
08 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Specification and design of a new memory fault simulator / Benso, Alfredo; DI CARLO, Stefano; DI NATALE, Giorgio;
Prinetto, Paolo Ernesto. - STAMPA. - (2002), pp. 92-97. (Intervento presentato al convegno IEEE 11th AsianTest
Symposium (ATS) tenutosi a Guam, USA nel 18-20 Nov. 2002) [10.1109/ATS.2002.1181693].

Original

Specification and design of a new memory fault simulator

Publisher:

Published
DOI:10.1109/ATS.2002.1181693

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1499906 since:

IEEE Computer Society

!Politecnico di Torino

!!!
Specif ication and design of a
new memory fault simulator
Authors: Benso A., Di Carlo S., Di Natale G., Prinetto P.,

 
Published in the Proceedings of the IEEE 11th AsianTest Symposium (ATS), 18-20 Nov. 2002, Guam,

USA.

!
N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1181693

DOI: 10.1109/ATS.2002.1181693

 
© 2002 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1181693
http://dx.doi.org/10.1109/ATS.2002.1181693

SPECIFICATIONAND DESIGN OFANEWMEMORY FAULT SIMULATOR

A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto
Politecnico di Torino

Dipartimento di Automatica e Informatica
Corso Duca degli Abruzzi 24, I-10129, Torino, Italy
Email: {benso, dicarlo, dinatale, prinetto}@polito.it

www.testgroup.polito.it

Abstract

This paper presents a new Fault Simulator architecture
for RAM memories. The key features of the proposed tool
are: 1) user-definable fault models, test algorithm, and
memory architecture; 2) very fast simulation algorithm; 3)
ability to compute the coverage of any provided test
sequence w.r.t. a user-defined set of fault models, and to
eliminate redundant operations; 4) assessment of the
power consumption generated by the test application.
Moreover, the tool is able to modify the test algorithm in
order to guarantee the compliance to user-defined power
consumption constraints.

1. Introduction

RAM memories are widely considered to be one of the
most critical components in digital systems. Not only,
according to Moore's Law [1], it is expected that the
capacity of memory will quadruplicate every three years,
but the shrinking of the technology will make memories
more and more subject to faults.

The main issue in memory testing is to define
comprehensive fault models able to carefully represent the
most common defects occurring in the production phase of
the chips. Along with fault models, new test algorithms
have to be developed and validated. Memory fault
simulation is therefore necessary to compute the Fault
Coverage of a test sequence every time a new defect is
discovered and the corresponding fault model defined.
Computing and limiting the test application power
consumption is also another important issue, especially
when the memory test is implemented as a Built-In Self-
Test procedure.

Due to the complexity of both the fault models and the
memory architecture, manual analysis [2] of the memory
fault coverage is not anymore possible. In [3], a memory
simulator (Memory Animation Package Plus, MAP+) has
been proposed. This tool, developed at the Delft
University of Technology, has been employed as a
simulation tool for the evaluation of new and known test
algorithms in presence of different faults (such as stuck-at,
transition, coupling, address decoder, neighborhood
pattern sensitive, read disturb faults, etc.). Although very
interesting especially from an academic point of view, this
tool does not allow a very detailed fault simulation.

In this paper we present the architecture for a new
flexible memory fault simulator, designed to address all
the most critical issues in today’s memories test generation
and validation. Besides the fault coverage computation,
already addressed by other similar tools [4], the proposed
simulator supports the test engineer in optimizing the test
algorithm and in addressing power consumption
constraints. The tool is in fact able to compute the power
consumption generated by the test sequence, and to
suggest a modification of the test algorithm in case its
application does not fulfill a user-defined power
consumption constraint.

The paper is organized as follows. Section 2 introduces
the overall tool architecture; Section 3 and 4 describe the
memory and fault model representation used by the
simulator. The format of the test sequence is described in
Section 5, whereas Section 6 and 7 detail the fault
simulation engine. Some experimental results are shown in
Section 8. Conclusions and future work are summarized in
Section 9.

