POLITECNICO DI TORINO
Repository ISTITUZIONALE

Post-Keplerian parameter to test gravitomagnetic effects in binary pulsar systems

Original

Post-Keplerian parameter to test gravitomagnetic effects in binary pulsar systems / Ruggiero, MATTEO LUCA,; Tartaglia,
Angelo. - In: PHYSICAL REVIEW D, PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY. - ISSN 1550-7998. -
72:8(2005), p. 084030. [10.1103/PhysRevD.72.084030]

Availability:
This version is available at: 11583/1558492 since:

Publisher:
APS

Published
DOI:10.1103/PhysRevD.72.084030

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

07 May 2024



PHYSICAL REVIEW D 72, 084030 (2005)
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We study the pulsar timing, focusing on the time delay induced by the gravitational field of the binary
systems. In particular, we study the gravitomagnetic correction to the Shapiro time delay in terms of
Keplerian and post-Keplerian parameters, and we introduce a new post-Keplerian parameter which is
related to the intrinsic angular momentum of the stars. Furthermore, we evaluate the magnitude of these
effects for the binary pulsar systems known so far. The expected magnitude is indeed small, but the effect

is important per se.
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INTRODUCTION

The first binary radio pulsar (PSR B 1913 + 16) was
discovered some 30 years ago by Hulse and Taylor [1].
Since those years, a great amount of work has been done,
and pulsars in binary systems have proved to be celestial
laboratories for testing the relativistic theories of gravity
(see [2] and references therein). Indeed, up to the present
day, Einstein’s theory of gravity, general relativity (GR),
has passed all observational tests with excellent results.
However, even if the aim of the experimental relativists is
always to achieve a greater precision, we must not forget
that most of the tests of GR come from solar system
experiments, where the gravitational field is in the
“weak’ regime. On the other hand, it is expected that
deviations from GR can occur for the first time in the
“strong” field regime: hence, the solar system experiments
are inadequate to this end. On the contrary, the strong
gravitational field is best tested by means of pulsars.
Pulsars, which are highly magnetized rotating neutron
stars, are important both for testing relativistic theories of
gravity and for studying the interstellar medium, stars,
binary systems, and their evolution, plasma physics in
extreme conditions. As for the tests of gravity, the recent
discovery of the first double pulsar PSR J0737-3039 [3,4]
provided an astonishing quantity of data, which make this
system a rare relativistic laboratory [5].

As we pointed out elsewhere [6], this system, in particu-
lar, and binary pulsar systems in general, could be useful
for testing the so-called gravitomagnetic effects. These
effects are originated by the rotation of the sources of the
gravitational field, which gives rise to the presence of off-
diagonal g(; terms in the metric tensor. The gravitational
coupling with the angular momentum of the source is
indeed much weaker than the coupling with mass alone,
the so-called gravitoelectric interaction. In fact, the ratio
between the former and the latter can be estimated to be of
the order of

PACS numbers: 04.20.—q, 95.30.Sf

where Ry = 2GM/c? is the Schwarzschild radius of the
source, M being its mass, and J (the absolute value of)
its angular momentum. At the surface of the sun, which
is the most favorable place in the solar system, evaluation
of Eq. (1) gives & ~ 1072, thus evidencing the weak-
ness of the gravitomagnetic versus the gravitoelectric in-
teraction. The smallness of & is the reason why, though
having been suggested from the very beginning of the
relativistic age [7], the experimental verification of the
existence of gravitomagnetic effects has been very difficult
until today (see [8] and references therein). The relevance
of pulsar systems for the detection of the gravitomagnetic
effects lays in the fact that the ratio (1) can be less unfav-
orable whenever r is approaching the Schwarzschild radius
of the source: this can be the case of a source of electro-
magnetic (e.m.) signals orbiting around a compact, col-
lapsed object.

As for the rotation effects in pulsar binary systems, in
general, the coupling of the intrinsic angular momentum of
the stars with the orbital angular momentum, and the
coupling of the intrinsic angular momenta of the two stars
themselves were studied, together with the corresponding
precession effects [9—-13]. The gravitomagnetic effects on
the propagation of light in a binary system were studied by
Kopeikin and Mashhoon (see [14] and references therein).

In a previous paper [6] we studied the effects of the
gravitational field on e.m. pulses propagating in a binary
system, and we emphasized the gravitomagnetic contribu-
tion. In doing that, we used a simplified model which
considered circular orbits only. Here we generalize those
results, by taking into account orbits with arbitrary eccen-
tricity, which is a more realistic approach on the basis of
the knowledge of binary systems discovered until today. In
particular, we study the gravitomagnetic correction to the
Shapiro contribution to the time of flight of the signals,
focusing on its effect on the arrival times perceived by the
experimenter on the Earth, and we introduce a new post-

_ 8¢ gRS ) (1) Keplerian (PK) parameter which is related to the intrinsic
goo FrMc angular momentum of the stars. Finally, we evaluate the
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magnitude of these effects for the binary pulsar systems
known so far.

