
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Towards Effective Portability of Packet Handling Applications Across Heterogeneous Hardware Platforms / Baldi, Mario;
Risso, FULVIO GIOVANNI OTTAVIO. - 4388:(2005), pp. 28-37. (Intervento presentato al convegno IFIP TC6 7th
International Working Conference, IWAN 2005 tenutosi a Sophia Antipolis (FR) nel November 21-23, 2005)
[10.1007/978-3-642-00972-3_3].

Original

Towards Effective Portability of Packet Handling Applications Across Heterogeneous Hardware
Platforms

Publisher:

Published
DOI:10.1007/978-3-642-00972-3_3

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1494645 since:

Springer

Towards Effective Portability of
Packet Handling Applications Across Heterogeneous

Hardware Platforms

Mario Baldi, Fulvio Risso

Politecnico di Torino, Dipartimento di Automatica e Informatica, Torino, Italy
{mario.baldi, fulvio.risso}@polito.it

Abstract. This paper presents the Network Virtual Machine (NetVM), a virtual
network processor optimized for implementation and execution of packet han-
dling applications. As a Java Virtual Machine virtualizes a CPU, the NetVM
virtualizes a network processor. The NetVM is expected to provide a unified
layer for networking tasks (e.g., packet filtering, packet counting, string match-
ing) performed by various network applications (firewalls, network monitors,
intrusion detectors) so that they can be executed on any network device, rang-
ing from high-end routers to small appliances. Moreover, the NetVM will pro-
vide efficient mapping of the elementary functionalities used to realize the
above mentioned networking tasks onto specific hardware functional units (e.g.,
ASICs, FPGAs, and network processing elements) included in special purpose
hardware systems possibly deployed to implement network devices.

1. Introduction

An increasing number of network applications performing some sort of packet
processing are being deployed on current IP networks. Well known examples are
firewalls, intrusion detection systems (IDS), network monitors, whose execution is
must take place in a specific location within the network (e.g., backbone, network
edge, on end systems) or, in some cases, be distributed across different devices. In
general, such network applications must be deployed on very different (hardware and
software) platforms, ranging from routers, to network appliances, personal computers,
smartphones. In some cases, the whole range of potential target platforms is not even
precisely and finally known at development time.

A development and execution platform for packet handling applications with fea-
tures comparable to the ones of Java and CLR has been thus far not available. This
paper reports on work aiming at designing, implementing, and assessing such a plat-
form based on a Network Virtual Machine (NetVM), a new architecture for a (virtual)
network processor in which execution of packet handling related functions is opti-

 This work has been carried out within the framework of the QUASAR project, funded by the

Italian Ministry of Education, University and Research (MIUR) as part of the PRIN 2004
Funding Program. Its presentation has been supported by the European Union under the E-
Next Project FP6-506869.

 2

mized. Specifically, when the NetVM is deployed on network processors or hardware
architectures, packet handling related functions can be mapped directly on underlying
special purpose hardware (such as ASICs, CAMs, etc) thanks to their virtualization in
what are called NetVM coprocessors. This virtual device is programmed with an as-
sembly language, or NetVM bytecode, that supports a set of interactions among the
various blocks (e.g. memory, execution units, etc.) inside the NetVM. The project re-
ported by this work addresses also the interaction between NetVM and external envi-
ronment, e.g. how to download code to the NetVM, how to get the results of code
execution, etc.

Network Processing

Program

(high level

programming language)

Compiler

NetVM Bytecode

Protocol Database

(NetPDL)

Native code

Other tools

NetVM or Just-in-time compiler

Network processor or other
hardware system

Native codeNative code

Fig. 1. NetVM framework.

Virtual machines are the basis for the “write once, run anywhere” paradigm, thus
enabling the realization and deployment of portable applications. Even though from
certain points of view the NetVM has a more limited scope than Java and CLR virtual
machines (i.e., the NetVM targets a smaller range of applications), its goals are
somewhat more ambitious. In fact, the latter aim at application portability across plat-
forms that, while different from both hardware and software (i.e., operating system)
point of view, are similar in being designed to support generic applications. Instead,
the NetVM must combine portability and performance; this translates in the capability
of effectively deploying available hardware resources (such as processing power,
memory, functional units) notwithstanding the significantly different architecture and
components of the various hardware platforms targeted.

