POLITECNICO DI TORINO
Repository ISTITUZIONALE

Specification and design of a new memory fault simulator

Original

Specification and design of a new memory fault simulator / Benso, Alfredo; DI CARLO, Stefano; DI NATALE, Giorgio;
Prinetto, Paolo Ernesto. - STAMPA. - (2002), pp. 92-97. (Intervento presentato al convegno IEEE 11th AsianTest
Symposium (ATS) tenutosi a Guam, USA nel 18-20 Nov. 2002) [10.1109/ATS.2002.1181693].

Availability:
This version is available at: 11583/1499906 since:

Publisher:
IEEE Computer Society

Published
DOI:10.1109/ATS.2002.1181693

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

08 May 2024

Politecnico di Torino

specification and design of a
new memory fault simulator

Authors: Benso A., Di Carlo S., Di Natale G., Prinetto P,

Published in the Proceedings of the IEEE 11th AsianTest Symposium (ATS), 18-20 Nov. 2002, Guam,
USA.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1181693

DOI: 10.1109/ATS.2002.1181693

© 2002 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1181693
http://dx.doi.org/10.1109/ATS.2002.1181693

SPECIFICATION AND DESIGN OF A NEW MEMORY FAULT SIMULATOR

A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto

Politecnico di Torino
Dipartimento di Automatica e Informatica
Corso Duca degli Abruzzi 24,1-10129, Torino, Italy
Email: {benso, dicarlo, dinatale, prinetto} @polito.it
www.testgroup.polito.it

Abstract

This paper presents a new Fault Simulator architeetur

sequence w.r.t. a user-defined set
eliminate redundant operatiop

1. Introduction

RAM memories are
most critical compaoner

in memory testing is to define
%ive fault models able to carefully represent the
most common defects occurring in the production phase of
the chips. Along with fault models, new test algorithms
have to be developed and validated. Memory fault
simulation is therefore necessary to compute the Fault
Coverage of a test sequence every time a new defect is
discovered and the corresponding fault model defined.
Computing and limiting the test application power
consumption is also another important issue, especially
when the memory test is implemented as a Built-In Self-
Test procedure.

o)

the*Complexit
ry architecture
It coverage is

O \(\ ;) o
&e %ault models and the

aranalysis [2] of the memory
ot oré_possible. In [3], a memory

ion Package Plus, MAP+) has
¢) tool, developed at the Delft
hiology, has been employed as a
for the evaluation of new and known test

ition, coupling, address decoder, neighborhood
n sensitive, read disturb faults, etc.). Although very
an academic point of view, this
detailed fault simulation.

addressed by other similar tools [4], the proposed
tor supports the test engineer in optimizing the test
algorithm and in addressing power consumption
constraints. The tool is in fact able to compute the power
consumption generated by the test sequence, and to
suggest a modification of the test algorithm in case its
application does not fulfill a user-defined power
consumption constraint.

4

The paper is organized as follows. Section 2 introduces
the overall tool architecture; Section 3 and 4 describe the
memory and fault model representation used by the
simulator. The format of the test sequence is described in
Section 5, whereas Section 6 and 7 detail the fault
simulation engine. Some experimental results are shown in
Section 8. Conclusions and future work are summarized in
Section 9.

2. The Fault Simulator Architecture

Fault
Models

Memory

Models

OO Memory Simulator

Test Analysis

Optimized Test Sequences .

A
| Test Report I

Figure 1: Simulator architecture

Figure 1 presents the simulator overall arehitet

Test Analysis modulg
and computes their
generates two output

nologlcal and topological
8 of the memory (see Section 3.1);

The Fault Model files, formalized as collections of
Basic Fault Effects (see Section 4), describe all the faulty
behavior that the test sequence is designed to detect.

The Test Sequence files describe the sequence of
operations applied to test the memory array. Using a
proprietary language, it is possible to describe complex
test algorithms as well as simple sequences of input
patterns.