II. THE CONTEXT: PULSARS TIMING

When studying pulsars, what is measured are the pulse
arrival times at the (radio) telescope over a suitably long
period of time. In fact, even though individual pulses are
generally weak and have an irregular profile, a regular
mean profile is obtained by averaging the received pulses
over a long time. Pulses traveling to the Earth are delayed
because of the dispersion caused by the interstellar me-
dium. Besides this delay, other gravitational factors influ-
ence the arrival times of the signals emitted by a pulsar in a
binary system: the strong field in the vicinity of the pulsar,
the relatively weak field between the two compact objects
forming the binary system and, finally, the weak field of the
solar system. Consequently, the arrival time Ty of the Nth
pulse, as measured on the Earth, depends on a set of
parameters «;, &, ..., g, which include a description
of the orbit of the binary system:

Ty = F(N, ay, ay, ..., ag). )
In particular, the set a(, a, ..., ag includes the Keplerian
parameters, together with the so-called “post-Keplerian™
parameters which describe the relativistic corrections to
the Keplerian orbit of the system. Since seven parameters
are needed to completely describe the dynamics of the
binary system (see [15] and references therein), the mea-
surement of any two PK parameters, besides the five
Keplerian ones, allows one to predict the remaining PK
parameters. For instance, if the two masses are the only
free parameters, the measurement of three or more PK
parameters overconstrains the system and introduces
theory-dependent lines in a mass-mass diagram that should
intersect, in principle, in a single point [16]. This is of
course true as far as the intrinsic angular momenta are not
taken into account.

It is possible to obtain a relation which links the time of
arrival of a pulse on the Earth to its time of emission. More
in detail, the following timing formula holds, which relates
the reception (topocentric) time Tg,q, on the Earth with the
emission time Tpyq in the comoving pulsar frame [17]:

D

Touisar = Tgarn — o _72 + Ag, +Ap, — Ay

P!

—(Ag + Ap + Ag + Ay, 3)

where f,, is a reference epoch, D/ f? is the dispersive delay
(as a function of the frequency of the pulses, f), Ag, Ag,
Ay are, respectively, the Roemer delay, the Einstein delay,
and the Shapiro delay due to the gravitational field of the
binary system (while Ag_, Ag_, Ag_ are the corresponding
terms due to the solar system field) and A, is the delay due
to aberration.
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Here we are concerned with the gravitomagnetic correc-
tions due to the intrinsic angular momentum of the stars to
the Shapiro delay Ay, which we analyze in the following
section.

III. THE SHAPIRO TIME DELAY

We want to calculate the relation between the coordinate
emission time ¢, and the coordinate arrival time 7, (as
measured at the solar system center of mass).

To this end, we consider a reference frame at rest in the
center of mass of the binary system. In this reference
frame, the vector pointing to the pulsar emitting e.m.
signals is X, while the one pointing to its companion star
is X,; in the following, the suffix “1”” will always refer to
the pulsar, and “2” to its companion. Furthermore, ¥, is
the position of the center of mass of the solar system.

We use the notation of Fig. 1 for the description of the
pulsar orbit. We choose a first set of Cartesian coordinates
{x, y, z}, with origin in the center of mass of the binary
system, and such that the line of sight is parallel to the z
axis. Then, we introduce another set of Cartesian coordi-
nates {X, Y, Z}, with the same origin: the X axis is directed
along the ascending node, the Z axis is perpendicular to the
orbital plane. The angle between the x and X axes is (), the
longitude of the ascending node, while the angle between
the z and Z axes is 7, the inclination of the orbital plane. Let
X, = r;x, be the orbit of the pulsar: it is described by

£, =cos(w + )X + sin(w + @)Y, 4

in terms of the argument of the periastron, w, and the true
anomaly, ¢. Let us pose

0=w+ o (®)]

for the sake of simplicity. Then, we use the notation

to the observer

& z .
X
. ! Y
Z 1 / pulsar orhit
< o/
lines of nodes™ -
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|
X I X
I
|
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FIG. 1. Notation used for describing the pulsar orbit.
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F=X —X (6)

to describe the position of the pulsar with respect to its
companion, and we remember that we have, for the
Keplerian problem

)

o a(l — e?) ) ™
1+ ecosep

where a is the semimajor axis of the relative motion and e

is the eccentricity. The astronomical elements (), i, w, a,

and e represent the Keplerian parameters. In what follows,

we will use also the definitions r, = |X,|, r = |F|,and A =

fb/rb.

