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Abstract

In this note we consider branching processes whose behaviors depend on a dynamic random

environment, in the sense that we assume the offsprings distributions of individuals parametrized,

during time, by the realizations of a process describing the environmental evolution. We study

how the variability in time of the environment modifies the variability of total population: con-

sidered two branching processes of such kind, but subjected to different environments, we provide

conditions on the random environments in order to stochastically compare their marginal dis-

tributions in increasing convex sense. Weaker conditions are also provided for comparisons at

every fixed time of the expected values of the two populations.
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1 Preliminaries and utility notions

Branching processes are commonly used in applied probability to model the development of popu-

lations whose members produce offsprings according to stochastic laws (see Harris (1989)). Initially

introduced as a tool for specific biological problems, today the range of applications of branching

processes includes molecular and cellular biology, human evolution, medicine, and other fields like

physics, computer science or actuarial science (see Rolski et al. (1999), Teich and Saleh (2000) or

Kimmel and Axelrod (2002), among others).

In literature the classical definition of standard branching process is the following: it is a process

Z = {Zn, n ∈ IN} such that Z0 has a fixed known distribution and

Zn =

Zn−1∑
j=1

Xj,n, n ≥ 1.

The integer–valued random variablesXj,n, with j, n ∈ IN, are usually assumed to be all independent,

and identically distributed for every fixed n. Typically, the value Zn denotes the size of a population

at the n − th generation (or season), while the random variable Xj,n represents the number of

offsprings of the j − th individual at the n− th generation, with j, n ∈ IN. The independence and

identically distributed assumption for the Xj,n means that individuals reproduce independently of

each other according to some given offspring distribution.

In the literature there exist several results about stochastic comparisons for population sizes

of branching processes in the case that the numbers of offsprings are independent. In order to

state two of them, we recall the definition of two well-known stochastic orders (see Shaked and

Shanthikumar (1994) for properties and applications of these orders).

Definition 1.1. Given two non-negative random variables X and Y , X is said to be smaller

than Y in the usual stochastic order [increasing convex order] (denoted X ≤st Y [X ≤icx Y ]) if

E[u(X)] ≤ E[u(Y )] for all increasing [increasing convex] functions u for which previous expectations

exist.

Consider now two standard branching processes Z1 = {Z1,n, n ∈ IN} and Z2 = {Z2,n, n ∈ IN}
defined letting Z1,0 = Z2,0 = 1 a.s. and then recursively by

Zi,n =

Zi,n−1∑
j=1

Xi
j,n, n ≥ 1, i = 1, 2.

One can prove that Z1,n ≤st [≤icx] Z2,n for all n ∈ IN whenever X1
j,n ≤st [≤icx] X

2
j,n for all n ∈ IN.

The first of this statements is easy to prove, while a proof for the increasing and convex comparison

case may be found in Section 8 of Ross (1983).

In this paper, we are interested in generalizations of these results in the case that the offspring

distribution of individuals depends on environmental conditions (see, e.g., Smith and Wilkinson

(1969), Athreya and Karlin (1970) or Jagers and Zhunwei (2002) for examples of applications

of branching processes defined on random environments). In particular, in this paper we focus
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on studying how the variability in time of the environment modifies the variability of the total

population.

To this aim, it is possible to generalize the setup above to situations in which the distribution

of the numbers of offsprings depends on some random geographical or economic environment Θ.

This can be modeled as follows. Let X ⊆ R, and let θ = {θn ∈ X, n ∈ IN∪ {0}} be any sequence

of values in X. For each θ, let X(θ) be an infinite array of non-negative integer valued random

variables parametrized by θ as follows:

X(θ) =

∣∣∣∣∣∣∣∣
X1,0(θ0) X1,1(θ1) · · · X1,n(θn) · · ·
X2,0(θ0) X2,1(θ1) · · · X2,n(θn) · · ·

...
...

...
...

...