The efficiency and portability of the NetVM has a significant by-product: it makes
it a potential candidate for becoming a universal application development platform for
network processing units (NPUs). Network processors combine high packet process-
ing rates and programmability. However, programming NPUs is a complex task re-
quiring detailed knowledge of their architecture. Moreover, due to the significant ar-
chitectural differences, applications must be re-written for each NPU model.
Deploying a virtual machine could help dealing with the diversity of network proces-
sors by offering a common platform for writing and executing portable applications.
On the one hand, the NetVM hides the architectural details of the underlying NPU
from the programmer. On the other hand, being designed specifically for network

 3

packet processing, the NetVM has un-matched potential for effective execution on a
hardware platform specifically designed for the same purpose.

NetVM programming is further simplified by the definition of a high-level pro-
gramming language that operates according to packet descriptions realized with
NetPDL (Network Packet Description Language) [3] and is compiled into native
NetVM bytecode, as shown in the top part of Fig. 1. Once NetVM support be pro-
vided by commonly deployed network gear, distributed applications could be based
on downloading NetVM code on various network nodes and possibly collecting the
results deriving by its execution.

This paper is structured as follows. Alternatives for the implementation of the
NetVM are presented in Section 2. Section 3 outlines the proposed NetVM architec-
ture discussing its main components; performance issues are tackled in Section 4.
Section 5 draws some conclusions and briefs current and future work.

2. NetVM Implementation

The NetVM aims at providing programmers with an architectural reference, so that
they can concentrate on what to do on packets, rather than how to do that. This has
been dealt with once for all during the NetVM implementation. This section focuses
on how to implement the NetVM on both end-systems and network nodes.

Several choices are available, ranging from software emulation — NetVM byte-
code is interpreted and for each instruction a piece of native code is executed to per-
form the corresponding function — optionally with specific hardware support (se-
lected instructions can be mapped to specific hardware available on that platform), to
recompilation techniques — e.g. an ahead-of-time (AOT) or just-in-time (JIT) com-
piler can translate NetVM bytecode into assembler specific for the given platform (es.
x86, IXP2400, etc), therefore making use of the processor registers instead of operat-
ing on a stack.

A further option is to implement the NetVM architecture in hardware, i.e., the pro-
posed architecture can be used as the basis for the design of a hardware device for
network processing (e.g. VHDL can be used to create a new chip that implements the
NetVM). Taking this option a step further, the NetVM code implementing a set of
functionalities (e.g., a NetVM program that tracks the amount of IPv6 traffic) could
be compiled in the hardware description of a (possibly integrated) hardware system
that implements such functionality (e.g., an ASIC or an FPGA configuration). In other
words, the NetVM could provide support to fast prototyping, specification, and im-
plementation of network oriented hardware systems.

Since the NetVM design has been modeled after the modern network processor ar-
chitecture, perhaps the most appropriate implementation option for the NetVM is an
AOT/JIT compiler that maps NetVM assembler into a network processor’s native
code. This approach also solves one of the problems of network processors, which is
their complexity from the programmability point of view.

 4

3. NetVM Architecture and Components

The main architectural choices of the NetVM were driven by the goal of achieving
flexibility, simplicity, and efficiency and built upon the experiences maturated in the
field of Network Processing Unit (NPU) architectures since they are specifically tar-
geted to network packet processing. The resulting NetVM architecture is modular and
built around the concept of Processing Element (NetPE), which virtualizes (or, it
could be said, is inspired to) the actual micro-engine of a NPU.

Processing Elements deal with only few tasks, but they have to perform them very
fast: they have to process data at wire speed and in real time, they have to process
variable size data (e.g. IP payload) or/and fragmented data (e.g. an IP payload frag-
mented over several ATM cells). In addition, they should execute specific tasks, such
as binary searches in complex tree structures and CRC (Cyclic Redundancy Code)
calculation with stringent time constraints.

Multithreading is an expected feature of a NPU, hence an objective of our architec-
tural design: in fact packets are often independent from each other and suitable to be
processed independently. For example, one of the first Network Processors — the In-
tel IXP1200 — is composed of six processing elements called Packet Engines. The
larger the number of Processing Elements, the higher is the achievable degree of par-
allelism, since independent packets could be distributed to these units.

