POLITECNICO DI TORINO
Repository ISTITUZIONALE

Validation of a software dependability tool via fault injection experiments

Original

Validation of a software dependability tool via fault injection experiments / Benso, Alfredo; DI CARLO, Stefano; DI

NATALE, Giorgio; Tagliaferri, Luca; Prinetto, Paolo Ernesto. - STAMPA. - (2001), pp. 3-8. (Intervento presentato al
convegno IEEE 7th International On-Line Testing Workshop (IOLTW) tenutosi a Taormina, IT nel 9-11 July 2001)
[10.1109/0LT.2001.937809].

Availability:
This version is available at: 11583/1499887 since:

Publisher:
IEEE Computer Society

Published
DOI:10.1109/0OLT.2001.937809

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

15 May 2024

Politecnico di Torino

Validation of a software depend-
abllity tool via fault injection ex-
oeriments

Authors: Benso A., Di Carlo S., Di Natale G., Prinetto P., Tagliaferri L.,

Published in the Proceedings of the IEEE 7th International On-Line Testing Workshop (IOLTW), 9-11
July 2001, Taormina, IT.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=937809

DOI: 10.1109/0LT.2001.937809

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=937809
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=937809
http://dx.doi.org/10.1109/OLT.2001.937809
http://dx.doi.org/10.1109/OLT.2001.937809

Validation of a Software Dependability Tool via Fault Injection
Experiments

ALFREDO BENSO, STEFANO D1 CARLO, GIORGIO DI NATALE,
LUCA TAGLIAFERRI, PAOLO PRINETTO

Politecnico di Torino

Dipartimento di Automatica e I

Corso Duca degli Abruzzi 24 - —] 2 /

Email: { benso, dicarlo, dinatale, t .
http://www. test@ i

Abstract

The present paper presents the validati
strategies employed in the RECCO tool
C/C++ software; the RECCO com, %
source code to extract information
of the variables that populate the
structure itself. Experiméntal
Source Router are used

and correlated to proveé
methodology.

1. Introduction

digita1)systems has become a

al point of view, due to
and quality required by the
tdware approach, i.e., adding

redundant , otters high performances, it could be
not alway st economical solution, due to the high
hardware o rhead This reason moves the dependability

issue in designing hardware using COTS at the software
layer. The fulfillment of these new constraints needs
investigating how systems can be designed by assembling
commercial hardware and software COTS (Components
Off The Shelf). Since these components are not normally
designed to guarantee high level of dependability, new
approaches able to add reliability to the final system
should be defined. In this context, the software fault
tolerance aims at addressing system failures caused by a
hard or soft error appearing in the system.

The software dependability problem can be mainly
faced at three different layers:

G

aye e Operating System can
to guarantee a higher level of
7 Thie approach is very effective but
very detailed modification of the
System services and a free access to its
source code [1].
Middleware layer: interposition techniques are used
to design an intermediate software layer able to
possibly modify all the
gtween the user application and
tem. This technique is very
\e user application is not
~¢.g., when the source code is not
in commercial software COTS [2].
Software layer: check-pointing,
gorithm-based fault tolerance, source-to-source
ecompilation, and software data redundancy are
some possible solutions proposed so far to make a
software application more dependable. These
techniques are the best solution whenever the source
code of the target application is available and can be
freely modified [3] [4] [5] [6] [7] [8] [9] [10].

All the proposed techniques aim at reducing the unsafe
situations in which the system produces incorrect results,
whereas the application gives the impression to correctly
terminate. This kind of malfunction is called Fail-Silent
Violation [11] [12]. Recent researches show the
relationship between this kind of fails and the appearance
of a fault in memory locations. A computer-based system
is said to be Fail-Silent if its outputs correspond only to
correct results. If a fault occurs, the system can either stop
the application showing an error message or crash. In both
cases, the user is able to detect anomalous behaviors.