∣∣∣∣∣∣∣∣ . (1.1)

It will be assumed below that, for each fixed θ, the columns of X(θ) are independent, and that,

within each column, the variables are independent. Thus, if we consider only the first n + 1

components of θ (i.e, if we consider the restriction θn = (θ0, θ1, . . . , θn) ∈ Xn+1 ⊆ Rn+1 of θ) then

the restriction Xn(θn) of X(θ) to the first n+ 1 columns is of the form

Xn(θn) =
∣∣X0(θ0),X1(θ1), · · · ,Xn(θn)

∣∣ =
∣∣∣∣∣∣∣∣
X1,0(θ0) X1,1(θ1) · · · X1,n(θn)

X2,0(θ0) X2,1(θ1) · · · X2,n(θn)
...

...
...

...

∣∣∣∣∣∣∣∣ , (1.2)

where, given θn, the distribution of the kth column of Xn(θn) depends only on θk, k = 0, 1, . . . , n,

and the variables in the column are independent.

Let now θ = {θ0, θ1, . . . , } be a sequence of values in X describing the evolutions of the environ-

ment, and define, recursively, the stochastic process Z(θ) = {Zn(θ0, . . . , θn), n ∈ IN} by

Z0(θ0) = X1,0(θ0)

and

Zn(θ0, . . . , θn) =

Zn−1(θ0,...,θn−1)∑
j=1

Xj,n(θn), n ≥ 1. (1.3)

In order to consider random evolutions of the environment, we can consider a sequence Θ =

(Θ0,Θ1, . . . ) of random variables taking on values in X. Thus, we will be interested in stochastic

processes Z(Θ) = {Zn(Θ0, . . . ,Θn), n ∈ IN} defined by

Z0(Θ0) = X1,0(Θ0)

and

Zn(Θ0, . . . ,Θn) =

Zn−1(Θ0,...,Θn−1)∑
j=1

Xj,n(Θn), n ≥ 1, (1.4)

where, for every j, k ∈ IN, Xj,k(Θk) is a random variable such that [Xj,k(Θk)|Θk = θ] =st Xj,k(θ)

(here =st means equality in law).
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In case of random environments having fixed identical marginal distributions it has been shown

to be useful the use of some dependence orders that have been introduced in literature to compare

the strength of positive dependence within two multivariate distributions (see, for example, Joe

(1997), Shaked and Shanthikumar (1997) or Bäuerle and Rieder (1997)). In this paper we consider

two of them, whose definitions are given here. For it, recall that a real-valued function ϕ defined

on Rm is said to be supermodular if ϕ(x ∨ y) + ϕ(x ∧ y) ≥ ϕ(x) + ϕ(y) for all x and y ∈ Rm (here

∨ and ∧ denote, respectively, the componentwise maximum and minimum).

Definition 1.2. Let X =(X1, X2, ..., Xn) and Y = (Y1, Y2, ..., Yn) be two random vectors with equal

marginal distributions. Then X is said to be smaller than Y:

i) in the supermodular order (denoted by X ≤sm Y) if E[ϕ(X)] ≤ E[ϕ(Y)] for every supermodular

function ϕ for which previous expectations exist.

ii) in the concordance order (denoted by X ≤c Y) if E[
∏n

i=1 ϕi(Xi)] ≤ E[
∏n

i=1 ϕi(Yi)] for every

collection {ϕ1, ϕ2, ..., ϕn} of non-negative and increasing functions for which previous expectations

exist.

We note that the supermodular order implies the concordance order (which is also called positive

quadrant dependence order), while (unless for the case n = 2) the reversed implications does not

hold (see Müller and Scarsini (2000)), and both comparisons are interpreted in the sense as Y being

more positively dependent than X.

We recall also the definition of the usual stochastic order in the multivariate setting, and an

equivalent condition that will be used in next section.

Definition 1.3. Let X = (X1, ..., Xn) and Y = (Y1, ..., Yn) be two n-dimensional random vectors,

then X is said to be smaller than Y in the multivariate stochastic order (denoted by X ≤st Y) if

E [ϕ(X)] ≤ E [ϕ(Y)] for all increasing real-valued functions ϕ defined on Rn for which the expecta-

tions exists.