2. The Fault SimulatorArchitecture

OO Memory Simulator

Optimized Test SequencesOptimized Test SequencesTest ReportTest Report

Test
Sequences

Memory
Models

Fault
Models

Test Analysis

Figure 1: Simulator architecture

Figure 1 presents the simulator overall architecture. The
Object Oriented Memory Simulator reads three main input
files. The first two contain the memory functional and
electrical models whereas the third the test sequences. The
tool simulates the execution of the test sequence according
to the models and stores, for each memory cell, the logical
and electrical temporal evolution. After the simulation, a
Test Analysis module reads the target Fault Model files
and computes their coverage w.r.t. the test sequence. It
generates two output files storing a detailed test report,
and, whenever possible, an optimized test sequence able to
provide the same results of the original one.

The memory model is split in two parts:

• a functional model, represented as a Finite State
Machine (see Section 3);

• an electrical and physical model, storing all the
operating, technological, and topological
characteristics of the memory (see Section 3.1);

The Fault Model files, formalized as collections of
Basic Fault Effects (see Section 4), describe all the faulty
behavior that the test sequence is designed to detect.

The Test Sequence files describe the sequence of
operations applied to test the memory array. Using a
proprietary language, it is possible to describe complex
test algorithms as well as simple sequences of input
patterns.

The Test Report file contains detailed information
about:

• the Fault Coverage of each fault model and, when
necessary, diagnostic information about the cells
where the fault is not covered;

• the total power consumption estimated by the
application of the test sequences;

• if the computed power consumption is higher than
the allowed limit, if possible, the simulator
provides the suggested maximum clock frequency
that allows to meet the power requirements;

Finally, the Test Analysis module outputs an optimized
test sequence, where redundant elementary operations not
affecting the final fault coverage are removed.

In the following sections we will detail the different
models introduced in this section, focusing in particular on
the memory and fault models.

3. Memory model

The proposed memory fault simulator uses a memory
functional model based on Finite State Machines (FSM),
as proposed in [5] and [6].

An n one-bit cells memory can be represented using a
deterministic MealyAutomata:

),,,,(λδYXQM = (f.2.1)

where:

• { }nQ),1,0(−= is the set of the possible memory

states where the symbol ()− represents the value
of a non initialized memory cell;

• { } { }tiii TniwwrX ∪−≤≤= 10|,, 10 is the
input alphabet. This alphabet is composed by all
the possible memory operations. In particular:
ir corresponds to a read operation performed on
the cell i;
i
dw corresponds to a write operation of the value

{ }1,0∈d performed on the cell i;

tT corresponds to a wait operation for a defined
period of time t. This additional element is
needed to deal with Data Retention Faults [7].

• { }−= ,1,0Y is the output alphabet;

• QXQ ˇ×:δ is the state transition function;

• YXQ ˇ×:λ is the output function.

Using the outlined model, a fault free two cells RAM
can be represented by the FSM shown in Figure 2,
conventionally named M0 in the reminder of this paper. In
M0, the letters i and j are used to identify the first and the
second cell, respectively.

00

01

10

11

(w0
i, w0

j, T) / -
w1

i / -

w1
j / -

w1
i / -

w0
j / -

w0
i / -

w1
j / -w0

j / -

w0
i / -

(ri, rj) / 0
(w1

i, w0
j, T) / -

rj / 0
ri / 1

(w1
i, w1

j, T) / -
(ri, rj) / 1

(w0
i, w1

j, T) / -
rj / 1
ri / 0

Figure 2: M0 FSM representing a fault free RAM

3.1. Electrical and Physical Model

Besides the memory behavior, the user can specify a set
of electrical parameters that constitute the memory
electrical and physical model. In particular, it is possible to
specify:

1. the typical operating conditions (e.g., supply
voltage, operating temperature, …): these model is
included in the simulator for future developments,
where we will take into account not only the
functional behavior of the memory but also its
operating conditions;

2. the actual row/column topological organization of
the memory array: this information is necessary to
compute the coverage of faults involving adjacent
cells;

3. timing and electrical characteristics (e.g., access
time, operating and stand-by current, …): these
characteristics allow the simulator to compute
different parameters as the average power
dissipation caused by the application of a given test
algorithm.

4. Fault Models

Considering the fault-free memory formalization, the
behavior of a faulty memory can be modeled using a
deterministic MealyAutomata:

),,,,(iiiii YXQM λδ= (f.2.2)

where:

• QQi ⊆ is the set of states;

• YYi ⊆ is the output alphabet;

• iii QXQ ˇ×:δ is the state transition function

• iii YXQ ˇ×:λ is the output function

The set of states used to represent a faulty memory is a
subset of the whole set Q (see (f.2.1)) since only the cells
involved in the fault should be represented. A faulty
memory functional model can be therefore described by a
Mi FSM with a δi function that differs from δ0 by one
transition only, or with a λi function that differs from λ0 by
one output value only. The Mi FSM is called Basic Fault
Effect (BFE) [8], [9] and each fault model can be
represented with a set of BFEs.

