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Abstract The paper presents an experimental passive elasto-magnetic suspension based on rare-
earth permanent magnets, characterized by negligible dependence on mass of its natural frequency.

The nonlinear behaviour of this system, equipped with a traditional linear elastic spring coupled
to a magnetic spring, is analysed in time domain, for non-zero initial conditions, and in frequency
domain, by applying sweep excitations to the test rig base. The dynamics of the system is very
complex in dependence of the magnetic contribution, showing both hardening behaviour in the elasto-
magnetic setup, and softening motion amplitude dependent behaviour in the purely magnetic case.
Hence it is necessary to adopt nonlinear identification techniques, such as non-parametric restoring
force mapping method and direct parametric estimation technique, in order to identify the system
parameters in the different configurations.

Finally, it is discussed the ability of identified versus analytical models in reproducing the non-
linear dependency of frequency on motion amplitude and the presence of jump phenomena.
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1 Introduction

The paper presents the dynamic behaviour of a single degree of freedom system (sdof) equipped
with a traditional linear elastic spring coupled to a magnetic spring.

This system was developed in order to achieve passive nonlinear suspensions whose natural
frequency is independent of mass (Bonisoli and Vigliani, 2003). It is worth noting that linear
traditional sdof elastic systems are characterized by natural frequency inversely proportional to
the square root of mass, while systems equipped with purely magnetic repulsive springs show a
direct dependence of frequency on a power of their mass in consequence of static configuration
changes.

The need for passive magnetic forces suitable for the purpose implies the usage of rare-earth
permanent magnets, sintered from Samarium-Cobalt or Neodymium-Iron-Boron; nowadays these
materials permit to reach high residual magnetic induction and hysteresis energy (Coey, 2002)
and are applied in passive mechanical field such as viscous-type dissipative elements in magnetic
dampers and eddy current brakes (Nagaya et al., 1984), or as nonlinear magneto-elastic springs in
magnetic bearings, suspensions and levitation devices (Yonnet, 1978).

The dynamics of magneto-mechanics interaction is analysed by use of nonlinear models and
experimental data obtained from a sdof test bench. Nonlinear identification techniques are im-
plemented on the experimental outcomes in order to detect the nonlinear effects, through the
non-parametric restoring force mapping method (Masri and Caughey, 1979; Shin and Hammond,
1998; Ajjan Al-Hadid and Wright, 1989) and to compare numerical estimations, through the di-
rect parametric estimation technique (Worden and Tomlinson, 2001; Chang and Tung, 1998). The
restoring force method, that has already been applied to passive magnetic systems by Shin and
Hammond (1998), allows to identify the system characteristics without any need of hypothesis on
the elastic or dissipative nature of the forces, while the DPE method can give estimates of the non-
linear terms of the dynamic model in time domain, with a technique similar to the one proposed
for frequency domain analysis by Worden and Tomlinson (2001).

Finally, the experimental and identified behaviour are compared with an analytical model, based
on a nonlinear empirical formula for modelling the magnetic forces: both hardening and softening
nonlinear behaviour of different elasto-magnetic setup configurations are reproduced, proving the
effectiveness of the identification techniques and the performance of the analytical model.

2 Magneto-elastic adaptive suspension

The physical system under analysis is a single degree of freedom (sdof) elasto-magnetic suspension
in which the elastic element consists of a traditional and a magnetic springs assembled in parallel.

Figure 1 shows the experimental test bench, consisting of three parallel plates: the top plexiglass
plate is free to move in a vertical plane along four cylindrical bars (where the traditional elastic
spring can be mounted) and it is arranged to carry the permanent magnets; the bottom plate (in
aluminium) can be fixed to a reference plane or to a shaker; the intermediate plexiglass plate is
the housing of the opposite permanent magnets, in order to generate the repulsive magnetic force.

The test rig is equipped with two accelerometers mounted on the top and bottom plates and
with a resistive displacement sensor that measures the relative position between the two plexiglass
surfaces. The signals from these transducers are used to analyse the system dynamic behaviour in
the frequency range of interest (2-16 Hz). The bench is designed to directly measure the relative
displacement ξ in order to apply nonlinear identification techniques, since the magnetic forces
are nonlinear with respect to the relative displacement. Relative velocity ξ̇ is computed as the
numerical derivative of the relative displacement with suitable filtering of the reconstructed signal.

