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Wavelet Analysis of a Microbarograph Network
Stefano Grivet-Talocia and Franco Einaudi

Abstract—This paper presents a wavelet-based algorithm for
the detection, identification, and extraction of gravity waves from
atmospheric pressure traces. The main data processing tool is
a nonlinear adaptive filter based on the selective reconstruction
of a waveform from its wavelet coefficients. The time-frequency
localization of the wavelet transform provides an ideal framework
for the decomposition of long-period gravity waves
(30 min–6 h), which are characterized by a generally broad
spectrum and few oscillation cycles. The procedure is iterative
and allows the exhaustive processing of all the events present in
a fixed time period.

The waveform of each disturbance is reconstructed with high
accuracy. This minimizes the influence of the data-processing
technique on the estimate of horizontal speed and direction of
propagation, obtained by maximization of the cross-correlation
functions between the reconstructed waveforms at the different
stations. The introduction of coherency criteria through the
network of seven stations allows us to separate the events into
two classes. The first includes the events that propagate with very
small distortion through the network, while the second includes
less coherent but still highly energetic events.

The size of the network and the algorithm developed for the
analysis is well suited for the identification and the extraction
of those mesoscale disturbances that have a particularly strong
influence on the weather as well as on the forecast.

Index Terms— Adaptive filters, adaptive signal processing,
data processing, nonlinear filters, pressure measurement,
time-frequency analysis, wavelet transforms.

I. INTRODUCTION

T HIS PAPER has a twofold objective. First, to present a
wavelet transform algorithm for the analysis of pressure

data from a network of barographs. Second, to provide pre-
liminary climatological results for the fourth quarter of 1991
on the frequency of occurrence and characteristics of gravity
waves detected by such a network.

The motivation for the study stems from the recognition
of the important role that gravity waves play in atmospheric
dynamics. They redistribute energy and momentum over large
distances both horizontally and vertically; they can generate
and interact with wind shears and turbulence; they can influ-
ence phase changes and thus trigger and generally influence the
evolution of convection; and they can couple the troposphere
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with the layers above, including the ionosphere. Some of these
disturbances are essentially confined to the lower few kilome-
ters of the atmosphere, typically with horizontal wavelengths
of a few kilometers and horizontal speeds of the order of
10 ms 1, while others involve the entire depth of the tro-
posphere. The latter are characterized by a broad range of
horizontal scales and include fronts (500 km), squall lines
(100 km), jet-associated vertical wind shears (50 km), and
convective cells (5 km). They represent the link between
synoptic scale motions and small-scale phenomena. Their
speed of propagation ranges from 10 to 100 ms1, and their
amplitude can reach several millibars [3], [28], [40], [49], [51],
[52].

The few climatological studies on gravity waves come from
networks of pressure sensors (see [13] and [27] and references
therein). The pressure at the ground varies in response to
changes in the mass of the overlying atmosphere and to vertical
accelerations and is, thus, a good indicator of gravity waves. In
fact, pressure records are less noisy than temperature or wind
or humidity records because they stem from volume integrals.
A network of at least three barographs allows the identification
of a disturbance horizontal velocity of propagation. We will
use in this paper a network of seven barometers, which are
located in the vicinity of Flatland, IL.

Each of the atmospheric processes that generate coherent
disturbances has its own footprint in the surface pressure.
Occasionally, the pressure record is nearly monochromatic,
as in the event analyzed in [12], which lasted several periods.
The decomposition through fast Fourier transform (FFT) into
elementary sinusoids allows a very good analysis of such
disturbances. More often, the signal is quite complex and is
also localized in time: short wave packets, solitary waves, and
sudden pressure changes are such examples. The broad nature
of the spectrum for these events makes the data processing
techniques based on FFT inappropriate, due to the poor time
localization of its basic functions.

The wavelet transform method described in this paper
overcomes some of these limitations and allows a good
identification of the events in general and of the mesoscale
ones in particular. As for the standard FFT, the wavelet
transform also allows the decomposition of a signal into a
set of basis functions, but these are localized both in time and
frequency. This permits a much more efficient detection and
reconstruction of an event and minimizes the introduction of
spurious correlations.

The wavelet transform is quite new and has been studied
and used extensively only in recent years. Many excellent
introductory books and papers [4], [7], [23], [42], [45] are
available. The range of applications is extremely broad, cov-
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ering signal and image processing, data compression, operators
theory, information theory, detection, and estimation (see, [6],
[39], and [41]). In particular, the detection and extraction of
special features of signals, like modulation laws [9], [10], [30]
and waves [45], are greatly improved by the wavelet transform.

A number of recent publications show a growing interest
in the wavelet transform technique among the geophysical
community. Some introductory and review papers have already
been published [16], [35], [36]. The wavelet transform has
been applied to the study and decomposition of turbulence
[1], [5], [26], [29], [31], [32], orthogonal decompositions
of spatial rainfall fields [33], [34] and Liquid Water Path
(LWP) measurements [22], compression of SAR data [54],
disparity analysis [11], quantifications of nonstationarity and
intermittency of LWP [8], detection of localized periodicities
and climatological fluctuations in Northern hemisphere surface
and sea surface temperature (SST) records [36], [38], [44], IR
radiance [53], and length of the day (LOD) parameters [20], as
well as detection and identification of waves, fronts, and other
coherent structures [18], [19], [21], [37], [43], [45], [48]. This
paper should be placed in this last category.