NetVM

NetPE1
(e.g. filtering)

N
et

w
or

k
P

ac
ke

t

N
et

w
or

k
D

at
a

O
ut

pu
t

P
or

t

In
p

ut
P

or
t

General
Purpose CPU

Classification
coprocessor

Crypto
coprocessor

CRC
coprocessor

Shared Memory

E
xc

ha
ng

e
B

uf
fe

r
1

E
xc

ha
ng

e
B

uf
fe

r
2

NetPE2
(e.g. session statistics)In

p
ut

P
or

t

O
ut

pu
t

P
or

t

Fig. 2. NetVM configuration example.

A NetPE is a virtual CPU (with an instruction set and local memory) that executes
an assembly program that performs a specific function and maintains private state. A
NetVM application is executed by several NetPEs (for example, Fig. 2 shows an ap-
plication deploying two NetPEs), each of which may implement a simple functional-
ity; complex structures can be built by connecting different NetPEs together. More-
over NetPEs use specialized functional units (coprocessors, shown in Fig. 2) and
various types of memories to exchange data. This modular view derives from the ob-
servation that many packet-handling applications can be decomposed in simple func-
tional blocks that can be connected in complex structures. These structures can exploit
parallelism or sequentiality to achieve higher throughput.

 5

3.1. Processing Element (NetPE) Architecture

The general architecture of a NetPE includes six registers (Program Counter, Code
Segment Length, Data Segment Length, Packet Buffer Length, Connection Table
Length, Stack Pointer) in support to the processor operation, a stack used for instruc-
tion operands, a connection table whose purpose is outlined in Section 3.2, and a
memory encompassing 4 independent segments (Section 3.3).

Like most existing virtual processors, the NetVM has a stack-based design where
each NetPE has its own stack. A stack-based virtual processor does not encompass
general-purpose registers as instructions that need to store or process a value make
use of the stack. This grants portability, a plain and compact instruction set and a sim-
ple virtual machine. The consequence of this choice is that.

The execution model is event-based. This means that the execution of a NetPE is
activated by external events, each one triggering a particular portion of code. Typical
events are the arrival of a packet from an input, the request of a packet from an output
or the expiration of a timer.

3.2. Internal and external connections

Connections are used to connect a NetPE with other NetPEs, with the physical
network interfaces, and eventually with user applications. A NetPE can have a num-
ber of input and output exchange ports (or ports for the sake of brevity), each coupled
to an exchange buffer. Each connection connects an output port of a NetPE to an in-
put port of another one and is used to move data, usually packets, between the two.

Although the meaning of a connection is different, the connection model of the
NetVM is similar to the one of Click1. Particularly, two types of connections are de-
fined:

• Push connection: the upstream NetPE passes data to the NetPE at the other
end of the connection. This is the way packets usually move from one process-
ing function to the next one in network devices.

• Pull connection: the downstream NetPE initiates data transfer by requesting
the NetPE at the other end of the connection to output a packet. Two options
are provided for the downstream NetPE in case no packet is available: (i) it
enters a wait state, (ii) an empty exchange buffer is obtained. For example, a
NetPE that extracts packets from a buffer and sends them on an output inter-
face uses a pull connection.

Also ports can be either push or pull. The NetVM runtime environment checks the
validity of a NetPE interconnection configuration at creation time since there may be
some illegal configuration, such as a connection between a push port and a pull port.

The number and type of ports of a NetPE is defined by the NetVM application and
is maintained in the Connection Table within the NetPE, which is a read-only mem-
ory portion. The NetVM runtime environment fills out the connection table during
configuration instantiation. Programs can use it to obtain, for every connection, the ID

1 In Click [5] a connection is a direct call to a C++ method, while in NetVM it is a communica-

tion channel between two independent entities.

 6

inside NetVM environment, the type (push / pull), and the direction (incoming or out-
going).

The NetVM communicates with external entities through of NetVM sockets. For
example, if a NetVM is deployed inside the operating system of a desktop PC, exter-
nal entities could be network devices, file streams or user applications that rely on the
NetVM for low-level operations like filtering or network monitoring.

Applications that are intended to receive packets from a NetVM deploy a socket
connected, through a push connection, to the push output port of a NetPE. The trans-
fer of packets is initiated by the virtual machine (i.e., by the connected NetPE) and the
application receives them through a libpcap-style [2] callback function. Alternatively,
an application that is supposed to request data from a NetVM deploys a socket con-
nected to the pull output port of a NetPE. Pull connections are appropriate to applica-
tions that retrieve tables, counters, flows, and other similar data.