Obtaining a Fail-Silent behavior is the subject of many
researches that led to the development of techniques like
Algorithm Based Fault Tolerance (ABFT) [3], Assertions,

0peratlng

Time redundancy, and Control Flow checking [4] [5] [6]
[7]1 [8] [9] [10]; these strategies have been proved to
furnish high level of fail-silent behaviors in ordinary
computers (e.g., not specifically designed to always
produce a Fail-Silent behavior) when coupled with the
intrinsic Error Detection Mechanisms (EDMs) of the
system (exceptions, memory protection, etc.) [13].
Otherwise, a systematic approach for introducing data and
code redundancy into an existing source code written in C
language is presented in [9]. Nevertheless, all these
approaches show various restrictions that reduce their field
of action.

In [14] the authors proposed RECCO (REliable Code
COmpliler), an ad-hoc Source-to-Source C/C++ compiler
able to increase the reliability level of C/C++ source code.

This paper aims at validating the effectiveness of the
RECCO approach by the evidence of a case study.
Although many simple test benches have been already,
tested to validate the effectiveness of the tool, a real cas
study has to be tried. To solve this problem, the ngfwork
architecture presented in [15] has been targeted
case.

(Single Event Upset) d
observed defective-heha

gives avrief

as Section 3

emonstrates

val results with

applying a\et of code modification rules. Figure 1
sketches the structural design of RECCO identifying the
needed tasks during the compiling flow.

RECCO

!

H Code Re-ordering I—-“ Varlalzll_:i DI::':;?:"" o |<—

e —
Reliable C/C++ code

Figure 1: The RECCO tool

The RECC rce-to-Source compiling pr
split into thre in phases:

ility-weight are
bves a representation

Reliability

Code Reliability ysi I':— c/gnjgi:;lie

ess can be

imation of the variable
>ndability point of view. These
rictly related to the life-time of

* Co ordering phase: starting from the
information supplied by the Code Reliability
Analysis, a first improvement of the code
dependability is, obtained resorting to a code
e, \code-reordering phase tries to
bility-weight of each variable
variable dependencies. The
rred to as Reliable C/C++.

is achieved by resorting to variable duplication or

riplication. The resulting code is able to detect
faults inside the memory according to the targeted
fault model (see Section 1) and in case of variable
triplication is able to correct the fault and to recover
a safe state. The generated code is referred to as
Reliable’ C/C++.

3. Test bench description

The goal of this paper is the validation of the
effectiveness of the RECCO approach in a real situation.
Therefore, a suitable test environment has been set up to
perform a set of fault injection experiments.

As sketched in Section 1, the targeted test architecture is
the network system presented in [15].

The adopted network (see Figure 2) has been chosen to
meet two mandatory requirements: it should be simple
enough to monitor its behavior during fault experiments
and, at the same time, enough sophisticated to reflect a
real case of study.

ROUTER

Figure 2: Network architecture

The presented system can reflect a real scenario in
which the involved hosts are considered as a complex
subnet and the router is deputed to join the different
subnets.

Since the most critical element in the targeted
architecture is the router, it is the best candidate to b

Source router implemented on a PC running
Operating System equipped with mu
interfaces [18] has been used.
The fault injection experime
complete fault injection
and the host computey
initially used to pe

protected using RECCO strategies. To have free ac to
the source code of this critical component,
. Li
ork

—_

As mentioned in the intro
model is the SEU (Single
temporary bit flipping i

Faults have been inje

geps orking properly (the fault has
¢fore any further reading)

directions)

* The router crashes.

The fault injections have been performed in random
moments and memory positions within the above-
mentioned sections. The variables corresponding to those
locations have been classified by means of the effects they
produced:

* Very Critical Variables (the router always crashes)

* Critical Variables (the router sometimes crashes and

the clients do not receive any packets)

* Non-critical Variables (the fault produces no effect).

Since the overall list of the variable classification cannot
be reported, Table 1 summarizes the percentage of
variables in the three mentioned above classes.

Variable effect | Percentage

Non critical 76,3%
Critical 2.3%
Very Critical 214%

Table 1: Router variables classification

ECCO Resul
This paragrapit ~pr ts the set of experiments
performed otk dti ystem using the RECCO tool.
calculate the reliability-weight of each
t directly affects the code modification

cribed in section 2 is compared
obtained by fault analysis (see
a correlation between the two

results.
All the v

ied in the empirical analysis as
positioned at the top rank in the list

1cality and it is thus not possible to identify, in the
variable list, a sharp boundary between critical and no-
critical variables.