The Test Report file contains detailed information
about:

@

Finally, th
test sequence
affectin g

tred ced in this sectlo
memery ard fault mod
Memory mﬁ

The pro
functio
as propos

the Fault Coverage of each fault model and, when
necessary, diagnostic information about the cells
where the fault is not covered;

the total power consumption estimated by the
application of the test sequences;

if the computed power consumption is higher than
the allowed limit, if possible, the simulator
provides the suggested maximum clock frequency
that allows to meet the power requirements;

st Analysis module outputs
re redundant elementar

sed emdry fault simulator uses a memory
m el baseéd on Finite State Machines (FSM),
] and [6].

i 7 one-bit cells memory can be represented using a
'Dhinistic Mealy Automata:

= (0. X\X,5,1) (£2.1)

1s the set of the possible memory

where the symbol (—) represents the value
of a non initialized memory cell;

X = {ri,w(’;,wf 10<i=< n—l}U {r} is the
input alphabet. This alphabet is composed by all
the possible memory operations. In particular:

r' corresponds to a read operation performed on
the cell i;

W; corresponds to a write operation of the value

de {0 ,l} performed on the cell i;

T, corresponds to a wait operation for a defined
period of time ¢. This additional element is
needed to deal with Data Retention Faults [7].

Y = {0 ,1,—} is the output alphabet;
0 : Ox X > Q is the state transition function;

A Ox X Y is the output function.

Using the outlined model, a fault free two cells RAM
can be represented by the FSM shown in Figure 2,
conventionally named M, in the reminder of this paper. In
M, the letters i and j are used to identify the first and the
second cell, respectively.

r/1
rn/0
(w1i! Woj, T) /-

(r,r)/0
(W, wgl, T) /-

w1j/' w1i/-
fl; (1’ (', ¥) /1
r G i}
(wel, Wi, T) /- Wit wil, T)/

Figure 2: My FSM representing a fault free R
3.1. Electrical and Physical Model

Besides the memory behavior, the n a set
of electrical parameters that cohstlitut e memory
i ,it1s possible t6

specify:
1.
2. .
ation is necessary to
compute t avlts involving adjacent
3. I characteristics (e.g., access

=—dnd stand-by current, ...): these

allow the simulator to compute
parameters as the average power
ipation caused by the application of a given test
algorithm.

4. Fault Models

Considering the fault-free memory formalization, the
behavior of a faulty memory can be modeled using a
deterministic Mealy Automata:

Mi = (QisXYi5i$/‘Li) (f22)

where:

i Q,» C Qs the set of states;
« Y, CY is the output alphabet;
e 0,:0,xX > O, is the state transition function

e A :0,xX Y, is the output function

1

The set of states used to represent a faulty memory is a
subset of the whole set Q (see (f.2.1)) since only the cells

involved in ault should be represen
memory func I model can be therefor

o

dl

the most well-known memory

s, coupling faults, transition faults,
L6 model more complex faults like
ttern sensitive faults (npsf), the model is

general enoug
faults like st{y;

ssible the use of the proposed
ories, since the proposed tool
. h¢ minimum number of cells
ert each target fault model. The results
imum cell set are then extended to the

over a BFE on a memory cell, it is necessary to
execute on that cell a sequence of operations, or Test
Pattern (TP), defined as a triplet:

TP = (I.E.O) (f2.3)
where:
o 1={01" 10 <k < n-1} is the iniiatizarion
state;

e E= {e leeE X } is the operation needed fo
excite the BFE;

e o={f1deOn0sksn-1} s e

operation needed ro observe the fault effect. We
introduce here the concept of Read and Verify
operation. The notation r, means “read the content
of the cell i and verify that its value is equal to d”.

Besides Read and Verify operations, it is also possible
to specify verification and modification of the memory
operating conditions; these operations may be necessary
when modeling faults occurring in particular operating
conditions.

Initialization, Excitation, and Observation instructions
have to be executed in a fixed order but, depending on the
fault model, they may or may not have to be executed
consecutively. For example, it is possible to specify the
maximum delay between two consecutive operations on a
cell of the memory.