That being said, let us focus on the physical situation we
are dealing with. If the gravitomagnetic effects are ne-
glected, the metric describing the gravitational field of
the binary system is given by (see, for instance, [18])

ds*=(1+ 2d))dt2 -1 - 2¢)|df|2, (8)
where
M M
(x,y,2) = —lﬁ_i - 9)
X — x| |X¥—%

We see that the total gravitational potential is the sum of
the two contributions, due to the pulsar, whose mass is M1,
and to its companion, whose mass is M, [19]. Starting from
(8), the mass contribution to the time delay can be eval-
uated following the standard approach, described, for in-
stance, in [17]. However, we want to generalize this
approach in order to take into account the effects of the
rotation of the sources of the gravitational field, i.e. the
gravitomagnetic effects.

To this end, we may guess that the metric, in the coor-
dinates {X, Y, Z}, assumes the form

ds? = (1 + 2¢)d* — (1 — 2¢)(dX? + dY? + dZ?)
+ 44 - dXdt, (10)

where 4 is the (total) gravitomagnetic vector potential of
the system. Equation (10) generalizes the weak field metric
around a rotating source (see [20,21]). We suppose that the
dominant contribution to the total gravitomagnetic poten-

tial is due to the intrinsic angular momenta J b j2 of the
stars; we suppose also that J,, J, are aligned with the total

orbital angular momentum L , i.e. perpendicular to the
orbital plane. Furthermore, since we assume that the sig-
nals emitted by pulsar 1 propagate along a straight line, and
because the gravitomagnetic coupling depends on the im-
pact parameter, we may conclude that the only relevant
gravitomagnetic contribution comes from the companion
star 2. Consequently, the metric (10) becomes
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ds> = (1 +2¢)d — (1 — 2¢)(dX? + dY? + dZ?)
(-3 X (X~ %)V

+4J,—= ﬁ

Fop Wdr—4n
2

In (11) |¥| varies along the straight line defined by
r—t,

X(1) = % (1,) + (5 (1a) = X%, (z.). (12)

a e
If we set

. t—t,
o=

=— 13
Py (13)

then « =0 when t=1¢,, and a=1 when t=1,.
Consequently, we may write
xX(1) = %,(t,) + a(®,(1,) — %1(2,)). (14)

After some straightforward manipulations, the line element
(11) can be written in the form

ds* = g, dt* + g,.da’ + 2g,,dtda, (15)
where
2M, 2M,
gtt=1_—>_—>_—>_—>)
X — x| |¥— %l
2M 2M
gaa=—<]+ S S R )(ri-ﬁ-r%
X — x| [|x — %, (16)
+ 2r, 1, sini sind),
rry, sini cos
8ia = 2h—>——5 3

|x _.i)'2|3

By setting ds®> = 0, we easily see that the propagation
time is made of three contributions, up to first order in the
masses of the stars, and in the spin angular momentum:

At = Aty + Aty + Aty, 17)

where

I
Aty = f \/’% + r} + 2ryr; sinisinfde,  (18)
0

1/ 2M.
Aty = ] < 2 >\/r127 + r? + 2r 1, sini sinfde,
o \|[¥ — x2|

19)

At, = f Loy, Mrosinicost | (20)
0 |X¥ — %,|3

Let us comment on (18)—(20): the first contribution is a

purely geometric one, and is due to the propagation, in flat

space, of e.m. signals from the pulsar toward the solar

system. The second contribution represents the time de-

pending part of the total Shapiro delay. As such it is
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entirely due to the mass of the companion star; in fact it is
easy to verify that the term containing the mass of the
pulsar emitting e.m. signals gives a contribution which
remains constant during the orbital motion. Finally, the
third contribution is due to the gravitomagnetic field of
the companion star. To lowest order, we obtain

Aty = r, + r; sini siné, 2D
2
Aty =~ 2M, 1n[%} 22)
n-r+r
2J,sinicosd 1 —na-F
Aty = . 23
/ r sin®isin’6 — 1 23)

The contributions (21) and (22) to the time delay are in
agreement with the standard results (see [17]), while
Eq. (23) gives the gravitomagnetic corrections.