The two-cell memory model presented in Section 3 is
general enough to model the most well-known memory
faults like stuck-at faults, coupling faults, transition faults,
and address faults. To model more complex faults like
neighborhood pattern sensitive faults (npsf), the model is
extended to include the minimum number of cells
involved in the faulty memory behavior. The simulator
will then verify the coverage of the fault model for every
possible placement of the cells involved in the fault. This
consideration makes possible the use of the proposed
model for very large memories, since the proposed tool
will always simulate the minimum number of cells
required to represent each target fault model. The results
obtained on the minimum cell set are then extended to the
target memory size.

To cover a BFE on a memory cell, it is necessary to
execute on that cell a sequence of operations, or Test
Pattern (TP), defined as a triplet:

),,(OEITP = (f.2.3)

where:

• { }10|)1,0(−≤≤= nkI k is the initialization
state;

• { }XeeE ∈= | is the operation needed to
excite the BFE;

• { }10),1,0(| −≤≤∈= nkdrO k
d is the

operation needed to observe the fault effect. We
introduce here the concept of Read and Verify
operation. The notation rdi means “read the content
of the cell i and verify that its value is equal to d”.

Besides Read and Verify operations, it is also possible
to specify verification and modification of the memory
operating conditions; these operations may be necessary
when modeling faults occurring in particular operating
conditions.

Initialization, Excitation, and Observation instructions
have to be executed in a fixed order but, depending on the
fault model, they may or may not have to be executed
consecutively. For example, it is possible to specify the
maximum delay between two consecutive operations on a
cell of the memory.

Given the above definitions, the simulator considers
each BFE as a set of Test Patterns. To verify the coverage
of a given fault model, the simulator has to check that all
the operations have been executed on all the memory cells.

5. Test Sequences

To define the memory test sequences we defined a
language allowing to describe complex test algorithms as
well as simple sequences of input patterns.

In particular, the language constructs have been defined
in order to facilitate the description of:

• Simple Read or Write operations scheduled at a
given time;

• March elements: set of instructions repeated on all
the cells of the memory array [2];

• Burst cycles: a single instruction to be executed on
consecutive memory cells;

• Neighborhood cells: a set of neighborhood cells on
which executing a given set of operations;

• Transparent Tests: write operations where the
written value is a function of the memory cell
content;

• Background patterns: the set of patterns to be used
to test word-oriented memories;

• C-like statements: for cycles, if-then-else
constructs, and evaluation of simple Boolean
expressions that allow the definition of complex
test algorithms;

• Changes in the operating conditions: operations
that, for example, simulate a change of the
operating temperature of the memory. These
operations have been introduced to allow, in the
future, the modeling of fault depending on the
memory operating conditions.

Figure 3 presents an example of part of the Walking 1/0
algorithm described using the proposed language.

Figure 3: Example of test algorithm including
Neighborhood cells and a cycle statement

6. Simulator Engine

The proposed memory fault simulator has been
designed using a layered object oriented approach. The
models describing the memory, the faults, and the test
sequences are classes with a predefined set of methods and
properties.

The simulator engine is designed using an onion skin-
like approach (Figure 4), where each layer targets a
different functionality of the simulation: access to the
memory array, the electrical behavior, the temporal
behavior, and the I/O behavior. This approach allowed us
to design an efficient, modular, and very easily
upgradeable tool. The only constraint of each layer is its
interface; any layer internal behavior or structure can be
redesigned, modified, or upgraded without redesigning the
whole simulator.

OO Memory Simulator

Optimized Test Sequences
Optimized Test Sequences

Test Report
Test Report

Test
Sequences

Memory
Models

Fault
Models

Test Analysis

Electrical Layer
Memory Array Layer

I/O Layer
Web-enabled GUI

Figure 4: The simulator engine layered structure

The Graphical User Interface (GUI) of the simulator is
completely web-enabled. This feature allows us to have a
user-platform-independent tool, which is always up-to-
date with the most recent version, and does not require any
installation process. The user does not require a high
computational power on its machine, and can easily access
the tool from any internet connection point. This

// Walking 1/0 (first part)
walking10:: any (w 0);
for (i = 0; i < words_in_array; i = i + 1)
{

w [i] 1;
neigh array any [i] (r 0);
r [i] 1;
w[i] 0;

}

characteristic is particularly useful in an academic
environment, where students always outnumber the
available workstations.