An algorithm based on the wavelet transform is presented.
It consists of an iterative procedure that identifies the gravity
wave events larger than a scale-dependent threshold, extracts
their waveforms through a nonlinear adaptive filter, determines
relative arrival times at the different stations by maximizing
cross-correlation functions, and estimates horizontal speed
and direction of propagation with an equivalent plane wave
fit. This data-processing technique is ideally suited for the
climatological analysis of the data as well as the detailed study
of individual events.

Section II provides a brief description of the data and the
experimental setup. Section III describes the data processing
in detail. The application of this wavelet transform method
to the fourth quarter of 1991 is discussed in Section IV. A
more detailed analysis for a 45-month period in the 1991–1995
interval is in preparation.

II. DATA DESCRIPTION

This section is devoted to the description of the experimental
setup and the data available for the current analysis. Fig. 1
shows the network of seven stations located in the vicinity of
the Flatland Observatory near Urbana-Champaign, IL. Each
station is equipped with a barograph that measures the surface
atmospheric pressure continuously in time with a sampling
rate of 120 s and a resolution of the A/D converter of
10 bars. The time period that was chosen for this analysis
is the fourth quarter of 1991, corresponding to a set of seven
contemporary time series of 66 240 samples each. Each station
has a data gap of about three days, due to malfunctioning of
the recording system. In addition, the barometer located at
ISW became operative only on day 336 of 1991. Therefore,
only six stations are available for part of the analysis.

The geometry of the network, which is characterized by dis-
tances between stations ranging 12–45 km, allows a statistical
and climatological study of disturbances with characteristic
temporal (spatial) scales ranging from several minutes (a

Fig. 1. Geometry of the Flatland barometer network. The coordinate system
is centered in the reference station located in Flatland (FLA), IL. The other
stations are Allerton Park (ALP), Illinois State Water Survey (ISW), Mansfield
(MAN), Sidney (SID), Tuscola (TUS), and Urbana (URB), all located in
Illinois.

few kilometers) to several hours (hundreds of kilometers).
The present work concentrates on pressure fluctuations with
characteristic periods below 6 h. Therefore, a preprocessing
highpass filter was implemented to remove longer period
fluctuations. The highpass-filtered signals constitute the input
raw data set for the main algorithm and will be indicated with
the symbols throughout the paper, where the subscript

refers to a specific station. We will denote the reference
station (FLA) with the subscript .

III. D ATA PROCESSING

This section is dedicated to a detailed description of the
data-processing technique and to the introduction of the algo-
rithm used to extract and study the coherent pressure distur-
bances propagating through the Flatland barometer network.
The filtering procedure is quite complex and is strongly
tailored to the application under development. This is due to
the extreme variability of the data and especially of the events
to be detected. As a matter of fact, every adaptive filtering
scheme must be parameterized according to the data being
processed. For the sake of clarity, we decided to split the
presentation into four sections, each one focusing on a specific
aspect of the filter. Section III-A presents a quick overview
on the Continuous Wavelet Transform and introduces the
nonlinear adaptive filter that allows the selective extraction of
gravity wave events from the raw pressure traces. Section III-
B is devoted to the derivation of a scale-dependent threshold
that provides the main time-frequency localization tool for the
filter and to the derivation of the reconstruction regionin
the wavelet plane for the whole set of stations. Section III-C
illustrates the fitting procedure with an equivalent plane wave
to detect the most likely speed and direction of propagation
associated with the event. The elements discussed in these
three sections provide the main building blocks of the iterative
extraction algorithm, which is discussed in Section III-D,
together with additional consistency tests and classification
issues.
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(a) (b)

Fig. 2. Basic wavelet: (a) the continuous line represents<f (t)g=j (0)j, the dotted line=f (t)g=j (0)j, and the dashed linej (t)j=j (0)j and (b) the
Fourier spectrum ̂(!)= ̂(!0) is plotted, where!0 is the centerband angular frequency corresponding to the maximum.

A. Wavelet Transform and Adaptive Filtering

This section contains a short description for the main
properties of the wavelet transform and the conventions and
symbols used throughout this work. A more complete theo-
retical background can be found in [4], [7], and [42]. The
wavelet transform of a finite energy signaland its inverse
are defined as

(1)

(2)

where

(3)

The signal is decomposed into a set of (nonorthogonal) basis
functions , derived from a single mother wavelet by
means of translations and dilations

(4)

This normalization preserves the norm when the parameter
, usually calledscale, is changed. This normalization has

been employed in other works [1], [8], [25], [26] and is
preferred here because it allows a simple link between the
wavelet transform mod and the amplitude of fluctuations in
the signal . More precisely, when analyzing different wave
packets with the same amplitude but with different frequency,
the wavelet transform mod maxima will be the same. This is
not true when the more usual normalization is used because
the wavelet mod maxima would depend also on the frequency.
This property will be used in Section III-B.

Several choices for the mother wavelethave been pro-
posed in the literature. The only constraint is the admis-
sibility condition in (3). However, two other requirements
are convenient for the analysis and will be imposed here.