Given the above definitions, the simulator considers
each BFE as a set of Test Patterns. To verify the coverage
of a given fault model, the simulator has to check that all
the operations have been executed on all the memory cells.

5. Test Sequences
To define the memory test sequences we

language allowing to describe complex test.alg
well as simple sequences of input patterns.

In particular, the language constr
in order to facilitate the descripto

. 3 itions schedule a

c on a

statements: for cycles, if-then-else
constructs, and evaluation of simple Boolean
expressions that allow the definition of complex
test algorithms;

* Changes in the operating conditions: operations
that, for example, simulate a change of the
operating temperature of the memory. These
operations have been introduced to allow, in the
future, the modeling of fault depending on the
memory operating conditions.

Figure 3 presents an example of part of the Walking 1/0
algorithm described using the proposed language.

// Walking 1/0 (first part)
walkinglO:: any (w0);
for (1 = 0; i < words_in_array; i =i + 1)

{

w [1i] 1;
neigh array any [i]
r [1] 1;

(r0);

ory—Tal simulator has been
ob oriented approach. The
ory, the faults, and the test

ith a predefined set of methods and

sequences at
properti

e simulator engine is designed using an onion skin-
wpproach (Figure 4), where each layer targets a

havior. This approach allowed us
modular, and very easily
Iy constraint of each layer is its

Web-enabled GUI
1/0 Layer
Electrical Layer
[Memory Array Layer]

00 Memory Simulator

Test Analysis

Test Report Optimized Test Sequences

i

Figure 4: The simulator engine layered structure

The Graphical User Interface (GUI) of the simulator is
completely web-enabled. This feature allows us to have a
user-platform-independent tool, which is always up-to-
date with the most recent version, and does not require any
installation process. The user does not require a high
computational power on its machine, and can easily access
the tool from any internet connection point. This

characteristic is particularly useful in an academic
environment, where students always outnumber the
available workstations.

The I/O Layer implements the possible I/O operations
on the memory. The allowed operations, with their
temporal constraints, are read from the memory model. In
this way, the simulator is also able to check if all the
operations executed by the test algorithm are legal for the
target memory chip. The I/O Layer is also in charge of
reading and applying the test sequence defined in one of
the input files. In order to optimize the simulation time,
the simulator computes from the Fault Model files and the
input test files, the smallest number of memory cells that
guarantee the ability to compute the final result for the real
memory size. For example, as explained in Section 2, if
the target fault models are stuck-at and coupling faults,
and the test sequence a March test, the minimum numbe,
of cells that need to be simulated is equal to 2.

The Electrical Layer computes and logs the. te

is not changed by an ¢
another state is triggered -\'

55

operating conditions. Tk
the memory cells when a tra

of a timeout.
(and therefore

€ memory content. This layer
yry as a matrix of words as defined by

logical
considers x
the memory fmodel.

7. Test Analysis Module

For each Fault Model, the Test Analysis Module
considers each set of Test Patterns defining a BFE, and
verifies, using a pattern matching algorithm, if it has been
executed during the simulation of the test sequence. If all
the Test Patterns belonging to a Fault Model have been
executed on a cell, then, for that cell, the fault is covered.
Besides fault coverage, the Test Analysis module also
computes the total power consumption caused by the
application of the test sequences.

An interesting feature of the Test Analysis Module is its
ability to suggest optimizations to the input test algorithm.
In particular, it is able to:

* check the non-redundancy of each elementary
operation in the test sequence, and suggest a
possible optimization;

* suggest a possible modification of the test
sequence in order to fulfill the power consumption
constraints.

To check
operation, th

coverage of the
A test sequence is able to
&ich CF column, exists at

v a new test sequence trimmed of all the
ntary operations. This is a typical instance
Set Covering problem applied on the Coverage
ix [10]. The Set Covering finds the minimum number
s needed to coyer all the columns. This approach

power consumption, the Test
ulci¢ able to compute either the maximum

Modern approaches to reduce power consumption like
supply voltage reduction or multiple voltage nets [12] are
not in the scope of the proposed tool, since we do not deal
with hardware modification of the memory under test.