The I/O Layer implements the possible I/O operations
on the memory. The allowed operations, with their
temporal constraints, are read from the memory model. In
this way, the simulator is also able to check if all the
operations executed by the test algorithm are legal for the
target memory chip. The I/O Layer is also in charge of
reading and applying the test sequence defined in one of
the input files. In order to optimize the simulation time,
the simulator computes from the Fault Model files and the
input test files, the smallest number of memory cells that
guarantee the ability to compute the final result for the real
memory size. For example, as explained in Section 2, if
the target fault models are stuck-at and coupling faults,
and the test sequence a March test, the minimum number
of cells that need to be simulated is equal to 2.

The Electrical Layer computes and logs the temporal
evolution of the electrical and physical characteristics of
each cell during the application of the test sequence. At
each instant, the state of a cell is defined as the voltage
level of the cell plus a timeout, after which the voltage of
the cell has to be re-evaluated even if the value of the cell
is not changed by an external operation. A transition to
another state is triggered by an event. Possible events are:
a read or write operation on a cell, the expiration of the
timeout of the cell, or the variation of the memory
operating conditions. The user can define the behavior of
the memory cells when a transition is triggered. For
example, it is possible to define the function that computes
the voltage level of a cell upon the expiration of a timeout.
This layer can be made transparent (and therefore
disabled) if the electrical evolution of the memory is not
required by the user.

Finally, the Memory Array Layer is used to log only the
logical evolution of the memory content. This layer
considers the memory as a matrix of words as defined by
the memory model.

7. Test Analysis Module

For each Fault Model, the Test Analysis Module
considers each set of Test Patterns defining a BFE, and
verifies, using a pattern matching algorithm, if it has been
executed during the simulation of the test sequence. If all
the Test Patterns belonging to a Fault Model have been
executed on a cell, then, for that cell, the fault is covered.
Besides fault coverage, the Test Analysis module also
computes the total power consumption caused by the
application of the test sequences.

An interesting feature of the Test Analysis Module is its
ability to suggest optimizations to the input test algorithm.
In particular, it is able to:

• check the non-redundancy of each elementary
operation in the test sequence, and suggest a
possible optimization;

• suggest a possible modification of the test
sequence in order to fulfill the power consumption
constraints.

To check the non-redundancy of each elementary
operation, the Test Analysis Module builds a Coverage
Matrix where each row represents the elementary
operations whereas the columns the target fault models. A
matrix cell is set to the value one if the corresponding
elementary operation contributes to the coverage of the
fault represented by the column. A test sequence is able to
detect all the target faults if, for each CF column, exists at
least one row containing a cell set to one. The test
sequence is non-redundant if all the matrix rows are
needed to cover the target faults. If this is not the case, the
module outputs a new test sequence trimmed of all the
redundant elementary operations. This is a typical instance
of the Set Covering problem applied on the Coverage
Matrix [10]. The Set Covering finds the minimum number
of rows needed to cover all the columns. This approach
has been successfully applied on many known March
Tests, where redundant blocks have never been found [11].

Finally, to address power consumption, the Test
Analysis Module is able to compute either the maximum
clock frequency that allows meeting the power constraints,
or, if the clock is not modifiable, it inserts delay
instructions in the test sequence.

Modern approaches to reduce power consumption like
supply voltage reduction or multiple voltage nets [12] are
not in the scope of the proposed tool, since we do not deal
with hardware modification of the memory under test.

8. Experimental results

To evaluate the performances of our simulator, we
setup the same set of experiments described in [13]. In
particular, we run 8 different march tests (MATS+, March
C-, March B, PMovi, March U, March LR, March SR, and
March SS) on a memory of 32Kbit targeting a fault list of
18 fault models (Stuck-At, Transition, Write Disturb, Read
Destructive, Deceptive Read Destructive, Incorrect Read,
10 different Coupling, and Data Retention).