An advantage of the socket/exchange port model is that transferred data is generic
since exchange buffers are simple data containers; it follows that the application does
not have any implicit information about the data that it receives, i.e., about data type,
which must be provided in some other way.

3.3. Memory architecture

A NetPE has four types of memory: one shared among all NetPEs (shared mem-
ory), one for private data (data memory), one (local to the NetPE) that contains the
program that is being executed (code memory) and one that contains the data (usually
a network packet) that is being processed (exchange buffer). Shared memory can be
used to store data that is needed concurrently by more than one NetPE (e.g., routing
tables or state information). A NetPE is not compelled to use the shared memory: if it
needs only local storage, only the Data Memory segment is used. This architecture al-
lows to better isolate different kinds of memory and to increase efficiency through
better parallelization of memory accesses. Memory addresses are 32-bit wide, al-
though we do not expect to have such amount of memory (4GB) in network devices.

Since the NetVM may be potentially mapped on embedded systems and network
processors, the use of high-level memory management systems like garbage collectors
is not feasible. Therefore, the bytecode has a direct view of the memory. Furthermore,
the memory is statically allocated during the initialization phase: the program itself,
by means of appropriate opcodes, specifies the amount of memory it needs for being
able to work properly. Obviously, these instructions can fail if not enough physical
memory is present.

The flexibility lost with this approach is balanced by higher efficiency: the pro-
gram can access the memory without intermediation thanks to ad-hoc load and store
instructions. Specific instructions for buffer copies (a recurrent operation in network
processing; some platform have even ad-hoc hardware units) are provided as well, ei-
ther inside the same memory or between different ones. Moreover, knowing the posi-
tion and the amount of memory before program execution allows very fast accesses
when an AOT/JIT compiler is used because memory offsets can be pre-computed.

 7

3.4. Exchange Buffers

Packets are stored in specific buffers, called exchange buffers, which are shared by
two NetPE that are on the same processing path in order to minimize racing condi-
tions (and avoid bottlenecks) when exchanging data. For instance, the NetPE1 in Fig.
2 will copy output data (e.g. the filtered packet) in the exchange buffer, which is then
made accessible to NetPE2 for further elaboration (e.g. computing session statistics).
Although, in principle, data can be moved from a NetPE to another through the shared
memory, this could lead to very poor performance because this memory could be-
come the bottleneck. Vice versa, exchange buffers provide a very efficient exchange
mechanism between NetPEs that are on the same processing path.

In order to increase packet-handling efficiency, network-specific instructions (e.g.
string search) and coprocessors may have direct access to exchange buffers. Instruc-
tions for data transfer (to, from and between exchange buffers) are provided as well.
Furthermore, instead of moving packet data around, NetPEs can operate on the data
contained in the exchange buffer, which are then “moved” from a NetPE to another.
This is very efficient because exchanged buffers are not really moved; the NetVM
guarantees exclusive access to them, so that only the NetPE that is currently involved
in the processing can access to that data.

The typical size of exchange buffer is usually limited to some kilobytes; for larger
data the shared memory can be used. This stems from the fact that this memory is of-
ten used to transport packets, although it can contain also generic data (e.g. fields, sta-
tistics or some generic state). In some cases, exchange buffers can contain also sub-
portions of packets, as some network processors break packets into separate cells for
internal transmission.

Usually, a NetPE has a single exchange buffer (i.e. it processes one packet at a
time), although the NetPE specification does not prevent to have multiple exchange
buffers. Exchange buffers are readable and writeable, although some particular virtual
machine implementations could provide read only access for performance purposes or
hardware limitations. Under these platforms an AOT/JIT compiler will refuse to build
the NetPEs that perform write operations on packet memory.

3.5. Coprocessors

The NetVM instruction set is complemented by additional functionalities specifi-
cally targeted to network processing. Such functionalities are provided by coproces-
sors that, as shown in Fig. 2, are shared among the NetPEs. Making coprocessor func-
tionalities explicitly available to the NetVM programmer is beneficial when the
NetVM is executed on both general-purpose processors and network processors or
special purpose hardware systems.