The first is the so-calledprogressivity. The basic wavelet
is said to be progressive when it belongs to the Hardy

space (R), i.e., when its Fourier transform is identically
zero for negative frequencies. Such signals, sometimes called
analytical, are complex valued, and their imaginary part is
the Hilbert transform of the real part [46]. In addition, the
magnitude can be regarded as the envelope of the real and
imaginary part. When a progressive wavelet is used, the
reconstruction formula in (2) can be simplified by integrating
only the real part over positive scales.

The second issue is a good time-frequency localization.
Indeed, the wavelet transform maps a signal into a two-
dimensional (2-D) function , where the coordinate
corresponds to time and the scaleis inversely proportional
to frequency. When equivalent bandwidth and duration of the
mother wavelet are finite, the wavelet transform localizes in the
space the energy of the signal. The bandwidth-duration
product has a lower limit dictated by the uncertainty principle
[4]

(5)

The lower limit is only reached by a Gaussian, which is not
admissible as mother wavelet. Several functionswith good
time-frequency localization properties have been proposed in
the literature [24], [45]. The basic wavelet employed in this
work is the analytical signal whose real part is the fourth
derivative of a Gaussian with variance equal to one. The
Fourier transform of is then identically zero for ,
while for positive frequencies we have the expression

(6)

It can be shown that is proportional to ,
where is one of the parabolic cylinder functions [15]. The
real and imaginary parts as well as the mod of are plotted
in Fig. 2(a) and its Fourier spectrum in Fig. 2(b). The mod
decays in time as . The relative band is
and the bandwidth-duration product is . These
properties insure a good time-frequency localization. The
normalization constant for the inversion formula is .
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(a)

(b)

(c)

Fig. 3. Event extraction. (a) Original pressure series, (b) extracted event, and (c) remaining waveform after the extraction.

It should be noted that the time localization of this wavelet is
more strict than the frequency localization. This property is
essential for an efficient filtering of waveforms, like solitary
waves, bumps, or sudden jumps, that are intrinsically of broad-
band nature and very localized in time. The employment of
other wavelets, like the Morlet wavelet, with better frequency
resolution would not lead to satisfactory results, especially in
the separation of close disturbances (see Section III-B). Any
choice of wavelet that is admissible, progressive, and has these
time-frequency localization properties could be used here.

Due to the exact reconstruction formulas, the operations of
taking the wavelet transform and its successive inversion can
be interpreted as the application of the identity operator in
the space of real signals with finite energy. This is achieved
when the integration is performed in (2) over the whole
plane (or halfplane) . It is possible to define a class of
bounded operators by restricting the integration domain to a
smaller region . These operators have many interesting
properties [7]. When is determineda priori and does
not depend on the signal itself, the resulting operator is
linear. Nonetheless, very powerful filters can be constructed
by adapting the reconstruction region to the signal being
processed, setting . The resulting operator will then
be nonlinear. The raw signalcan thus be adaptively separated

into two components

(7)

(8)

The actual filter for the extraction of gravity wave events op-
erates on multivariate signals to process the pressure traces in
all the stations at the same time. Therefore, the determination
of is based on the combined extraction of the event from
all stations and will be discussed in Section III-B. We will
now illustrate the effectiveness of the filter in (7) on a single
pressure signal. A two-day data segment centered in day 305
of year 1991 is shown in Fig. 3(a). This is the original pressure
track recorded at the reference station (Flatland) after the
preprocessing highpass filtering that eliminates the long-period
fluctuations. The signal includes then all the fluctuations in the
range of periods between four minutes (corresponding to the
Nyquist frequency) and six hours. A well-defined disturbance
is evident from the plot.

The mod of the wavelet transform is reported
in Fig. 4(a). The horizontal axis corresponds to timeand the
vertical axis, which is logarithmically spaced, to frequency

. An analysis of this plot allows a qualitative identifi-
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(a) (b)

(c) (d)

Fig. 4. Wavelet transform (magnitude) shown as a contour plot for (a) raw signalfr [Fig. 3(a)], (b) raw signalfi at a different station (URB), (c) extracted
eventpr [Fig. 3(b)], and (d) remaining signalfr � pr [Fig. 3(c)]. The intensity of the gray shades is proportional to the magnitude of the wavelet transform.

cation of a subset of points in the time-scale plane with large
wavelet amplitude (darker region). Taking this region as
and applying (7), we obtain the signal plotted in Fig. 3(b).
Its wavelet transform is given in Fig. 4(c) and illustrates the
set of retained time-frequency components in the filtered signal

. Also, the remaining part is plotted in Fig. 3(c)
and its wavelet transform in Fig. 4(d). It is clear from these
plots that the filter is capable of extracting the wave from the
background fluctuations with very high selectivity.

B. Definition of the Reconstruction Region

In Section III-A, we showed that there is a one-to-one
correspondence between what we define an event and a
region in the time-scale plane with significantly high and
localized wavelet amplitude. It is crucial to define an algorithm
that automatically finds an event and determines the optimal
reconstruction region .

Let us consider first a single pressure trace. Once an event
has been identified in the plane , the reconstruction
region could be found by retaining only those points with
wavelet coefficients larger than a fixed threshold. However,
power spectra of various geophysical quantities, including the
pressure [2], have been shown to have a characteristic power-
law decay in frequency. This means that the amplitude of a
disturbance could be considered insignificant at long periods,
but quite significant at short periods. It seems thus appropriate
to use a scale-dependent threshold.