Property 1.1. The random vectors X and Y satisfy X ≤st Y if, and only if, there exist two

random vectors X̂ and Ŷ, defined on the same probability space, such that X =st X̂, Y =st Ŷ and

X̂ ≤ Ŷ a.s.

Finally, the following monotonicity property will be used in the next section. In the definition,

the inequality u ≤ v for two vectors u =(u1, u2, ..., um) and v = (v1, v2, ..., vm) means ui ≤ vi for

all i = 1, 2, ...,m.

Definition 1.4. Let {Y(p),p ∈ P ⊆ Rm,m ∈ IN} be a finite or infinite family of random vectors

parametrized by an m-dimensional vector of parameters p. Then {Y(p),p ∈ P} is said to be

stochastically increasing in p if Y(p) ≤st Y(p′) for all p ≤ p′.

As we have mentioned above, the purpose of this paper is to study how the variability in time

of the environment influences the variability of the populations. To this aim, we consider two

branching processes defined as in (1.4), but subjected to different random environments Θ1 =

(Θ1,0,Θ1,1, . . . ) and Θ2 = (Θ2,0,Θ2,1, . . . ). Motivated by the comparison results mentioned at the
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beginning, we derive conditions on the environments in order to ensure stochastic comparisons of the

corresponding populations. In particular, we state conditions under which the supermodular order

between environments implies the increasing convex order of the populations. Also, we identify

conditions under which the concordance order between environments provides comparisons of the

expected values of the corresponding populations at every fixed time.

Throughout the next sections [X |E ] denotes a random element whose distribution is identical

to that of X conditional on the event E, and the terms ”increasing” and ”decreasing” are used in

non-strict sense. Also, for notational convenience we define
∑0

j=1 xj = 0 for every sequence of real

numbers {xj , j ∈ IN}.

2 Comparisons results

Throughout this and the next section we will make the following assumptions on the array X(θ):

A1) X(θ) is an infinite array of non-negative integer valued random variables with independent

columns of independent variables as described in (1.1);

A2) for all k = 0, 1, . . . the k–th column of X(θ) is stochastically increasing in θk;

A3) the variables in each column of X(θ) are stochastically increasing, in the sense that Xj,k(θk) ≤st

Xj+1,k(θk) for all j, k ∈ IN and θk ∈ X.

Note that, as a particular case, condition A3 above is satisfied when all the variables in each

column Xk(θk) of X(θ) are independent and identically distributed for every fixed value of the

parameter θk.

It is easy to verify that, under assumptions A1–A3, the n–th population size Zn(θ1, . . . , θn)

is stochastically increasing in (θ1, . . . , θn). From this fact easily follows that the total population

increases in usual stochastic order as the environment stochastically increases. Actually, using

Property 1.1 it is also easy to prove that, always under assumptions A1–A3, the whole process

Z(Θ1) is stochastically smaller than the whole process Z(Θ2) (i.e., E[u(Z(Θ1))] ≤ E[u(Z(Θ2))]

for all increasing functionals u such that both expectations exist) whenever the sequence Θ1 is

stochastically smaller than the sequence Θ2.

However, it is rather natural to imagine that the size of the population at any generation also

depends on monotonicity and regularity properties of the environmental process. The subsequent

Theorem 2.1 is motivated by this observation, and it describes how dependence properties of the

process Θ modify, in increasing convex order sense, the distribution of Zn(Θ1, . . . ,Θn).

Theorem 2.1. Let X(θ) be an infinite array of non-negative integer valued random variables

satisfying the assumptions A1–A3, and let Θ1 = (Θ1,0,Θ1,1, . . . , ) and Θ2 = (Θ2,0,Θ2,1, . . . , ) be

two sequences of random variables taking on values in X. Assume that both Θ1, Θ2 are independent

on X(θ). Then for every n ∈ IN the stochastic inequality

(Θ1,0,Θ1,1, . . . ,Θ1,n) ≤sm (Θ2,0,Θ2,1, . . . ,Θ2,n) (2.1)

implies

Zn(Θ1,0,Θ1,1, . . . ,Θ1,n) ≤icx Zn(Θ2,0,Θ2,1, . . . ,Θ2,n) (2.2)
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Proof. First of all we will prove by induction that, for every fixed n ∈ IN, the function ϕ(θ0, . . . , θn) =

E [u(Zn(θ0, . . . , θn))] is supermodular in (θ0, . . . , θn) whenever the function u is increasing and

convex.