The bench allows to test different configuration for the elasto-magnetic suspension, varying
the number of magnetic pairs and/or the suspended mass; hence it is possible to analyse both the
influence of the magnetic contribution on the dynamic behaviour of the system and the adaptability
of the suspension to different values of the mass.

2.1 Mathematical model
The dynamic behaviour of the adaptive suspension sketched in Fig.2 can be described with the

following equation:

mξ̈ + ζξ̇ + k (ξ − l0) + Fm +mg = −mÿ, (1)

where ξ = x − y is the relative position of the suspended mass, ζ is the viscous damping, k is
the linear spring stiffness, l0 is the spring rest length, g = 9.81 m/s

2
is the gravity constant, m
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is the mass of the system and the magnetic repulsive force Fm is modelled through an empirical
formula, having form

Fm = − A

(ξ +B)
n , (2)

where parameters A, B and n may be evaluated through magnetic models based on equivalent
currents method (Nagaraj, 1988; Bonisoli and Vigliani, 2003) or, alternatively, A, B may be exper-
imentally determined by a least square error approach and n is an integer, set equal to 3 (Bonisoli
and Vigliani, 2003).

Figure 1: Experimental set-up of the elasto-
magnetic suspension

Figure 2: Model of the elasto-magnetic suspen-
sion

In order to test the dynamic behaviour of the system, the basis of the model is excited with
a harmonic oscillation, i.e. the basis moves with law y = y0 cos(Ωt). Hence, the system dynamic
equilibrium is described by

ü+ λu̇+ βu− γ (u+ 1)
−n

+ γ = δ cos(Ωt), (3)

where u = ξ/(xe + B), λ = ξ/m, β = k/m, γ = A(xe + B)−(n+1)/m, δ = Ω2y0/(xe + B) and
xe is the static equilibrium position.

Eq.(3) can be approximated with

ξ̈ + λξ̇ + aξ + bξ2 + cξ3 + dξ4 + eξ5 = Ω2y0 cos(Ωt), (4)

where coefficients a, b, c, d and e can be analytically estimated or identified from experimental
outcomes.

3 Nonlinear dynamic identification

In order to analyse the nonlinear characteristics of the system, two identification techniques are
here applied: the non-parametric restoring force mapping (RF) (Masri and Caughey, 1979; Shin
and Hammond, 1998; Ajjan Al-Hadid and Wright, 1989) and the direct parameter estimation
(DPE) methods (Worden and Tomlinson, 2001). The first one is chosen because it does not need
any a-priori knowledge of the nonlinear elasto-dissipative characteristics of the system and has
already been applied to passive magnetic systems by Shin and Hammond (1998), while the DPE
method in time domain is adopted to quantify and to compare the nonlinear terms of the dynamical
model, with a technique similar to the one proposed for frequency domain analysis by Worden and
Tomlinson (2001). With reference to the restoring force approach, a mechanical sdof system can
be considered to undergo a generic force dependent on displacement and velocity, i.e. Fr = f(z, ż).
The system equilibrium, given by equation

mz̈(t) + f(z, ż) = F (t), (5)

can be written in the form

Fr(t) = F (t)−mz̈(t), (6)

where it is evident that the time history of the restoring force Fr can be determined from the
right hand side terms, that can be experimentally measured. Assuming that the nonlinear restoring
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force can be divided in two parts, one dependent on displacement and the other on velocity, the
interpolator surface is given by

f(z, ż) ∼=
m∑
i=0

aiTi(z) +

n∑
j=0

bjTj(ż), (7)

where Tk(ν) = cos[k arccos(ν)], with −1 ≤ ν ≤ +1 and k = i or j, are Chebyshev polynomials,
respectively of k−th order; coefficients ai and bj can be estimated by means of least square methods,
respectively for null velocity and displacement:

f(z, 0) ∼=
m∑
i=0

aiTi(z) and f(0, ż) ∼=
n∑
j=0

bjTj(ż). (8)

The restoring force technique is applied when the lower plate of the experimental suspension
undergoes a frequency sweep oscillations; hence, according to eq.(1), the restoring force is

Fr = f(ξ, ξ̇) = −ξ̈(t)− ÿ(t) = −ẍ(t). (9)