The execution time of the simulator on a Pentium II,
400MHz with 64MB of RAM is reported in Table 1.

MATS+ C- B PMovi U LR SR SS
Time (s) 1.65 6.44 6.35 2.25 4.70 4.58 2.46 17.27

Table 1: Execution time
For each fault, the simulator shows the test operations

allowing its coverage. Table 2 shows a subset of the input
and result files. The Stuck-At-0 fault model is described in
terms of initialization (I), excitation and observation (EO)
whereas the test algorithm in terms of march elements.
The result file shows the elementary test operations that
allow covering the target fault. In this example, the
initialization is covered by the second operation of the m1
march element and the excitation/observation is obtained
by the first operation of the march element m2.

Fault Model March Test
SF_0
{
I:: w 1;
EO:: r 1;

}

// MATS+
{
m0:: any (w 0);
m1:: up (r 0, w 1);
m2:: down (r 1, w 0);

}
Results

SF_0 100.00 % of 32768

I -> m1.2
EO -> m2.1

Table 2: Result Table

9. Conclusions

In this paper we presented the structure of a new
memory fault simulator. The proposed tool addresses the
problem of the efficient and fast validating of memory test
algorithm w.r.t. new fault models or new memory
structures.

The main features of the proposed tool are its
modularity, its flexibility in the description of the memory
and fault models, and its ability to suggest optimizations to
the input test algorithm.

Currently, our activity is focused in the implementation
of a full functional version of the tool. The future activities
will address its testing and the expansion of the Simulation
and Test Analysis modules in order to cover multi-port
memories.

10. Acknowledgments

We would like to thank Prof. A. J. van de Goor for the
invaluable suggestions he gave us during the specification
of the tool. We would also like to thank the web-enabled
technologies division and the test division of
MoleSystems, for their contribution to the development of
the tool.

11. Bibliography

[1] G. E. Moore, Progress in digital integrated electronics, In
Proc. IEEE IEDM, pages 11-13, 1975

[2] A. J. van de Goor, Testing Semiconductor Memories:
Theory and Practice, John Wiley & Sons, Chichester,
England, 1991.

[3] S. Demidenko, A. van de Goor, S. Henderson, P.
Knoppers, Simulation and Development of Short
Transparent Tests for RAM, IEEE 10th Asian Test
Symposium (ATS 2001), Kyoto (J), November 2001

[4] C. Wu, C. Huang, C. Wu, RAMSES: a fast memory fault
simulator, International Symposium on Defect and Fault
Tolerance in VLSI Systems, 1999, Page(s): 165 -173

[5] J.A. Brzozowski, B.F. Cockburn “Detection of Coupling
Faults in RAMs” J. Electronic Testing: Theory and
Application, Vol. 1, No. 2, pp. 151-162, May 1990.

[6] J.A. Brzozowski, H. Jurgensen “A Model for Sequential
Machine Testing and Diagnosis” J. Electronic Testing:
Theory and Application, Vol. 3, No. 3, pp. 219-234,
August 1992

[7] A. J. van de Goor, B. Smit, “Generating March Tests
Automatically”,IEEE International Test Conference,
1994, pp. 870-877

[8] D. Niggemeyer, M. Redeker, E. M. Rudnick, “Diagnostic
Testing of Embedded Memories based on Output
Tracing”, IEEE International Workshop Memory
Technology, pp. 113-118, 2000

[9] K. Zarrineh, S. J. Upadhyaya, S. Chakravarty, “A New
Framework for Generating Optimal March Tests for
Memory Arrays”, IEEE International Test Conference,
pp. 73-82, 1998

[10] A. Caprara, M. Fischetti, P. Toth, A Heuristic Algorithm
for the Set Covering Problem, 5th International IPCO
Conference, pp. 72-84, 1996.

[11] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, An
Optimal Algorithm for the Automatic Generation of
March Tests, IEEE Design Automation and Test
Conference in Europe (DATE 2002), Paris (F), February
2002

[12] J. Vollrath, M. Huebl, E. Stahl, Power Analysis of
DRAMs, 7th Asian Test Symposium (ATS’98), pp. 334-
339, 1998.

[13] S. Hamdioui, A. J. Van De Goor, M. Rodgers, March SS:
a Test for All Static Simple RAM Faults, Memory
Technology, Design and Testing Workshop (MTDT’02),
pp. 95-100, 2002.

