
15 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Validation of a software dependability tool via fault injection experiments / Benso, Alfredo; DI CARLO, Stefano; DI
NATALE, Giorgio; Tagliaferri, Luca; Prinetto, Paolo Ernesto. - STAMPA. - (2001), pp. 3-8. (Intervento presentato al
convegno IEEE 7th International On-Line Testing Workshop (IOLTW) tenutosi a Taormina, IT nel 9-11 July 2001)
[10.1109/OLT.2001.937809].

Original

Validation of a software dependability tool via fault injection experiments

Publisher:

Published
DOI:10.1109/OLT.2001.937809

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1499887 since:

IEEE Computer Society

Validation of a Software Dependability Tool
via Fault Injection Experiments

ALFREDO BENSO, STEFANO DI CARLO, GIORGIO DI NATALE,
LUCA TAGLIAFERRI, PAOLO PRINETTO

Politecnico di Torino
Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24 - I-1 01 29, Torino, Italy
Email: { benso, dicarlo, dinatale, tagliaferri, prinetto } @polito. it

http://www. testgroup.polito.it

Abstract
The present paper presents the validation of the

strategies employed in the RECCO tool to analyze a
C/C++ software; the RECCO coinpiler s c m s C/C++
soiirce code to extract infornzation about the significance
of the variables that populate the prograni and the code
striictiire itself. Experimental results gathered on an Open
Source Roirter are used to compare and correlate two sets
of critical variables, one obtained by fault injection
experinients, and the other applying the RECCO tool,
respectively. Then the two sets are anrilJzed, conzpared,
and correlated to prove the effectiveness of the RECCO k
methodology.

1. Introduction

The design of dependable digital systems has become a
crucial problem from an economical point ot view, due to
the increasing complexity and quality rcquired by the
market. Although the hardware approach, i.e., adding
redundant circuitry, offers high performances, it could be
not always the most economical solution, due to the high
hardware overhead. This reason moves the dependability
issue in designing hardware using COTS at the software
layer. The fulfillment of these new constraints needs
investigating how systems can be designed by assembling
commercial hardware and software COTS (Components
Off 'The Shelf). Since these components are not normally
designed to guarantee high level of dependability, new
approaches able to add reliability to the final system
should be defined. In this context, the software faiilt
tolerance aims at addressing system failures caused by a
hard or so@ error appearing in the system.

The software dependability problem can be mainly
faced at three different layers:

Operating System layer: the Operating System can
be modified in order to guarantee a higher level of
dependability. The approach is very effective but
requires a very detailed modification of the
Operating System services and a free access to its
source code [11.
Middleware layer: interposition techniques are used
to design an intermediate software layer able to
intercept and possibly modify all the
communications between the user application and
the Operating System. This technique is very
effective when the user application is not
modifiable, e.g., when the source code is not
available as in commercial software COTS [2].
Application Software layer: check-pointing,
algorithm-based fault tolerance, source-to-source
recompilation, and software data redundancy are
some possible solutions proposed so far to make a
software application more dependable. These
techniques are the best solution whenever the source
code of the target application is available and can be
freely modified [3] [4] [SI [6] [7] [8] [9] [lo].

All the proposed techniques aim at reducing the unsafe
situations in which the system produces incorrect results,
whereas the application gives the impression to correctly
terminate. This kind of malfunction is called Fail-Silent
Violation [I I] [12]. Recent researches show the
relationship between this kind of fails and the appearance
of a fault i n memory locations. A computer-based system
is said to be Fail-Silent if its outputs correspond only to
correct results. If a fault occurs, the system can either stop
the application showing an error message or crash. In both
cases, the user is able to detect anomalous behaviors.

Obtaining a Fail-Silent behavior is the subject of many
researches that led to the development of techniques like
Algorithm Based Fault Tolerance (ABFT) [3], Assertions,

0-7695-1290-9/01 $10.00 Q 2001 IEEE
3

http://www

Time redundancv, and Control Flow checking [4] [5] [6]
[7] [8] [9] [lo]; these strategies have been proved to
furnish high level of fail-silent behaviors in ordinary
computers (e.g., not specifically designed to always
produce a Fail-Silent behavior) when coupled with the
intrinsic Error Detection Mechanisms (EDMs) of the
system (exceptions, memory protection, etc.) [131.
Otherwise, a systematic approach for introducing data and
code redundancy into an existing source code written in C
language is presented in [9] . Nevertheless, all these
approaches show various restrictions that reduce their field
of action.

In [I41 the authors proposed RECCO (REliable Code
COmpliler), an ad-hoc Source-to-Source C/C++ compiler
able to increase the reliability level of C/C++ source code.