Since ϕ(θ0, θ1) is supermodular by Theorem 2.1 in Belzunce et al. (2006), it is enough to prove

that supermodularity of ϕ(θ0, . . . , θn) in (θ0, . . . , θn) follows from supermodularity of ϕ̃(θ0, . . . , θn−1) =

E[ũ(Zn−1(θ0, . . . , θn−1))] in (θ0, . . . , θn−1) whenever the function ũ is increasing and convex.

To this aim, it suffices to show that ϕ(θ0, . . . , θn) is supermodular in any couple (θi, θj), 0 ≤
i < j ≤ n (see, e.g., Kulik (2003)).

Let us consider first the case (θi, θn), 0 ≤ i < n. For it, let (θi, θn) and (θ′i, θ
′
n) be any two vectors

defined on X2 such that θi ≤ θ′i and θn ≤ θ′n. Observe that, since Zn−1(θ1, . . . , θn−1) is stochastically

increasing in (θ1, . . . , θn−1), we can build on the same probability space the random variables Ẑn−1

and Ẑ ′
n−1 such that Ẑn−1 =st Zn−1(θ0, . . . , θi, . . . , θn−1), Ẑ ′

n−1 =st Zn−1(θ0, . . . , θ
′
i, . . . , θn−1), and

Ẑn−1 ≤ Ẑ ′
n−1 a.s.. (2.3)

Thus,

ϕ(θ0, . . . , θ
′
i, . . . , θ

′
n)− ϕ(θ0, . . . , θi, . . . , θ

′
n)

= E

E
u

Ẑ′
n−1∑
j=1

Xj,n(θ
′
n)

− u

Ẑn−1∑
i=1

Xj,n(θ
′
n)

∣∣∣Ẑ ′
n−1, Ẑn−1




= E

[
E

[
g
Ẑ′
n−1

Ẑn−1

(
Xn(θ

′
n)
) ∣∣∣Ẑ ′

n−1, Ẑn−1

]]
≥ E

[
E

[
g
Ẑ′
n−1

Ẑn−1
(Xn(θn))

∣∣∣Ẑ ′
n−1, Ẑn−1

]]

= E

E
u

Ẑ′
n−1∑
j=1

Xj,n(θn)

− u

Ẑn−1∑
i=1

Xj,n(θn)

∣∣∣Ẑ ′
n−1, Ẑn−1




= ϕ(θ0, . . . , θ
′
i, . . . , θn)− ϕ(θ0, . . . , θi, . . . , θn)

where the inequality follows from (2.3), assumption A2 and the fact that the function gml (ȳ) =

u(
∑m

i=1 yi)− u(
∑l

i=1 yi) is an increasing function in ȳ = {y1, y2, . . . } whenever m ≥ l and ȳ is any

sequence of non-negative integer numbers. Thus, obviously,

ϕ(θ0, . . . , θ
′
i, . . . , θ

′
n) + ϕ(θ0, . . . , θi, . . . , θn) ≥ ϕ(θ0, . . . , θi, . . . , θ

′
n) + ϕ(θ0, . . . , θ

′
i, . . . , θn),

i.e., ϕ(θ0, . . . , θn) is supermodular in (θi, θn), 0 ≤ i < n.

Now we consider the case (θi, θj) with 0 ≤ i < j < n. For it, observe that the function

ũ(z) = u(
∑z

j=1 yj) is increasing and convex in z ∈ IN whenever u is an increasing and convex

function and ȳ = {y1, y2, . . . } is any increasing sequence of non-negative integer numbers. Also,

recall that, by inductive assumption, the function ϕ̃(θ0, . . . , θn−1) = E[ũ(Zn−1(θ0, . . . , θn−1))] is

supermodular in (θ0, . . . , θn−1) for every increasing and convex function ũ. Moreover, by assumption
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A3 we can build on the same probability space the random sequence X̂n = {X̂j,n, j ∈ IN} such that

X̂j,n(θn) =st Xj,n(θn) and

X̂j,n(θn) ≤ X̂j+1,n(θn) a.s. (2.4)

for all j, n ∈ IN.