From a first analysis, the only result one can draw is
that the function used to calculate the reliability-weight
ranks highest the most critical variables. To strengthen this
hypothesis, we let RECCO re-compile the router several
times, each time duplicating a different percentage of
variables. Since we are targeting single faults, the
duplication of a critical variable is able to transforms it in
a not-critical one. If during the recompiling phases, the
number of critical variable decreases, we can assume the
decision strategy made by RECCO correctly works. Table
2 shows the number of critical and very critical variables
related to the number of duplicated ones. The starting
point (no variable duplication) is obviously the same
presented in Table 1. As expected, increasing the
percentage of duplicated variables, the number of critical
and very critical variable decreases. The same results are
shown in a graphical way in Figure 3.

100%

0% T T T —=

Percentage of Critical Variables

werH HHH H H

s H FHHHMH H H H
mmH HMHHMHH B B
e HMH MM M B
s H HFHHMH H H H
amv HEHHKHKH B
amwsHHHH H H H
% 41— M H

w54 = —

O Mon-critical Varables
W Critical Variables
O“ery Critical Variables

T T T T /A ?
0% 1% s gy (LY 0% [ikY 2% \G.W/
Percentage of Duplicated Va{?fli

>

Figure 3: Percentage of Critical Vari??s

N @<

ith r\é§pe\09to duplic
. A7

o0.00x

)

qonox |
§0.00% J

AN

=/

O Mon-Critical W ariables

BN

| Critical Variables

mYery Critical Variables

o I\%E\%:'—:

A Nyiizay

).\l. .
N\
70
A(s
3

l<k|
gon |

[l

0% 20% %

Duplicated Variables Composition

| T T T
u% 0% 80% @f

ntage of Dupllc ated Vari Q
/2

a obtalned rearranging
ine the precision with which

same results are shown in a graphical way in Figure 4.

The two tables confirm the ability of RECCO to
estimate, with an acceptable precision, the criticality of the
variables involved in the compiling process.

As final test, to prove our conclusions, the same
injection experiments exploited to produce the results in
Table 2 has been employed again together with the 100%
variable duplication reliable router. Looking at the
obtained results, a small percentage of variable (about 1%)
fall in the class of very-critical ones.

This imprecision can be mainly imputed to the kind of
targeted application. In fact, the router source code
exploits many multiple-level pointers, whereas RECCO is

4 Duplicated Va@?}c/mposmon

able to deal with 2-level pointers only. This limit has been
set up since most programs do not address more then 2-
level pointers and the needed complexity to handle them is
too high.

5. Performance Degradation

The consistency check routines and the redundant data
exploited by the compiler introduce a certain amount of
time and memory overhead; obviously, these costs are
proportional to the number of duplicated variables

Figure draws the performance degradation that ranges
from 5% (30% of variables duplicated) to 17% (all the
variables duplicated).

Performance

Degradatio n
16% [2]
12%
8%

[3]

N .
0% [4]

100%
Figure 5: Performance degradatlon using RECCO

Finally, Figure 6 reports the memory overhead for
storing and managing the duplicated variables; the values
range from 15% (30% of variables duplicated) to 35% (all
the variables duplicated).

Memory [A
Owverhead

40%

30%

20%

10%

0%

[10]

Figure 6: Data mem#ry overhe

[11]
6. Conclusion

[12]

containig v
The deki i57a source-to-source compiler that [13]
exploits s echniques (data redundancy); with the

method applications can detect (or even
wits occurrence and inform the user of
malfunctions. The results presented in the paper show a
significant correlation between the reliability weight
assigned by the compiler and the results obtained trough
fault injection experiments.

We are currently working toward extending the error
detection and correction capabilities to faults occurring in
the code section of the target programs.