The threshold that will be used in the following is the time-
averaged wavelet amplitude, which provides a scale-dependent
amplitude spectrum for the overall time series. It is defined as

(9)

where the normalization constant insures that the
amplitude is equal to the amplitude of a monochromatic
wave at the frequency corresponding to the scale[25]. The
function has been evaluated over the available data set
(three months), averaging over all the stations of the network,
and is plotted in Fig. 5 (continuous line), where the horizontal
scale axis is labeled with periods .

The location of an event is determined by maximizing the
function

(10)

Once this “center” has been found, the set of points
with wavelet amplitude above the threshold is defined by

(11)

(12)

is connected. (13)

The reconstruction region is obtained by extending along
the and directions until the first minimum of
is found. This correction is needed to improve the waveform
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Fig. 5. Scale-dependent thresholds. The time-averaged wavelet amplitude
A(a) is plotted versus periods (continuous line). The quantity2A(a) is also
drawn (dashed line).

reconstruction because, although the wavelet transform in
is below the threshold, its contribution to the energy of

the event can be substantial, sincecan be much larger than
. The localization, though, is not affected by this process

because only the time-scale components pertaining to the event
under investigation are included in its reconstruction region.
This algorithm was used in the example of Section III-A
(Fig. 4).

It should be noted that an event can be extracted only if

(14)

otherwise, the reconstruction regionwould be an empty set.
A faithful and stable reconstruction, however, requires a more
stringent condition. Indeed, when is larger but
almost equal to , there are few and possibly only one
point of the discrete grid in the auxiliary set and the final
reconstruction region will be correspondingly small. This
means that the reconstructed signal will be a superposition
of too few basis functions, its waveform will have little
resemblance with the corresponding disturbance in the raw
signal , and the event should be disregarded. This situation
can be avoided by requiring

(15)

where is a multiplicative factor sufficiently larger than one,
and yet not too big to avoid missing a significant event. After
extensive testing, we chose . This more restrictive
threshold is plotted in Fig. 5 (dashed line).

It proved also useful to introduce an additional parameter
to control the selectivity of the reconstruction. The new

threshold was considered and substituted into (12),
obtaining

(16)

The set is now dependent on . As increases, the
localization is more strict and is smaller. When de-
creases, more points are included and the localization is less
selective. This selectivity parameter can be varied in a range

. The lower bound is taken as to
insure that the time-frequency components of the event are

above average fluctuations. The upper bound must insure both
a sufficiently small threshold, with respect to the magnitude
of the event, and the inclusion of most of its energy. This
requirement can be accomplished by setting

(17)

The procedure for the determination of the optimal value of
will be described in Section III-D.
Let us turn now to the whole set of stations

, with denoting the reference station.
Suppose that a well-defined event has been identified and
reconstructed at by using the procedure described above.
The next step is the identification and extraction of the
waveform corresponding to the same event in stations

. This operation is generally not simple for two
main reasons. First, it is not known when the event occurs in
time. The relative time difference between the arrival times
at stations and depends on speed and direction, which
are the parameters to be estimated by the whole procedure.
There are physical lower and upper bounds for the propagation
speed, which can be easily translated into bounds for the
delay times, because the distance between the stations is
known. However, there is a need for an automatic search
of the arrival time in each station . Even more important,
there must be no ambiguity. When two different events are
very close in time, the algorithm must insure the detection
of the same event in all stations. Second, the waveform of
the event is generally not invariant during its propagation.
A number of reasons, including instability effects and local
fluctuations, contribute to modifying the pressure disturbance
in time and space. This means that the reconstruction region
changes shape at the different stations. On the other hand, the
waveform distortions for a well-defined event must be small,
otherwise the hypothesis of the existence of a propagating
disturbance ceases to be valid. Likewise, the changes in
from station to station must be small. As an example, the
wavelet transform of the raw pressure track at another station
(URB) corresponding to the event examined in Section III-
A is plotted in Fig. 4(b). Note the global similarity and the
differences in the details with Fig. 4(a). In this particular
case, the event was propagating quite coherently through the
network (see below), and therefore, the differences in the
reconstruction regions at the different stations were small.
However, the question of whether the event is coherent (i.e.,
the distortions are small and the propagation speed is well
defined) can only be answered on a statistical basis. The
complete set of criteria employed by the extraction algorithm
will be itemized in Section III-D.

Let be the reconstruction region in the reference station.
We introduce a time-shifted set in the time-scale plane

(18)

which is an exact copy of translated in time by . If the
distortions between the stations are not too large, the true
reconstruction region in will not be very different from
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Fig. 6. Extracted eventpi for the available stations. The vertical axis corresponds to pressure fluctuations [mbars].

, where is the propagation delay time between
the stations. Moreover, if the raw signals corresponding to the
events are similar, so will be their wavelet transforms. The
optimal delay time can then be found maximizing a cross-
correlation function between the two wavelet transforms at the
two stations. This function is defined as

(19)

The optimal delay time is such that
. Once has been found, a first estimate of the reconstruc-

tion region for station is given by . However, this
first estimate must be refined. This refinement is performed
by finding the center that maximizes the wavelet
amplitude in the set and then by applying again the
algorithm described above.

