely for
the ensemble prediction.

When ξ=1 the cost of the precautionary action is equal
to that of the eventually occurring losses; there is thus no
convenience to take any action, i.e. the design valueχ in
Eq. (6) can be set to zero (actually, to min(x̂i)). As a conse-
quence,ρξ=1 andEC(ξ=1) are also null (or very low). In
this second case the total cost would in reality be different
from zero, due to the losses, but the passage from Eq. (5)
to Eq. (6) produces this fictitious result. However, this is
not a relevant incongruence, since both extremesξ=0 and
ξ=1 correspond to unrealistic situations when the decision
to be taken is obvious, and the forecast is useless. It is not
then the shape of the single curve on the diagram that is of
interest, but the relations between the curves for fixedξ val-
ues. Considering this aspect, it can be noted how the prob-
abilistic prediction provides more valuable results than the
ensemble prediction, in particular for the more relevant low
ξ values. As a further detail, the continuous ranked probabil-
ity score values are the following: ath=1, CRPS=10.1 m3/s
for the best deterministic prediction,CRPS=8.8 m3/s for
the ensemble prediction,CRPS=7.7 m3/s for the probabilis-
tic prediction, andCRPS=10.2 m3/s for the median pre-
diction. At h=6, the corresponding values are 41.7 m3/s
(best), 25.8 m3/s (ensemble), 23.6 m3/s (probabilistic), and
31.1 m3/s (median). These values correspond to the areas be-
low the curves in Fig.4, multiplied by the mean deviation
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Fig. 5. Probability plot representation (see Fig. 2) of the ensemble
(gray circles) and probabilistic (black circles) forecasts of an hourly
discharge time series. Each point in the diagram corresponds to a
point in the testing set. Panel(a) refers to 1 step-ahead predictions,
panel(b) to 6-steps ahead forecasts. The Kolmogorov 5% signifi-
cance bands are also reported as dashed lines.

δ=181.7 m3/s. Also these results confirm the superiority of
the probabilistic method, even if, as mentioned, the relevance
of theCRPS index is doubtful when dealing with hydrologi-
cal applications.

We now turn to the application of the statistically-oriented
forecast verification tools: since these methods are targeted
at evaluating probabilistic predictions only, the comparison
will be limited to the ensemble and probabilistic predic-
tions methods. As mentioned, the verification of the prob-
abilistic forecast is a two step process, requiring to apply
the transformationzi=Pi(xi) and then separately test the in-
dependence and the uniformity of thezi ’s. The standard-
ized Kendall’s τst statistic in Eq. (16) is calculated, ob-
taining τst=1.38 (ensemble) andτst=−3.17 (probabilistic)
for h=1. Both values are not significant at the 5% level,

www.hydrol-earth-syst-sci.net/11/1267/2007/ Hydrol. Earth Syst. Sci., 11, 1267–1277, 2007



1276 F. Laio and S. Tamea: Verification tools for probabilistic forecasts

i.e. the independence test is passed. Forh=6, six subseries
{z1, z7, z13, ...}, {z2, z8, z14, ...}, ...,{z6, z12, z18, ...} are con-
structed, and six differentτst values (for each prediction) are
obtained. The independence test is passed if the maximum
among these values is not significant at theα level. The ob-
tained values areτst=3.11 (ensemble) andτst=0.90 (proba-
bilistic), i.e. the independence test is passed at the 5% level
by the probabilistic prediction, but not by the ensemble pre-
diction (note that the test would not be passed even when the
significance level was reduced toα/h=0.008, as suggested
by Diebold et al., 1998).

The uniformity of thezi ’s is then verified by plotting the
data versus their empirical cumulative distribution around the
central value (see Fig.5). Using Fig.2 as a guide to evalu-
ate the results, it is clear that the ensemble method provides
predictions that are very narrow around the central value.
In contrast, the forecasts obtained through the probabilistic
method are very reliable (the points remain inside the Kol-
mogorov bands with 5% significance). A (slight) negative
bias is detected ath=6 (Fig. 5b), as apparent from the fact
that the points lie below the bisector of the diagram (compare
to Fig. 2). The results forh=6 refer to six different curves,
due to the mentioned separation of the testing set in six sub-
series. The Kolmogorov bands are larger in Fig.5b with re-
spect to Fig.5a for that same reason; in fact, when testing
separately the 6 sub-series, the actual size of the samples is
n/6 and the acceptability limits become larger.

5 Conclusions

We have here compared different strategies for evaluating the
performances of probabilistic prediction methods of contin-
uous variables. All analyzed methods have some interest-
ing characteristics, but none of them, taken alone, allows a
complete and fair evaluation of the quality of the forecast.
Our suggestion is to use two methods together, as each car-
ries a fundamental information about the prediction quality.
More in detail, the expected cost diagram (Fig.4) is a very
useful tool to understand the operational value of the fore-
cast, especially when comparing different (deterministic and
probabilistic) predictions. This approach, however, does not
provide sufficient information for a complete evaluation: in
fact, the reliability of the forecast, i.e. the fact that the distri-
bution of the predictions,pi(x̂i), is equal to the real distribu-
tion,fi(xi), is hypothesized rather than verified (see Sect. 3).
Moreover, the definition of a cost-loss function always de-
mands some subjective choice: for example, we have taken
ρξ in Eq. (6) to be piecewise linear, but a quadratic (asym-
metric) function would also be a proper choice. We do not
think that the outcomes of the forecast verification would
qualitatively change when using a quadratic cost-loss func-
tion, but in any case we believe that it is necessary to com-
plement the expected cost curve with other tools, aimed at
verifying the statistical congruence of the forecast, i.e. the

hypothesis thatpi(x̂i)=fi(xi). More in detail, we found that
suitable tools, based on the probability integral transform
zi=Pi(xi), require the application of the Kendall’s indepen-
dence test and the representation of thezi ’s through a proba-
bility plot (Fig. 5), which allows one to assess the uniformity
of the zi ’s. The combination of these two approaches, re-
spectively based on the concept of operational value of the
forecast and on the formal statistical verification of its re-
liability, provides the basis for an exhaustive and effective
probabilistic forecast evaluation.
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