Thus, denoted X̂n(θn) = {X̂j,n(θn), j ∈ IN},

ϕ(θ0, . . . , θ
′
i, . . . , θ

′
j , . . . , θn)− ϕ(θ0, . . . , θi, . . . , θ

′
j , . . . , θn)

= E

E
u

Zn−1(...,θ′i,...,θ
′
j ,...,θn))∑

j=1

X̂j,n(θn)

− u

Zn−1(...,θi,...,θ
′
j ,...,θn))∑

i=1

X̂j,n(θn)

∣∣∣X̂n(θn)


= E

[
E
[
ũ
(
Zn−1(. . . , θ

′
i, . . . , θ

′
j , . . . , θn))

)
− ũ

(
Zn−1(. . . , θi, . . . , θ

′
j , . . . , θn))

) ∣∣∣X̂n(θn)
]]

≥ E
[
E
[
ũ
(
Zn−1(. . . , θ

′
i, . . . , θj , . . . , θn))

)
− ũ (Zn−1(. . . , θi, . . . , θj , . . . , θn)))

∣∣∣X̂n(θn)
]]

= E

E
u

Zn−1(...,θ′i,...,θj ,...,θn))∑
j=1

X̂j,n(θn)

− u

Zn−1(...,θi,...,θj ,...,θn))∑
i=1

X̂j,n(θn)

∣∣∣X̂n(θn)


= ϕ(θ0, . . . , θ

′
i, . . . , θj , . . . , θn)− ϕ(θ0, . . . , θi, . . . , θj , . . . , θn),

where the inequality follows from remarks above on the function ũ, inequality (2.4) and subsequent

supermodularity of E[ũ(Zn−1(θ0, . . . , θn−1))|X̂n(θn)].

Thus ϕ(θ0, . . . , θn) is supermodular also in (θi, θj), 0 ≤ i < j < n, and supermodularity of

ϕ(θ0, . . . , θn) in (θ0, . . . , θn) follows.

Now we get the increasing convex comparison among population sizes Zn(Θ1,0,Θ1,1, . . . ,Θ1,n)

and Zn(Θ2,0,Θ2,1, . . . ,Θ2,n) just observing that, for every fixed increasing and convex function u,

it holds

E[u(Zn(Θ1,0,Θ1,1, . . . ,Θ1,n))] = E[ϕ(Θ1,0,Θ1,1, . . . ,Θ1,n)]

≤ E[ϕ(Θ2,0,Θ2,1, . . . ,Θ2,n)] = E[u(Zn(Θ1,0,Θ2,1, . . . ,Θ2,n))],

where the function ϕ is defined as above.

Under weaker assumptions one can also obtain the weaker comparisons among the expected

margins of the two branching processes, as stated in the following result.

Theorem 2.2. Let X(θ) satisfy assumption A1, and let Θ1 = (Θ1,0,Θ1,1, . . . , ) and Θ2 = (Θ2,0,Θ2,1, . . . , )

be two sequences of random variables taking on values in X. Assume that both Θ1, Θ2 are indepen-

dent on X(θ), and that E [X1,k(θk)] is increasing in θk for all k = 0, 1, . . .. Then for every n ∈ IN

the stochastic inequality

(Θ1,0,Θ1,1, . . . ,Θ1,n) ≤c (Θ2,0,Θ2,1, . . . ,Θ2,n) (2.5)

implies

E [Zn(Θ1,0,Θ1,1, . . . ,Θ1,n)] ≤ E [Zn(Θ2,0,Θ2,1, . . . ,Θ2,n)].
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Proof. Let (θ0, . . . , θn) ∈ Xn+1 and note that E[Z(θ0, . . . , θn)] =
∏n

k=0E[X1,k(θk)] (the equality

trivially comes from the fact that all the random variables Xj,k(θk) are independent, and identically

distributed for fixed values of k). Observing that, by assumptions, every E[X1,k(θk)] is increasing

in the θk, by (2.5) we get

E[Z(Θ1,0, . . . ,Θ1,n)] = E[E[Zn(Θ1,0, . . . ,Θ1,n) |(Θ1,0, . . . ,Θ1,n)]]