Repeating the above steps for , we obtain
a set of reconstructed waveforms for a specific event for
all the stations. These signals, hereafter denoted with
are identically zero everywhere except in the support of the
disturbance. The resulting waveforms at the available stations

for the same event studied in the previous section are plotted
in Fig. 6.

It has already been mentioned that particular care must be
taken in the extraction of a single event from a network since
local and propagation effects can create anomalies in some of
the stations. Examples of such anomalies follow.

• When two or more separate disturbances are close in time,
their reconstruction regions may overlap. Intuitively, if
we regard the wavelet magnitude as a three-dimensional
(3-D) surface, the events are like “mountains” separated
by “valleys”. When a valley is completely below the
threshold , the events have distinct reconstruction
regions and can be separated easily. On the other hand,
when two events are very close and propagate with
significantly different velocities, their time separation
varies from station to station. This means that the distance
between the peaks of the two mountains in the wavelet
plane changes and the separating minima can be above
the threshold for some stations and below for others.
This leads to the two events being identified as separate
at some stations and as single at others. The question
regarding whether the two events have to be separated
can only be answered on a statistical basis.
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Fig. 7. Example of an event that was improved by the corrections described in Section III-B. The reconstruction was consistent in all stations except for
SID and TUS. The right column shows the reconstructed waveforms after the corrections. The pressure units are [mbars].

• Local phenomena, like a thunderstorm occurring in the
vicinity of one station, can interact with a well-defined
event that propagates through the network and modify its
waveform. The time-frequency signature of the event is
then distorted.

• A well-defined event may be characterized by a spatial
domain that does not include all the stations of the
network. In this case, the pressure signal in some of
the stations does not allow the identification of any
reconstruction region for the event.

A set of statistical tests has been designed to determine
if the reconstruction regions are consistent throughout
the network in either shape or position. The shape can be
analyzed by restricting the reconstruction regions to constant-

lines (usually calledvoices), therefore obtaining intervals
. The shapes are consistent throughout the net-

work when the widths follow a narrow
distribution around a certain mean value for each voice. When
one considers the same set minus one station, the distribution
will not be very different. On the other hand, when there is one
station with significantly different reconstruction region and
consequently significantly different , this distribution will
change dramatically when this station is subtracted from the
set. In particular, the variance will be large when considering
all the stations and will drop when neglecting the “bad”
station. Note that this is true when the bad station has
either larger or smaller reconstruction region. When one of
the “good” stations is neglected, however, the variance will
remain large. The presence of a station with a significantly
different can be determined through the application of
the standard F-test [47] to the distribution of the ’s.
The case when the center has been misidentified

is detected similarly by analyzing the distribution of the’s.
This leads, when necessary, to the correction of the defective

’s. For each fixed scale we redefine the boundary points of
the reconstruction region as

(20)

(21)

where is the maximum propagation delay evaluated among
the valid stations

(22)

These equations place the reconstruction region as close as
possible to where the event is expected on the basis of the data
from the other valid stations. Moreover, its shape is dependent
on the ’s in the good stations. It should be noted that the tests
mentioned above will also work when the bad stations are two,
in which case we have similar expressions. The need for the
above corrections is exemplified in Fig. 7. Two close events
occurring in days 291 and 292 were incorrectly merged into
the same waveform in stations SID and TUS and successfully
corrected. These tests cannot be used to detect more than two
bad stations because they would lose statistical significance.

C. Speed and Direction Estimation

This section will describe the procedure adopted for the
estimation of propagation speed and direction, once the wave-
forms of a given event in all the stations have been extracted.
The first step is the determination of the arrival timeat each
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Fig. 8. Cross-correlation functions between the reconstructed waveform at
the stationsSi andSr for the event reported in Fig. 6.

station relative to the arrival time at the reference station

(23)

These delays can be easily calculated by maximizing the
standard cross-correlation functions

(24)

Note that these cross-correlation coefficients are evaluated
on the cleaned waveforms of the events and not on the
raw time series . This is one of the main advantages of
the wavelet-filtering procedure because fluctuations that are
extraneous to the event have minimal influence on the delay
times. This fact insures very high cross-correlation coefficients.
An additional advantage of this filtering technique is that there
is no ambiguity in the determination of the integration domain
in (24) because the extracted waveforms are localized in time.
The cross-correlation functions for the event reported in Fig. 6
are plotted for all stations in Fig. 8. The relative delay times

are such that

(25)

Let us consider now the estimation of speed and direction
from the set of delay times. The basic hypothesis underlying
the analysis is that each event is characterized by well-defined
propagation speed and direction, which are constant through
the network. In other terms, each event can be represented by
an equivalent plane wave. If this hypothesis is not satisfied,
as in the case of two or more propagating wave packets with
different velocities, the algorithm will evaluate a mean speed
and direction and is likely to reject the event on the basis of the
tests described in Section III-D. The model for the disturbance
is

(26)

where is the slowness vector [14] and is the relative
position of the station , with respect to the reference station.
It should be noted that the slowness vector points toward the
direction of propagation of the event , and its magnitude

is the inverse of the phase speed . The convention
for the propagation directions assumes angles measured east
of north. The calculation of the theoretical arrival times of the
model in the station is straightforward and leads to

(27)

where is the angular coordinate of the station. The best-
fitting slowness vector is found by a standardminimization

(28)

where the normalization constant is the sampling time and
makes the statistic nondimensional. Note that the discrep-
ancies between the measured and theoretical delay times are
due to many factors and, in general, cannot be assumed to be
Gaussian. Therefore, the standardstatistic [47] cannot be
used for producing a level of significance of the fitting. The
quantity that will be used is

(29)

and indicates the rms deviation of the measured delay times
from the model delay times normalized with the sampling time.
It will be denoted in the following with fitting error.