[14]

[15]

7. References
[16]

[17]

[1] C. Perez, G. Fabregat, RJ. Martinez, G. Martin, (18]

Incremental messages: micro-kernel services for flexible

and efficient management of replicated data, FTCS-29:
Twenty-Ninth Annual International Symposium on Fault-
Tolerant Computing, 1999, pp. 56-63

A. Benso, S. Chiusano, P. Prinetto, A COTS Wrapping
Toolkit for Fault Tolerant Applications under Windows
NT, International On-Line Test Workshop (IOLTW
2000), Majorca (ES), July 2000, pp. 9-16

K. H. Huang, J. A. Abraham, Algorithm-Based Fault
Tolerance for Matrix Operations, IEEE Trans.

Computers, vol. 33, Dec 1984, pp. 518-528
V. Strumpen, Portable and Fault-Tolerant Software
Systems, IEEE Micro, September-October 1998, pp. 22-

srd Leraning and
for Critical
¢ . 395-420, 1992

- and Structural Integrity

engo, M. Sonza Reorda, M. Torchiano, M.
Violante, Soft-error Detection through Software Fault-
Tolerance techniques, DFT'99: IEEE International
Symposium on Defect and Fault Tolerance in VLSI

Systems, November 1-3, 1999 - Albuquerque, New
Mexico, USé 0-218
80T e redundancy for error detecting

. IEEE Int. Conf. on Wafer Scale
121, Jan. 1995

through a VHDL Simulation-Based Fault Injection
Experiment, EURO-VHDL'96, September 1996, Geneva
(CH), pp. 536-541

J. G. Silva, J. Carreira, H. Madeira, D. Costa, F. Moreira,
Experimental Assessment of Parallel Systems, Proc.
FTCS-26, Sendaj (J), 1996, pp. 415-424

M. Zenha Rela, H. Madeira, J. G. Silva, Experimental
Evaluation of the Fail-Silent Behavior in Programs with
Consistency Checks, Proc. FTCS-26, Sendaj (J), 1996,
pp- 394-403

A. Benso, S. Chiusano, P. Prinetto, L. Tagliaferri, A
C/C++ Compiler for Dependable Applications, The
International Conference on Dependable Systems and
Networks (FTCS-30), New York (NY), USA, June 2000,
pp- 71-78

A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, SEU
Effect Analysis in a Open-Source Router via a
Distributed Fault Injection Environment, Design
Automation and Test in Europe, Munich (D), March
2001, Accepted for publication
http://www.research.ibm.com/journal/rd/ziegl/
http://tvdg10.phy.bnl.gov/seutest.html

Linux Web Site: http://www .linux.org/

[19] M. Rebaudengo, M. Sonza Reorda, M. Torchiano, M. transformations for safety-critical applications,
Violante, An experimental evaluation of the DFT'00: IEEE International Symposium on Defect and
effectiveness of automatic rule-based Fault Tolerance in VLSI Systems, 2000 pp. 257 —265.

Duplicated Variables 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% | 100%
Non-Critical Variables | 76.3% | 82.8% | 90.9% [953% | 97.7% | 98.7% | 99.0% | 99.3% | 99.6% | 99.8% | 100%
Critical Variables 23% 1.6% 12% | 08% | 06% | 05% | 04% | 03% | 02% | 0.1% | 0.0%
Very critical Variables | 21.4% | 15.7% | 80% [3.9% 1.7% | 08% 0%% | 04% | 03% | 0.1% 4 00%

Table 2: Percentage of critical variables with respe/ct&\hﬂplicated variablei N
%,

Duplicated Variables | 10% | 20% 30% 40% [<50% | 60% | 70% | 80% 7, 90% N 100%

Non-Critical Variables | 3.5% | 545% | 11% | 18.6% ~29.6% N 373% | 47% | 564% \|\66.9% | 76.3%
Critical Variables 07% | 1.15% | 147% | 17%(1.8%\] \1\9% 2% L2090\ |N22% | 23%
Very critical Variables | 5.7% | 134% | 175% | 19%6% Y. 20.6%" | 208% | 21%(J(211%\] 21.3% | 214%

e
@@7 &@Q @ﬂ
S