On general purpose systems coprocessors are realized by native code possibly im-
plementing optimized algorithms. Code and data structures can be shared among dif-
ferent modules, thus granting efficient resource usage. For example, in a NetVM con-
figuration with several NetPEs using the CRC32 functionality, the same coprocessor
code can be used by all the NetPEs. If the implementation of the CRC32 coprocessor
is improved, every NetPE benefits from it without any change in the NetVM imple-

 8

mentation or in the application code. Also, more complex functionalities, such as
string search or classification, can share data structures and tables among different
modules for even better efficiency and resource usage. An example is the Aho-
Corasick string-matching algorithm, which can build a single automaton to search for
multiple strings as requested by different NetPEs.

On special purpose hardware systems, such as network processors, coprocessors
can be mapped on functional units or ASICs, where present. Consequently, on the one
hand the efficiency of NetVM programs is significantly increased when the target
platform provides the proper hardware. On the other hand, writing NetVM programs
represents a simple way of programming network processors or other special purpose
hardware systems without having to know their hardware architectural details, yet
while exploiting the benefits of their hardware specificities.

Communications with NetPEs is based on a well-defined, generic (i.e., not specific
of a given processor) interface based on the IN and OUT assembly primitives, while
parameters are pushed on the top of the stack. This guarantees a generic invocation
method for any coprocessor without the need of any dedicated instructions; therefore
coprocessors can be added without modifying the NetIL bytecode.

A “standard” coprocessor library (that includes a classification, a connection track-
ing, a string search and a checksum coprocessor, although some are still under devel-
opment) is defined in the NetVM specification: a valid NetVM implementation
should implement this library and each program using only coprocessors of the stan-
dard library should work on any valid NetVM. Additional coprocessors can be added
to the library by NetVM implementations or third party libraries can be “linked” to a
NetVM and used by applications that have been written to deploy the functionalities
of non-standard coprocessors.

3.6. High Level Programming Language

NetVM programs are generally written in a high level programming language de-
signed for networking applications, specifically for packet processing. One of such
language (NetPFL) enables manipulations of packets and header fields whose format
is described through the Network Packet Description Language (NetPDL) [3]. Al-
though a detailed description of NetPDL and NetPFL is outside the scope of this pa-
per, a sample is shown in Fig. 3 to offer a glance in the complexity of using the
NetVM. The code instructs the NetVM to return on its exchange port number 1 all
packets that, when parsed as Ethernet frames, contain the value 0x0800 in their
EtherType field. In other words, this code implements a filter for IPv4 packets.

Fig. 3 shows both the syntax in the NetPFL language and the equivalent in the
widely known tcpdump [2] packet filtering application. The comparison shows that,
even though the NetVM provides the flexibility of a generic packet processing engine,
programming a packet filter is not more complicated than specifying it for tcpdump,
i.e., a utility specifically targeted and optimized for packet filtering. Hence, the in-
creased flexibility of the NetVM is not traded for increased programming complexity,
as well as for (significantly) lower performance, as discussed in the next section.

 9

NetPFL: ethernet.type == 0x800 ReturnPacket on port 1

tcpdump: ether proto 0x800

Fig. 3. High-level code to filter IPv4 packets, in both NetPFL and tcpdump syntax.

4. Performance Evaluation

Although the current implementation of the NetVM is still in the early stages, a
few numerical results are reported in this section in order to provide a first evaluation
of the proposed architecture. To this purpose the NetVM is compared against the
Berkeley Packet Filter (BPF) [1], probably the best-known virtual machine in network
processing arena. Fig. 4 shows the assembly code required to implement the filter
shown in Fig. 3, for both the NetVM and BPF virtual machines.

BPF assembly

0) ldh [12] ; load the ethertype field

1) jeq #0x800 jt 2 jf 3 ; jump to 2) if true, else 3)

2) ret #1514 ; return the packet length

3) ret #0 ; return false

NetVM assembly

; Push Port Handler

segment .push

.locals 5

.maxstacksize 10

pop ; pop the "calling" port ID

push 12 ; push the location of the ethertype

upload.16 ; load the ethertype field

push 2048 ; push 0x800 (=IP)

jcmp.eq send ; cmp the 2 topmost values; jump if true

ret ; otherwise do nothing and return

send:

pkt.send out1 ; send the packet to port out1

ret ; return

Ends

BPF assembly

0) ldh [12] ; load the ethertype field

1) jeq #0x800 jt 2 jf 3 ; jump to 2) if true, else 3)

2) ret #1514 ; return the packet length

3) ret #0 ; return false

NetVM assembly

; Push Port Handler

segment .push

.locals 5

.maxstacksize 10

pop ; pop the "calling" port ID

push 12 ; push the location of the ethertype

upload.16 ; load the ethertype field

push 2048 ; push 0x800 (=IP)

jcmp.eq send ; cmp the 2 topmost values; jump if true

ret ; otherwise do nothing and return

send:

pkt.send out1 ; send the packet to port out1

ret ; return

Ends

Fig. 4. NetVM and BPF code to filter IPv4 packets.