Experimental tests with frequency sweep highlight the nonlinear characteristics previously de-
scribed: the elasto-magnetic suspension (m = 11.4 kg, xe = 10.2 mm, y0 = 0.7 mm, k = 2098 N/m,
l0 = 19 mm, A = 2.26 · 10−3 N m3, B = 18.8 mm, n = 3) reveals a hardening behaviour, showing
an evident jump phenomenon in time domain (Fig.3); on the contrary, in the purely magnetic
setup (m = 5.33 kg, xe = 16.3 mm, y0 = 0.7 mm, A = 2.26 · 10−3 N m3, B = 18.8 mm, n = 3),
the system possess a softening dynamical behaviour, as visible in the time domain (Fig.4).

Numerical results obtained from analytic solutions are also compared with data from the elasto-
magnetic third order model (eq. 4) in Fig.3 and with simulations of the fractional magnetic
model described in eq. 1 (in the purely magnetic case, i.e. k = 0) in Fig.4. Results from
the analytic model almost overlap with the nonlinear elastic characteristic identified through the
polynomial interpolation of experimental values, both for elasto-magnetic case and for purely
magnetic suspension.

Figure 3: Displacement in time domain with increasing (left) and decreasing (right) frequency
sweep of the elasto-magnetic suspension: experimental data (dash-dotted); identified cubic model
(dashed); cubic analytical approximation (continuous)

Figure 4: Displacement in time domain with increasing (left) and decreasing (right) frequency

sweep of the purely magnetic suspension: experimental data (dash-dotted); identified 5th order
model (dashed); fractional analytical approximation (continuous)

The interpolator restoring force surface in the purely magnetic case is presented in Fig.5;
assuming that stiffness and damping can be decoupled, through the analysis of two orthogonal
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planes (for null velocity and null displacement) it is possible to determine the dissipative (see
Fig.6) and nonlinear elastic characteristics for the elasto-magnetic suspension and for the purely
magnetic suspension, as visible in Fig.7.

Figure 5: Experimental restoring force surface
for purely magnetic suspension

Figure 6: Dissipative characteristic: experi-
mental data with increasing sweep (continu-
ous); experimental data with decreasing sweep
(dashed); identified linear model (dotted)

Figure 7: Elastic characteristic of the elasto-magnetic (left) and purely magnetic (right) suspen-
sion: experimental data with increasing sweep (continuous); experimental data with decreasing
sweep (dashed); identified model (dotted), fractional model(thick continuous)

For the considered case studies, Fig.3 shows the time histories of the frequency sweep applied
to the identified models with cubic polynomials, while in Fig.4 the dynamic behaviour with fifth
order identified polynomials is presented (for the purely magnetic case).

The weights of the elastic characteristics polynomial terms demonstrate that terms having
order higher than three are negligible for the elasto-magnetic system, while they are necessary to
describe the softening behaviour of purely magnetic couplings. In fact in the softening case the
polynomial approximation can effectively describe the real trend only in the neighbourhood of the
static equilibrium condition, because, for large displacements, its behaviour is always hardening.

When applying the DPE method to the polynomial equation approximating the system dynam-
ics, the system itself can be regarded to as time-discrete; hence the following vectorial representation
holds: {

ξ̈
}

+ ζ
{
ξ̇
}

+ a {ξ}+ b
{
ξ2
}

+ c
{
ξ3
}

+ d
{
ξ4
}

+ e
{
ξ5
}

= −{ÿ} , (10)

where each element of the (n × 1) vectors represent a system state at time t (the system
dynamical parameters are time invariant). Separating the unknown parameters, eq.(10) can be
written in matrix form:

[
{ξ}

{
ξ2
} {

ξ3
} {

ξ4
} {

ξ5
} {

ξ̇
} ]



a
b
c
d
e
ζ


= −

{
ξ̈
}
− {ÿ} = −{ẍ} (11)

that can be solved by means of generalized inversion techniques, such as singular value decom-
position (SVD).

5



The DPE method is applied to the experimental free response to non-zero initial conditions
(Fig.8-10) and proves particularly effective in estimating the nonlinear dynamical parameters.
Furthermore results computed from the proposed analytical model are in good agreement with
experimental measures and identified models, hence confirming that, within the considered ampli-
tude range, third order polynomial models are suitable to describe the nonlinear behaviour of both
elasto-magnetic and purely magnetic systems.