This paper aims at validating the effectiveness of the
RECCO approach by the evidence of a case study.
Although many simple test benches have been already
tested to validate the effectiveness of the tool, a real case
study has to be tried. To solve this problem, the network
architecture presented in [15] has been targeted as test
case.

The accomplishment of the study proposed in this paper
relies on a Fault Injection environment realized to inject
faults inside the memory of the network system.

The fault model implies the employment of SEU errors
(Single Event Upset) that reflect a representative and
observed defective behavior [161 [171.

The validation of this approach is made possible
comparing the theoretical results obtained with RECCO
with the empirical ones collected in [14].

The paper is organized as follow: Section 2 gives a brief
overview about the RECCO tool whereas Section 3
presents a test-bench description; section 4 demonstrates
the compatibility between the experimental results with
the supposition achieved with the aid of RECCO. The
overall conclusions are reported in Section 5.

2. The RECCO Tools

RECCO is a source-to-source compiler. It starts from a
C/C++ ANSI code and produces a reliable version of it
applying a set of code modification rules. Figure 1
sketches the structural design of RECCO identifying the
needed tasks during the compiling flow.

Figure 1: The RECCO tool

The RECCO Source-to-Source compiling process can be
split into three tnain phases:

Code Reliability Analjxis: starting from the original
source code the dependability properties of the
whole variable set is evaluated. For each variable
the set of dependencies and a reliability-weight are
computed. The first parameter gives a representation
of the functional dependencies of each variable; the
second one gives an estimation of the variable
criticality from a dependability point of view. These
parameters are strictly related to the life-time of
each variable [141.
Code Reordering phase: starting from the
information supplied by the Code Reliability
Analysis, a first improvement of the code
dependability is obtained resorting to a code
reordering. The code-reordering phase tries to
minimize the reliability-weight of each variable
keeping safe the variable dependencies. The
generated code is referred to as Reliable C/C++.
Variable Protection Phase: i t introduces information
redundancies into the reordered code to allow on-
line error detectiodcorrection capabilities. This goal
is achieved by resorting to variable duplication o r
triplication. The resulting code is able to detect
faults inside the memory according to the targeted
fault model (see Section 1) and in case of variable
triplication is able to correct the fault and to recover
a safe state. The generated code is referred to as
Reliable' C/C+ +.

3. Test bench description

The goal of this paper is the validation of the
effectiveness of the RECCO approach in a real situation.
Therefore, a suitable test environment has been set up to
perform a set of fault injection experiments.

As sketched in Section 1 , the targeted test architecture is
the network system presented in [151.

The adopted network (see Figure 2) has been chosen to
meet two mandatory requirements: it should be simple
enough to monitor its behavior during fault experiments
and, at the same time, enough sophisticated to reflect a
real case of study.

4

Since the overall list of the variable classification cannot
be reported, Table 1 summarizes the percentage of
variables in the three mentioned above classes.

I Variable effect I Perccntage

Figure 2: Network architecture

The presented system can reflect a real scenario in
which the involved hosts are considered as a complex
subnet and the router is deputed to join the different
subnets.

Since the most critical element in the targeted
architecture is the router, i t is the best candidate to be
protected using RECCO strategies. To have free access to
the source code of this critical component, an Open-
Source router implemented on a PC running the Linux
Operating System equipped with multiple network
interfaces [181 has been used.

The fault injection experiments are performed using a
complete fault injection tool, distributed among the router
and the host computers. The fault injector has been
initially used to perform a preliminary fault analysis on the
system and to characterize the router behavior in presence
of faults [151. This preliminary study has been used in the
present paper as term of comparison to evaluate the
effectiveness of the results offered by RECCO.

As mentioned in the introduction, the adopted fault
model is the SEU (Single Event Upset), consisting of a
temporary bit flipping in a memory location.

Faults have been injected within the Routing Table and
the Local Data Segment. The expected router behaviors in
case of error are:

The router keeps on working properly (the fault has
been overwritten before any further reading)
The router still works but packets are not correctly
routed (if an error occurs in the Routing Table the
packets are likely to be lost or routed in wrong
directions)
Therouter crashes.

The fault injections have been performed in random
moments and memory positions within the above-
mentioned sections. The variables corresponding to those
locations have been classified by means of the effects they
produced:

Very Critical Variables (the router always crashes)
Critical Variables (the router sometimes crashes and
the clients do not receive any packets)

Non-critical Variables (the fault produces no effect).

Non critical I 76,3%
Critical I 2,3%

I Very Critical I 21,4% I
Table 1: Router variables classification

The injection experiments also show a strict connection
between the variable type and its critical level: function
pointers are mainly very critical; data pointers are critical
whereas the remaining variables are commonly non-
critical.

4. RECCO Results

This paragraph presents the set of experiments
performed on the Routing System using the RECCO tool.