= E[

n∏
k=0

E[X1,k(Θ1,k)]] ≤ E[

n∏
k=0

E[X1,k(Θ2,k)]]

= E[E[Zn(Θ2,0, . . . ,Θ2,n) |(Θ2,0, . . . ,Θ2,n)]] = E[Z(Θ2,0, . . . ,Θ2,n)]

i.e., the assertion.

3 An example of application

Assume that the random evolutions of the environment are described by a stationary discrete–

time homogeneous Markov process Θ = {Θn : n ∈ IN} that is stochastically monotone (i.e., such

that [Θ2|Θ1 = θ] is stochastically increasing in θ). Using the criteria described in the previous

section one can define stochastic bounds for the total population at any generation. In fact, let

Θ1 = {Θ1,n : n ∈ IN} be a sequence of variables such that Θ1,n = Θ1,0 a.s. for all n ∈ IN where

Θ1,0 has the same distribution of Θ0 (i.e., the stationary marginal distribution of Θ). Then it is

well-known that (Θ0,Θ1, . . . ,Θn) ≤sm (Θ1,0,Θ1,1, . . . ,Θ1,n) for every n ∈ IN (see, e.g., Tchen, 1980

on this inequality).

Let now Θ2 = {Θ2,n : n ∈ IN} be a sequence of independent and identically distributed variables

such that Θ2,n =st Θ0 (i.e., having as distribution the stationary marginal distribution of Θ). It

has been shown (see, e.g., Hu and Pan (2000)) that in this case it holds (Θ2,0,Θ2,1, . . . ,Θ2,n) ≤sm

(Θ0,Θ1, . . . ,Θn) for every n ∈ IN

Therefore, for the branching process Z(Θ) defined as in (1.4), and subjected to an underlying

stationary discrete–time homogeneous Markov process Θ, the following two assertions hold.

Corollary 3.1. Let X(θ) be an infinite array of non-negative integer valued random variables

satisfying the assumptions A1–A3. If X(θ) is independent on Θ then

Zn(Θ2,0,Θ2,1, . . . ,Θ2,n) ≤icx Zn(Θ0,Θ1, . . . ,Θn) ≤icx Zn(Θ1,0,Θ1,1, . . . ,Θ1,n)

for every n ∈ IN.

Corollary 3.2. Let X(θ) be an infinite array of non-negative integer valued satisfying assumption

A1. If E [X1,k(θk)] is increasing in θk for all k = 0, 1, . . ., and if X(θ) is independent on Θ, then

E [Zn(Θ2,0,Θ2,1, . . . ,Θ2,n)] ≤ E [Zn(Θ0,Θ1, . . . ,Θn)] ≤ E [Zn(Θ1,0,Θ1,1, . . . ,Θ1,n)]

for every n ∈ IN.
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The interest on these results is due to the fact that the distributions of Zn(Θ2,0,Θ2,1, . . . ,Θ2,n)

and of Zn(Θ1,0,Θ1,1, . . . ,Θ1,n) can be calculated in closed form observing that they are nothing

else than a standard branching process and a mixture of standard branching processes. Note also

that if Θ describes the behavior of the environment and the columns of X(θ) are stochastically

increasing in the parameters θk then the assumption that Θ is stochastically monotone is realistic

and common in applicative contexts.

Always assuming that the underlying process Θ is a stationary discrete–time homogeneous

Markov process, other interesting examples of application of the results presented in Section 2 may

be provided considering Theorem 3.2 and Theorem 4.1 in Hu and Pan (2000).
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