D. Global Iterative Events Extraction

A climatological study on pressure disturbances requires the
systematic identification of all significant events from the data
stream. The algorithm introduced in the preceding sections can
be applied iteratively on the highpass-filtered pressure time
series to extract the events one by one. This procedure is
summarized as follows.

1) Evaluate the wavelet transform of the pressure signals
for all the stations in the whole time period under
analysis.

2) Find the event with the largest amplitude.
3) Extract the event, find the delay times between the

stations, and fit the equivalent plane-wave propagating
model.

4) Evaluate the remaining signals after the extraction at all
stations and recompute their wavelet transform.

5) Repeat Steps 2)–4) until a loop-breaking condition is
reached.

Steps 1) and 4) are direct numerical implementations of (1)
and (8) and do not need additional explanations. Steps 2)
and 5) have already been discussed in Section III-B and are
expressed, respectively, by (10) and (15). Step 3) combines
the procedure described in the preceding sections with a clas-
sification algorithm. This classification is important because it
must allow the detection of truly coherent events from other
phenomena. There are basically three classes of events that
can be encountered.

1) Events with high cross-correlation coefficients and good
fitting. These events correspond to well-identified local-
ized disturbances that propagate through the network,
and their speed and direction can be evaluated with a
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good confidence level. These will be labeled as “class
1 events”.

2) Events with sufficiently large amplitude and good
wavelet reconstruction, but either with low cross-
correlation coefficients or bad fitting. These disturbances
correspond to localized perturbations not coherent
through the stations, or with a dominant frequency
(wavelength) not suitable to the geometry of the
network. They will be named “class 2 events” in the
following and will be further discussed in Section IV-C.

3) Events with small amplitude, poor correlation coeffi-
cients, and bad fitting. These are disregarded in the
statistics, but must be subtracted from the pressure traces
so that the algorithm can proceed to the next iteration.

The classification algorithm is embedded in the decision
procedure that selects the optimal value of the selectivity
parameter and determines the reconstruction regions’s
and the extracted waveforms . The first attempt of a
reconstruction is made for the upper bound . Events
that are well defined and stable throughout the network have
a strong signature in the time-scale plane at all stations and
are immediately reconstructed with high accuracy. When the
reconstruction is detected as bad, even after the corrections
described in Section III-B, is lowered and another attempt
is made. This procedure is repeated until is
reached or the event is identified in the class 1. Lower values
of allow a more flexible reconstruction in the different
stations for events characterized by more distorted waveforms.
Before being placed in class 1, each event must also satisfy
additional stringent conditions on the correlation coefficients

and on the fitting error. These conditions are
itemized below.

• The correlation coefficients must be sufficiently high and
the fitting error sufficiently small. We found that all the
events with a strong signature always satisfy the condition

and (30)

where is the minimum cross-correlation coefficient.
When these conditions are not satisfied, a further F-
test on the set of cross-correlation coefficients is
attempted to detect whether one or two stations have
poor correlations with respect to the others. Eventual
corrections are applied to the bad stations. If (30) is
still not satisfied, some looser conditions are then tested,
allowing either worse correlations or a larger fitting error

and (31)

and (32)

where is the mean cross-correlation coefficient. When
both of these conditions are still not satisfied, a last
attempt is made on a restricted set of stations, neglecting
the one with the lowest correlation coefficient. If this
attempt succeeds, the event is placed in the class 1 and
is interpreted as a localized disturbance that does not
propagate coherently throughout the whole network, but
only on a subset of stations.

• The fitting error must be small, with respect to
the propagation time through the network, otherwise the
uncertainty on the fitted speed and direction would be
too large. A test that was found by trial and error to be
appropriate is given by

(33)

where indicates the rms propagation delay time
through the network normalized with the sampling time

(34)

• The speed must be confined within physical bounds.
When is too small, the estimated speed would be
too large and would not have any physical meaning. This
is the typical situation of some small high-frequency fluc-
tuations belonging to the waveform of an event already
extracted that were left over in its reconstruction. The
implemented test was

(35)

which means that the rms propagation time must be at
least twice the sampling time .

• Only events characterized by a ratio between the second
and the first positive maximum of the cross-correlation
functions less than 0.8 were accepted. This latter test
allows to reject high-frequency events suffering from
spatial aliasing.

IV. NUMERICAL RESULTS

A. Complete Events Extraction from Pressure Records

The iterative algorithm described in Section III was applied
to the pressure data from the Flatland barometer network. Only
a three-month period corresponding to the fourth quarter of
1991 is processed in this paper to illustrate the data-processing
technique. A longer pressure record will be analyzed in a
forthcoming paper.

The remaining signals after the extraction of all the events
are

(36)

where is the total number of iterations and is the
extracted waveform of the event in station . The signals

and at the reference station and the time supports of class
1 and 2 events are plotted in Fig. 9(a)–(d) for three weeks in
the period under investigation. The comparison of and

clearly illustrates the power of the described method in
the selective extraction of events.