In particular, we tried to validate the effectiveness of the
metrics used to calculate the reliabiliv-weight of each
variable since i t directly affects the code modification
performed by RECCO.

After the compiling phase, the list of variables sorted by
reliabiliv-weight as described in section 2 is compared
with the empirical list obtained by fault analysis (see
Section 3). to determine a correlation between the two
results.

All the variables identified in the empirical analysis as
critical are generally positioned at the top rank in the list
of variables sorted by reliabilip-weight; however, a direct
comparison between the two results can be better
articulated. In fact, RECCO does not exploit the concept
of criticality and i t is thus not possible to identify, in the
variable list, a sharp boundary between critical and no-
critical variables.

From a first analysis, the only result one can draw is
that the function used to calculate the reliability-weight
ranks highest the most critical variables. To strengthen this
hypothesis, we let RECCO re-compile the router several
times, each time duplicating a different percentage of
variables. Since we are targeting single faults, the
duplication of a critical variable is able to transforms i t in
a not-critical one. If during the recompiling phases, the
number of critical variable decreases, we can assume the
decision strategy made by RECCO correctly works. Table
2 shows the number of critical and very critical variables
related to the number of duplicated ones. The starting
point (no variable duplication) is obviously the same
presented in Table 1. As expected, increasing the
percentage of duplicated variables, the number of critical
and very critical variable decreases. The same results are
shown in a graphical way in Figure 3.

5

100%

90%
.- ' 80%
2 > 70%

.- 60%

6 50%

0 40%

& 30%

-
U

IC

)I 5 20%

10%

0%
51% So% 70% 8m w iom

Critical Variables 1. Critical Variables 11'

I Percentage of Duplicated Variables I
Figure 3: Percentage of Critical Variables with respect to duplicated Variables

0

Q
.- -

Percentage o f Duplicated Variables z
Figure 4: Duplicated Variables Composition

Different considerations can be obtained rearranging
the compiling results to underline the precision with which
the duplicated variables are distributed among very
critical, critical and non-critical classes. In fact, as shown
in Table 3, the duplicated variables are initially mostly
chosen between the very critical and critical ones. The
same results are shown in a graphical way in Figure 4.

The two tables confirm the ability of RECCO to
estimate, with an acceptable precision, the criticality of the
variables involved in the compiling process.

As final test, to prove our conclusions, the same
injection experiments exploited to produce the results in
Table 2 has been employed again together with the 100%
variable duplication reliable router. Looking at the
obtained results, a small percentage of variable (about 1 %)
fall in the class of very-critical ones.

This imprecision can be mainly imputed to the kind of
targeted application. In fact, the router source code
exploits many multiple-level pointers, whereas RECCO is

able to deal with 2-level pointers only. This limit has been
set up since most programs do not address more then 2-
level pointers and the needed complexity to handle them is
too high.

5. Performance Degradation

The consistency check routines and the redundant data
exploited by the compiler introduce a certain amount of
time and memory overhead; obviously, these costs are
proportional to the number of duplicated variables

Figure draws the performance degradation that ranges
from 5% (30% of variables duplicated) to 17% (all the
variables duplicated).

6

Perform me
Dogwhthn

16%

12%

8%

4%

0%

Figure 5: Performance degradation using RECCO
30% 70% 100%

Finally, Figure 6 reports the memory overhead for
storing and managing the duplicated variables; the values
range from 15% (30% of variables duplicated) to 35% (all
the variables duplicated).

30% 70 % 100%

Figure 6: Data memory overhead using RECCO

6. Conclusion

In this paper, we validated an approach to achieve fault
tolerance in software applications subjected to hard or soft
error appearance, by the evidence of a real test case.

The targeted application is a network architecture
containing an open-source router element.

The designed tool i s a source-to-source compiler that
exploits software techniques (data redundancy); with the
aid of this method, applications can detect (or even
correct) faults occurrence and inform the user of
malfunctions. The results presented in the paper show a
significant correlation between the reliability weight
assigned by the compiler and the results obtained trough
fault injection experiments.

We are currently working toward extending the error
detection and correction capabilities to faults occurring in
the code section of the target programs.