Figure 8: System free response time history (left) and phase plane (right) for traditional elastic
suspension: experimental (continuous); identified linear (dashed); analytical linear (dotted)

Figure 9: System free response time history (left) and phase plane (right) for elasto-magnetic
suspension: experimental (continuous); identified cubic (dashed); analytical cubic (dotted)

Figure 10: System free response time history (left) and phase plane (right) for purely magnetic
suspension: experimental (continuous); identified cubic (dashed); analytical cubic (dotted)

As a conclusion, it can be stated that both RF and DPE prove effective tools, able to give
satisfactory estimates that allow to simulate the system behaviour with results that are qualitatively
and quantitatively close to experimental evidence.

Table 1 and 2 show the dynamical parameters identified during frequency sweeps and free
response oscillations: in both cases, in accordance with the plotted comparison, it is evident an
excellent agreement with the values predicted by analytical models up to third order polynomials
(a, b, c terms), while the more relevant errors in the estimates relative to higher order terms (d,
e) confirm their lower importance in describing the system dynamics.

To compare the results, the normalized mean square error (MSE) can be used; it holds:

MSE(ξ) =
100

Nσ2
ξ

N∑
i=1

(
ξi − ξ̃i

)2

(12)
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a b c d e
Setup Model [s−2] [m−1 s−2] [m−2 s−2] [m−3 s−2] [m−4 s−2]

Analytic 1002 −5.765 · 104 3.308 · 106 −1.708 · 108 8.233 · 109

Elasto-magnetic I.I. sweep 1000 −5.736 · 104 4.062 · 106 −3.252 · 108 2.153 · 1010

I.D. sweep 1004 −6.35 · 104 4.078 · 106 −1.502 · 108 1.222 · 1010

Analytic 838.7 −4.781 · 104 2.271 · 106 −9.708 · 107 3.873 · 109

Magnetic I.I. sweep 799.4 −5.0 · 104 2.349 · 106 −2.293 · 107 6.713 · 107

I.D. sweep 887.4 −5.183 · 104 2.347 · 106 −3.952 · 108 1.983 · 1010

Table 1: Comparison of dynamic parameters from frequency sweep tests (I.I.→ identified increasing
frequency sweep, I.D. → identified decreasing frequency sweep)

a b c
Setup Model [s−2] [m−1 s−2] [m−2 s−2]

Analytic 407.9 − −
Elastic Identified 394.3 − −

Analytic 1135 −4.125 · 104 1.905 · 106

Elasto-magnetic Identified 1041 −4.209 · 104 2.499 · 106

Analytic 838.7 −4.781 · 104 2.271 · 106

Magnetic Identified 815.7 −4.102 · 104 2.676 · 106

Table 2: Comparison of dynamic parameters from free response tests

where ξi are the N experimental measures and ξ̃i are the correspondent values of the identified
or analytic model and σ2

ξ is the signal variance that normalizes the error index to 100% when
assuming for the model the mean value of the signal. Table 3 presents the MSE computed from
the analysis of the experimental values relative to the free response oscillations compared with
identified and analytic models: it is evident the excellent agreement of the results.

Setup Comparison MSE [%]
Experimental/Identified 0.18

Elastic Experimental/Analytic 0.44
Experimental/Identified 1.18

Elasto-magnetic Experimental/Analytic 1.40
Experimental/Identified 0.32

Magnetic Experimental/Analytic 0.42

Table 3: Normalized mean square errors

4 Conclusions

The experimental passive elasto-magnetic suspension, based on rare-earth permanent magnets
coupled to traditional linear elastic spring, presents a negligible dependence on mass of its natural
frequency for small amplitude vibration; moreover it shows relevant nonlinear motion amplitude
dependent behaviour.

By varying the magnetic elastic contribution in the suspension, a wide range of nonlinear
properties is analysed: in particular a transition between linear, hardening and softening behaviour
with jump phenomena is evinced experimentally and reconstructed by means of identified and
analytical models.

Both in time domain, for non-zero initial conditions, and in frequency domain, by applying
sweep excitations to the test rig base, it can be stated that RF and DPE identification techniques
prove effective tools, able to give satisfactory estimates that allow to simulate the system behaviour
with results that are qualitatively and quantitatively close to experimental evidence.
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