The total number of identified events was , of
which only were placed in class 1. The remaining

(class 2) events had significant amplitude, with re-
spect to the scale-dependent threshold , but no fitting was
possible. A further discussion of these events will be given in
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Fig. 9. (a) Raw highpass-filtered signalsfr and (b) remaining signalser after the extraction of all events at the reference station for three weeks in the
fourth quarter of 1991. The supports of class 1 and 2 events are shown, respectively, in (c) and (d). The pressure fluctuations units are [mbars].

Section IV-C. In addition, other small fluctuations
were extracted, but with amplitude smaller than the threshold.
These were mainly due to noncomplete reconstructions of
previous events or to high-frequency glitches in the pressure
record. They had to be extracted to clean the original waveform
and allow the algorithm to jump to the next iteration, but were
not considered in any of the statistics illustrated in this paper.
In conclusion, a total of iterations were
necessary before reaching the loop-breaking condition in (15).

As already discussed in Section III, the algorithm extracts
the pressure disturbances one by one. It is possible then to
evaluate the amount of extracted energy for each iteration. In
particular, the following quantity was evaluated:

(37)

which is the normalized energy in the signal after the first
iterations. This quantity is plotted in Fig. 10(a), where the

sum includes all events (dashed line) and only class 1
events (continuous line). Note that about 46% of the initial
energy belongs to class 1 events, while the extracted energy

of the total events reaches 65%. The energy decay in the
first 20 iterations is particularly fast. This is because the first
events to be identified happen to have large amplitude and
low frequency.

Similarly to , the frequency of occurrence , defined
as the percentage of time when events are present with respect
to the total time, was evaluated and plotted in Fig. 10(b) as a
function of . The two different cumulative time percentages
refer to all events together (dashed line) and to class 1 events
only (continuous line). Only the asymptotic values of these
plots are of physical significance. However, from the steep
slope of these curves in the extraction of the first events,
we can conclude that the most energetic events, which are
immediately extracted by the algorithm, are also characterized
by a long duration. After the algorithm stops and all events
are extracted, the class 1 events cover approximately 18% of
the total time, while all events together cover 31%.

After each event is extracted, it can be further processed
to estimate its equivalent frequency band, defined as the
frequency interval including most of its energy. Fig. 11 reports
a histogram of the number of class 1 and 2 events in different
periods bins. The thick line represents class 1 events, and the
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(a) (b)

Fig. 10. (a) EnergyE(k) of the signal remaining after the firstk iterations, normalized with the total initial energy of the raw highpass-filtered signal,
as indicated in (37). The continuous line takes into account only the extracted class 1 events, and the dashed line includes all events. (b) Frequency of
occurrence�(k) for class 1 events (continuous line) and class 2 events (dashed line).

Fig. 11. Distribution of class 1 (thick line) and all (thin line) events in
periods bins. Both histograms start from zero, and the difference corresponds
to class 2 events. The plot refers to the fourth quarter of 1991.

thin line all events. It should be noted that the consideration of
all events leads to an almost uniform distribution of periods,
while the class 1 events are concentrated in the longer periods
range. The cutoff period can be estimated from the plot to be

min. Speed and direction for higher frequency
events cannot be estimated uniquely by this network and will
require a set of stations with smaller separations.

B. Class 1 Events

This section presents the results relative to the class 1
events characterized by high cross-correlation coefficients be-
tween the stations, low error in the fitting with an equivalent
plane wave, and significant amplitude [compared to the scale-
dependent threshold introduced in Section III-B]. Typical
amplitude values range from 0.2 mbars at 10 min to several
millibars at 2 h. The delay times in the different stations
are known, so the mean waveform for eventcan be found by
averaging the time-shifted waveforms in the different stations

(38)

where the delay time in the reference station is assumed
. A plot of the averaged waveforms for all the class 1

events occurring in the three weeks shown in Fig. 9 is given
in Fig. 12.

The basic parameters evaluated for each event, speed
and direction , are plotted in Fig. 13. The error bars
have been produced by fitting the equivalent plane wave
model to subsets of three stations, including Flatlands and
defining nonoverlapping regions, and taking the minimum
and maximum fitted parameters. All the speeds are in the
range 9–47 ms1, with the largest contributions between
20 and 40 ms 1. The directions of propagation have a
positive component pointing toward east, and most of them
are concentrated in the sector between NE and SE.

C. Class 2 Events

The set of class 2 events is composed of sufficiently large
amplitude disturbances for which no fitting was possible.
These events are considered to be present, but their propaga-
tion speed and direction cannot be found. There are different
reasons for the failure of the fitting procedure, resulting in a
further classification. There are mainly three categories.

i) Some pressure fluctuations are not coherent at all stations
and suffer from local variations. The resulting cross-
correlation coefficients are then quite small and the
estimates of the arrival times cannot be trusted. An
example is shown in Fig. 14 for the available stations (six
in this case). It should be noted that the waveform is well
defined in all stations, but the distortions are too large
for a good estimate of the delay times using the cross-
correlation functions. A possible reason is the presence of
two interacting wave packets with a different propagation
speed and direction, which cannot be separated because
their time-frequency components are overlapping in the
wavelet plane and interfering with each other.

ii) Some events are resulting from a nonperfect recon-
struction of other larger events already processed by
the algorithm. Even when small, with respect to the
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Fig. 12. Averaged waveforms of the class 1 events occurring in the periods shown in Fig. 9. The events are plotted in chronological order from left
to right and from top to bottom. The pressure fluctuation units are [mbars], and the time units are days [UTC]. Note that the scales for the time and
pressure axes are not the same in the different panels.