8. Experimental results

To evaluate the performances of our simulator, we
setup the same set of experiments described in [13]. In
particular, we run 8 different march tests (MATS+, March
C-, March B, PMovi, March U, March LR, March SR, and
March SS) on a memory of 32Kbit targeting a fault list of
18 fault models (Stuck-At, Transition, Write Disturb, Read
Destructive, Deceptive Read Destructive, Incorrect Read,
10 different Coupling, and Data Retention).

The execution time of the simulator on a Pentium II,
400MHz with 64MB of RAM is reported in Table 1.

MATS+| C- B [PMovi| U LR | SR SS

Time (s) 165 | 644 | 635 | 225 | 470|458 |246 | 1727

Table 1: Execution time

For each fault, the simulator shows the test operations
allowing its coverage. Table 2 shows a subset of the input
and result files. The Stuck-At-0 fault model is described in
terms of initialization (I), excitation and observation (EO)
whereas the test algorithm in terms of march elements.
The result file shows the elementary test operations that
allow covering the target fault. In this example, the
initialization is covered by the second operation of the m/
march element and the excitation/observation is obtained
by the first operation of the march element m2.

11.

(1]

(2]

(3]

(4]

Fault Model March Test
SF_0 // MATS+
{ {
I:: w 1l; mO0:: any (w 0);
EO:: r 1; ml:: up (r O,
} m2:: down (r 1, W 0\
}
Results \\ /
SF_0 100.00 % of 32768 \\))
I -> ml.2
EO -> m2.1
9. Concl

algorithm w.r.t.
structures.

sed tool are its
I¢sCription of the memory

onal version of the tool. The future activities
{s testing and the expansion of the Simulation
and Test Analysis modules in order to cover multi-port
memories.

10. Acknowledgments

We would like to thank Prof. A. J. van de Goor for the
invaluable suggestions he gave us during the specification
of the tool. We would also like to thank the web-enabled
technologies division and the test division of
MoleSystems, for their contribution to the development of
the tool.

(11]

[12]

[13]

&

Bibliography

G. E. Moore, Progress in digital integrated electronics, In
Proc. IEEE IEDM, pages 11-13, 1975

A. J. van de Goor, Testing Semiconductor Memories:
Theory and Practice, John Wiley & Sons, Chichester,
England, 1991.

S. Demidenko, A. van de Goor, S. Henderson, P.
Knoppers, Simulation and Development of Short
Transparent Tests for RAM, IEEE 10th Asian Test
Sympo! ATS 2001), Kyoto (J), Novem

Testing: Theory and
151-162, May 1990.

de Goor, B. Smit, “Generating March Tests
Automatically” JEEE International Test
1994, pp. 870-877

Conference,

ternational
18,2000

8. J. Upadhyaya, S. Chakravarty, “A New
or Generating Optimal March Tests for
IEEE International Test Conference,

Workshop Memory

cmdry Arrays”,
pp- 73-82, 1998
A. Caprara, M. Fischetti, P. Toth, A Heuristic Algorithm
for the Set Covering Problem, 5th International IPCO
Conference, pp. 72-84, 1996.

A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, An
Optimal Algorithm for the Automatic Generation of
March Tests, IEEE Design Automation and Test
Conference in Europe (DATE 2002), Paris (F), February
2002

J. Vollrath, M. Huebl, E. Stahl, Power Analysis of
DRAMs, 7th Asian Test Symposium (ATS’98), pp. 334-
339, 1998.

S. Hamdioui, A. J. Van De Goor, M. Rodgers, March SS:
a Test for All Static Simple RAM Faults, Memory
Technology, Design and Testing Workshop (MTDT’02),
pp- 95-100, 2002.