7. References

[I] C. Perez, G. Fabregat, R.J. Martinez, G. Martin,
Incremental messages: micro-kernel services for flexible

and efJicient management of replicated data, RCS-29:
Twenty-Ninth Annual International Symposium on Fault-
Tolerant Computing, 1999, pp. 56-63
A. Benso, S. Chiusano, P. Prinetto, A COTS Wrapping
Toolkit for Fault Tolerant Applications under Windows
NT, International On-Line Test Workshop (IOLTW
2000), Majorca (ES), July 2000, pp. 9-16
K. H. Huang, J. A. Abraham, Algorithm-Based Fault
Tolerance for Matrix Operations, IEEE Trans.
Computers, vol. 33, Dec 1984, pp. 518-528
V. Strumpen, Portable and Fault-Tolerant Sofbvare
Systems, IEEE Micro, September-October 1998, pp. 22-
32
K. Wilken, J.P. Shen, Continuous Signature Monitoring:
Low-Cost Concurrent-Detection of Processor Control
errors, IEEE Transaction on Computer Aided Design,
vol. 9, No. 6, pp. 629-641, June 1990
H. Madeira, J.G. Silva, On-line Signature Leraning and
Checking, Dependable Computing for Critical
Applications 2, Springer-Verlag, pp. 395-420, 1992
D.J. LU, Watchdog Processor and Structural Integriw
Checking, IEEE Transaction on Computers, vol. C-3 1,

J.H. Patel et al., Concurrent Error Detection in ALUs by
Recotnpitting nith Shifted Operands, IEEE Transaction
on Computers, vol. C-31, No. 7, pp. 589-595, Ju ly 1982
M. Rebaudengo, M. Sonza Reorda, M. Torchiano, M.
Violante, Sift-error Detection through Software Fault-
Tolerance techniques, DlT99: IEEE International
Symposium on Defect and Fault Tolerance in VLSl
Systems, November 1-3, 1999 - Albuquerque, New
Mexico, USA, pp. 210-218
Y.M. Hsu et al., Time redundancy for error detecting
neitral networks, Proc. IEEE Int. Conf. on Wafer Scale
Integration, pp. 1 1 1-12], Jan. 1995
A. M. Amendola, A. Benso, F. Corno, L. Impagliazzo. P.
Marmo, P. Prinetto, M. Rebaudengo. M. Sonza Reorda,
Fault Behavior Observation of a Microprocessor System
through a VHDL Sirnulation-Based Fault Injection
Experiment, EURO-VHDL'96, September 1996, Geneva

J. G. Silva, J . Carreira, H. Madeira, D. Costa, F. Moreira,
Experimental Assessnient of Parallel Systems, Proc.
FTCS-26, Sendaj (J), 1996, pp. 41.5-424
M. Zenha Rela, H. Madeira, J. G. Silva, Experimental
Evaluation of the Fail-Silent Behavior in Programs with
Consistency Checks, Proc. FTCS-26, Sendaj (J), 1996,

A. Benso, S. Chiusano, P. Prinetto, L. Tagliafem, 4
C/C++ Compiler for Dependable Applications, The
lntemational Conference on Dependable Systems and
Networks (FTCS-30). New York (NY), USA, June 2000,

A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, SEU
Effect Analysis in a Open-Source Router via a
Distributed Fault Injection Environment, Design
Automation and Test in Europe, Munich (D). March
2001, Accepted for publication
l i t tp://w w w. rcwarch. i bni .coni/i o ti rnal/rd/zied /
httD://tvdg 1 O.uhv.bnl.~ov/seut~st.Iitinl
Linux Web Site: h t t i , : / / ~ / \ ~ ~ w . l i n u ~ . o r ~

NO. 7, pp. 681-685, July 1982

(CH), pp. 536-541

pp. 394-403

pp. 7 1-78

7

[I91 M. Rebaudengo, M. Sonza Reorda, M. Torchiano, M.
Violante, An experimental evaluation of the
effectiveness of automatic rule-based

DuplicatedVariables 0% 10% 20% 30% 40% 50% 60% 70% 80%
Non-Critical Variables 76.3% 82.8% 90.9% 95.3% 97.7% 98.7% 99.0% 99.3% 99.6%
Critical Variables 2.3% 1.6% 1.2% 0.8% 0.6% 0.5% 0.4% 0.3% 0.2%
VerycriticalVariables 21.4% 15.7% 8.0% 3.9% 1.7% 0.8% 0.6% 0.4% 0.3%

transformations for safety-critical applications,
DFT'OO: IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems, 2000 pp. 257 -265.

90% 100%
99.8% 100%
0.1% 0.0%
0.1% 0.0%

DuplicatedVariables
Non-Critical Variables

Critical Variables
Vprvpritiral Variahlpc

10% 20% 30% 40% 50% 6 0 4 70% 80% 90% 100%
3.5% 5.45% 11% 18.6% 27.6% 37.3% 47% 56.7% 66.5% 76.3%
0.7% 1.15% 1.47% 1.7% 1.8% 1.9% 2% 2.1% 2.2% 2.3%
5 7% 13 4% 17 5% 19 6% 206% 208% 21% 21.1% 21.3% 21.4%

Table 3: Duplicated variables composition

8