Fig. 13. Speed (top) and direction (bottom) of class 1 events for the fourth
quarter of 1991. The horizontal axis corresponds to an indexj numbering the
class 1 events in order of extraction.

amplitude of the event they really belong to, these
fluctuations can result in false events with amplitude
larger than the scale-dependent threshold . The
fitting generally fails for these events because they are
very different from one station to the other and the
correlation coefficients are very poor.

iii) A third set of events is characterized by propagating
wave packets with many cycles, short periods, and

Fig. 14. Example of a bad event belonging to class 2i. The waveforms
are significantly different in the various stations, and the cross-correlation
coefficients are low.

small spatial wavelengths, like the one in Fig. 15. The
centerband period of this wave is min, and
the number of oscillations is very large. This event,
extremely significant, having a peak-to-peak value of
almost 1 mbar, could not be fitted by a propagating
plane wave because the presence of multiple maxima in
the cross-correlation functions does not allow a unique
determination of speed and direction. Moreover, the
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Fig. 15. Example of a well-defined event with a dominant frequency too
large, with respect to the geometry of the barometer network, to be fitted with
a propagating equivalent plane wave.

use of the cross-correlation functions for the determi-
nation of the delay times for these events should be
avoided because low-frequency fluctuations, generally
not coherent with the phase speed of the wave and
different from station to station, lead to completely
wrong results. Events of this kind can sometimes be
analyzed by using additional information coming from
other measurements, combined with analytical tools
like the impedance relation, or by using a smaller-size
measurement network.

It should be noted that the design of an automatic procedure
for the discrimination of the three subclasses of events listed
above is not a trivial task because the reasons for the failure
of the fitting cannot be easily recognized.

V. CONCLUSIONS

We have described in detail an automatic algorithm to
analyze the pressure records from a network of barographs
located around Flatland, IL, and we have presented preliminary
results for the last quarter of 1991 on the nature and frequency
of occurrence of coherent disturbances detected by the network
in the range from 30 min–6 h.

A powerful and selective adaptive-filtering procedure, based
on the wavelet transform, localizes in time the events and
provides a good reconstruction of their waveform at each
station. Thus, the cross-correlations reach generally high val-
ues as a result of having minimized both the ambiguity in
the determination of the integration domain and the effect
of fluctuations that are extraneous to each event. A series of
tests is discussed on the reconstruction of the signal at each
station and on the allowed variability of the cross-correlation
functions from station to station. As a result, class 1 events,
satisfying all the requirements, including rather uniform speed
and direction of propagation throughout the network and high
cross-correlation coefficients (typically larger than 2/3), have
been separated from the class 2 events, which fail some of

the requirements. Typical amplitude values range from 0.2
mbars at 10 min to several millibars at 2 h. The class 2 events
have amplitudes above the chosen threshold and sometimes
as large as for the class 1 events, but do not have high
cross-correlation functions because they are either not uniform
throughout the network or their characteristic horizontal scale
is small compared with the size of the network.

The method has a number of limitations.

1) As expected, it does not work well when the signal
is nearly monochromatic and lasts several periods of
the disturbance. In these cases, the FFT method can
be more efficient. However, the use of cross-correlation
coefficients for the determination of speed and direction
should be avoided when the spatial scale of the events
is too small compared to the dimensions of the network.

2) It identifies as separate those events that in fact may have
been generated by a single phenomenon: in parts (c) and
(d) of Fig. 9, we see that numerous events have supports
that overlap in time. This is the inevitable consequence
of the fact that the method is automatic, and phenomena,
such as a thunderstorm, go through various dynamical
stages with distinct signatures in the pressure field and
may generate disturbances with different characteristics.
The frequency of occurrence of course would not be
affected. Detailed studies on a case-by-case basis may
make it possible to sort out the various components
generated by a common source.

The analysis applied to the last quarter of 1991 shows that
the class 1 events are present 18% of the time and, when class
2 events are added, the frequency of occurrence reaches 31%.
The estimated speed for class 1 events is well within typical
values of the jet streams, while the cone of dominant directions
coincides with the general direction of the jet streams and jet
streaks. These data confirm that the jet streams may be a source
of gravity waves by shear instability [40] and can be a guiding
mechanism for mesoscale waves as well, as discussed in [17],
[50], and [52].

In general, the results of the climatology for the last quar-
ter of 1991 presented in this paper indicate that mesoscale
gravity waves are a common occurrence in the atmosphere.
Since several case studies (see [17] and [49] and references
therein) have demonstrated the ability of mesoscale waves
to have a significant influence on the weather, this analysis
confirms the need to gain a better understanding about their
origin, the synoptic setting that favors their generation and
propagation and about our ability to forecast them. The method
presented in this paper appears to identify and extract them
in a clear and effective way. To this end, the present study
is being extended to an almost four-year period to obtain a
more complete and accurate climatology and to investigate
the seasonal dependence for speed, direction, amplitude, and
especially frequency of occurrence of these disturbances.
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