A first comparison shows that the NetVM assembly is definitely richer than the
BPF one, which gives an insight about the possibility of the NetVM assembly. How-
ever the resulting program is far less compact (the “core” is six instructions against
tree in BPF). This shows one of the most important characteristics of the NetVM ar-
chitecture: the stack-based virtual machine is less efficient of a competing register-
based VM (such as the BPF is) because it cannot rely on a set of general-purpose reg-
isters. Hence, the raw performance obtained by NetVM cannot directly compete
against the ones obtained by the BPF.

Table 1. NetVM Performance Evaluation.

Virtual Machine Time for executing the “IPv4” filter (clock cycles)

NetVM 392

BPF 64

 10

Table 1 shows the time needed to execute the programs reported in Fig. 4: as ex-
pected, the BPF outperforms the NetVM, mainly due to the additional instructions
(related to the stack-based architecture) and the poor maturity of the code.

However, a NetVM is intended as a reference design and we do not expect its code
to be executed as it is. In order to achieve better performance, NetVM code must be
translated into native code (thorough a recompilation at execution-time, i.e., AOT/JIT
compiling) according to the characteristics of the target platform. This justifies the
choice of a stack-based machine, which is intrinsically slower, but its instructions are
much simpler to be translated into native code. Performances are expected to be much
better after a dynamic recompilation. The implementation of an AOT/JIT compiler is
part of our future work on the NetVM.

5. Conclusions

This paper presents the architecture and preliminary performance evaluation of the
NetVM, a virtual machine optimized for network programming. The paper discusses
the motivations behind the definition of such architecture and the benefits stemming
from its deployment on several hardware platforms. These include simplifying and
speeding up the development of packet handling applications whose execution can be
efficiently delegated to specialized components of customized hardware architectures.
Moreover, the NetVM provides a unifying programming environment for various
hardware architecture, thus offering portability of packet handling applications across
different hardware and software platforms. Further, the proposed architecture can be
deployed as a reference architecture for the implementation of hardware networking
systems. Finally, the NetVM can be a novel tool for specification, fast prototyping,
and implementation of hardware networking systems.

Some preliminary results on the performance of a simple NetVM program shows
that other simpler virtual machines targeted to networking applications outperform the
NetVM that, in turn, provides higher flexibility. Ongoing work on the implementation
of a JIT compiler for NetVM code aims at reversing or at least reducing this perform-
ance discrepancy.

Since writing NetVM native code (bytecode) is not very handy, work is being done
towards the definition of a high level programming language and the implementation
of the corresponding compiler into NetVM bytecode.

Finally, in order to fully demonstrate the benefits, also in terms of performance,
brought by the NetVM, further work includes the implementation of the virtual ma-
chine and its AOT/JIT compiler for a commercial network processor.

Bibliography

[1] S. McCanne, V. Jacobson, The BSD Packet Filter: A New Architecture for User-
level Packet Capture. Proceedings of the 1993 Winter USENIX Technical Con-
ference (San Diego, CA, Jan. 1993), USENIX.

 11

[2] V. Jacobson, C. Leres and S. McCanne, libpcap, Lawrence Berkeley Laboratory,
Berkeley, CA. Initial public release June 1994. Currently Available at
http://www.tcpdump.org

[3] F. Risso, M. Baldi, NetPDL: An Extensible XML-based Language for Packet
Header Description, To Appear in Computer Networks (COMNET), Elsevier.

[4] L. Degioanni, M. Baldi, D. Buffa, F. Risso, F. Stirano, G. Varenni, Network Vir-
tual Machine (NetVM): A New Architecture for Efficient and Portable Network
Applications, 8th IEEE International Conference on Telecommunications (Con-
TEL 2005), Zagreb (Croatia), June 2005.

[5] R. Morris, E. Kohler, J. Jannotti and M. F. Kaashoek: The Click modular router.
Proceedings of the 1999 Symposium on Operating Systems Principles.