From the time delay (22) we may extract the contribu-
tion which varies during the orbital motion; if we use the
equation of the orbit (4) it can be written in the form

. 1 — sinisi +
Ari, = —2M, ln|: sini sin(w 9")} (24)
1 + ecose
If we introduce the PK Shapiro parameters
R =M,, (25)
S = sini, (26)

the mass (or, gravitoelectric) contribution to the time delay
becomes

27)

—_ 1 +
At}"M:—Z’Rln[l S sin(w 9")}

1+ ecose
On the other hand, the gravitomagnetic contribution (23)

changes continuously during the orbital motion, so that,
similarly, we may write

y Jysini [(cos(w + ¢))(1 + ecose)

iy } (28)

1 — sini sin(w + ¢)
If we introduce the PK parameter S, and define a new PK
parameter

J =17

the gravitomagnetic contribution to the Shapiro time delay
can be written in the form

~JS (cos(w + @))(1 + ecosep)
a(l — e2)|: 1 — Ssin(w + @)

We notice that the new PK parameter J coincides with the
intrinsic angular momentum of the source of the gravito-
magnetic field. In particular, if we knew the rotation fre-
quency of the source of the gravitomagnetic field (which is
possible, if the latter is a visible pulsar, for instance), the

(29)

* __
Aty =

}. (30)
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new PK parameter could give information on its moment of
inertia.

The gravitoelectric and gravitomagnetic contributions to
the time delay (27) and (30) can be written in the form

Aty = Ay Fu(e), (31)

Aty = AjF,(¢), (32)

where we have introduced the following constant ““ampli-
tudes™:

Ay = —2R, (33)
JS
a(l — e?)’

and the varying “‘phase” terms

A= - (34)

. 1 — Ssi
e = LSOO
Filo) = (cos(w + @))(1 + ecosep) (36)

1 — Ssin(w + ¢)

In particular we see that when S = sini = 1, F;(¢) tends
to diverge as far as w + ¢ — /2 (i.e. close to the con-
junction position, when the impact parameter goes to zero).
F), too diverges in the same configuration and we see that
the divergences have different ‘“‘strengths,” the former
being an inverse power, the latter logarithmic. The reason
for that difference is easily referable to the gravitomagnetic
potential affecting F';, which has a dipolar structure, and to
the monopolar gravitoelectric one affecting F,.

Even though the divergences have no physical meaning
because the actual compact objects have finite dimensions
and the e.m. signals cannot pass through the center of the
companion star, we see that the gravitomagnetic contribu-
tion is bigger for those systems that are seen nearly edge on
from the Earth, which are the ideal candidates for revealing
the gravitomagnetic effects. This is the case, for instance,
of the binary system PSR J0737-3039, where, however,
unfortunately the presence of a large magnetosheath zone
makes the effective impact parameter much bigger than the
actual linear dimension of a neutron star [6]. That being
said, in the following section we give numerical estimates
for the constant amplitudes A;; and A; for the known
binary pulsar systems.

IV. NUMERICAL ESTIMATES

The PK parameters related to the Shapiro time delay R,
S have been successfully measured with great accuracy in
some binary pulsar systems, such as PSR B 1913 + 16 (see
[12,15]), and the recently discovered system PSR JO737-
3039 (see [3—5]). Indeed, the analysis of these systems is
very accurate, because of their favorable geometrical prop-
erties and, through the measurements of several PK pa-
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rameters, they provided very accurate tests of GR as con-
fronted to alternative theories of gravity. In [6], we studied
the gravitomagnetic corrections to pulsar timing in a sim-
plified situation, taking into account circular orbits only.
Here, since we have generalized those results to arbitrary
elliptic orbits, we may apply the formalism developed so
far to all the binary pulsar systems known up to this mo-
ment, in order to estimate the magnitude of the gravito-
magnetic corrections to the time delay. In Table I A;; and
A are evaluated for the binary systems known until today
[29]. A few comments on how the table has been obtained:
for those systems where the available data are not com-
plete, we have chosen for the missing data the most favor-
able value (see the caption of the table). Furthermore, we
have estimated the intrinsic angular momentum of the
sources of the gravitational field supposing that the pro-
genitor star was only a little bigger than the sun, and that
most of the angular momentum was preserved during the
collapse, so that J, = Jg.

From Table I it is clear that the gravitomagnetic contri-
bution is much smaller than the mass contribution, as
expected. However it is possible, at least in principle, to
distinguish the former from the latter, on the basis of their
different dependence from the geometric parameters. In
fact, from (21), (27), and (30) it is clear that the geometric
and the gravitoelectric contribution are symmetric with
respect to the conjunction and opposition points, while

TABLE I. Evaluation of the gravitoelectric and gravitomag-
netic contributions to the time delay. For the systems PSR J1756-
2251,PSR J1829 + 2456, PSR J1518 + 4904, PSR J1811-1736,
and PSR B2127 + 11C, since the present data do not provide the
inclination of the orbit, we chose the most favorable value for the
calculations of A, i.e. sini = 1. Similarly, for the calculations of
Ay, we chose the best estimate for the mass of the companion
star for the systems PSR J1829 + 2456, PSR J1518 + 4904, and
PSR J1811-1736, since the available data do not constrain it
completely.

System Ay (ps) Ay (ps)
PSR B1913 + 16° 6.9 42
PSR J0737-3039° 62 11.8
PSR B1534 + 12¢ 6.7 23
PSR J1756-2251¢ 5.9 2.8
PSR J1829 + 2456° 6.1 1.1
PSR J1518 + 4904° 72 0.5
PSR J1811-17362 3.5 0.4
PSR B2127 + 11C" 6.8 6.1
12,15].

°[5].

°[13,22,23].

d24].

°[25].

26].

£[27].

h28].
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the gravitomagnetic contribution is antisymmetric. As we
pointed out in the previous paper [6], if it were possible to
identify conjunction and opposition points in the sequence
of arriving pulses, this fact could be exploited for extract-
ing the gravitomagnetic effect.

Nowadays, the uncertainties in pulsar data timing are of
the order of 1071077 s (see for instance [5]). However,
as we pointed out above, gravitomagnetic effects can be-
come larger if the geometry of the system is favorable: in
particular, when sini = 1, F; tends to diverge close to the
conjunction. On the other hand, we can give an estimate of
the value of the geometrical parameters needed to make A;
of the order of magnitude of the present day uncertainties.
So, if we assume J, = Jg, in order to have A; = 1077 s, we
must have

_a(l— e?)

a(l — e?) = =5X%X10* m. 37)

sini
Hence, small orbits with great eccentricity allow, at least in
principle, the measurement of the gravitomagnetic effects.
It might be useful, also, to estimate the rate of decay of the
orbit because of the emission of gravitational waves. If we
assume, for the sake of simplicity, e =0, M| = M, =
1.44M, and that a fulfills (37), we get (see [17])

_ 3 a!
64 M, My(M, + M)

a

a =2Xx107s.  (38)
a

Consequently, we may argue that these effects may be-
come larger in the final phase of the evolution of the binary
systems, i.e. during their coalescence, even though, in that
phase, the weak field approach that we used in this paper
would probably be rather poor, demanding for different
analysis techniques.

The smallness of the gravitomagnetic delay would also
require long data taking times so posing the problem of the
stability of the pulsar frequency. However a peculiarity
which is not blurred by any drift or noise is the physical
antisymmetry of the gravitomagnetic effect, which should
emerge in the long period over all other phenomena.

V. CONCLUSIONS

In this paper, we have studied the effects of the gravita-
tional interaction on the time delay of electromagnetic
signals coming from a binary system composed of a radio
pulsar and another compact object. In particular, we have
focused our attention on the gravitomagnetic corrections to
the time delay due to the gravitational field of the binary
system (Shapiro time delay).

In doing so, we have generalized the results obtained in a
previous paper, where we considered a simplified situation,
taking into account circular orbits only. Here arbitrary
elliptic orbits are allowed. Furthermore, by following a
standard approach, we have expressed the time delay and
its gravitomagnetic component in terms of Keplerian and
post-Keplerian parameters.
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In particular, a new post-Keplerian parameter has been
introduced, which coincides with the intrinsic angular
momentum of the source of the gravitational field, and
could give, in some cases, information on its moment of
inertia.

We have given numerical estimates of the amount of the
gravitomagnetic corrections for all binary pulsar systems
known until today, and we have seen that, even though they
are usually much smaller than the corresponding gravito-
electric ones, they can become larger for those systems that
are seen nearly edge on from the Earth, which are the ideal
candidates for revealing the gravitomagnetic effects in this
context.

PHYSICAL REVIEW D 72, 084030 (2005)

Among the known binary pulsar systems, the one having
the most favorable geometrical properties for the detection
of the gravitomagnetic effect is PSR J0737-3039, which,
unfortunately, has a large magnetosheath that keeps the
magnitude of the gravitomagnetic correction below the
detectability threshold. However, we cannot exclude, at
the present discovery rate of new binary pulsars, that other
binary systems with favorable geometrical configurations
can be found. This fact, together with the expected im-
provement of the sensitivity and precision of the timing of
pulses, makes us cherish the hope that, in the future, it will
be possible to measure the gravitomagnetic corrections to
the time delay, and, in particular, the newly introduced
post-Keplerian parameter.
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