
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A frequency-domain approach to the analysis of stability and bifurcations in nonlinear systems described by differential-
algebraic equations / Traversa, F. L.; Bonani, Fabrizio; DONATI GUERRIERI, Simona. - In: INTERNATIONAL JOURNAL
OF CIRCUIT THEORY AND APPLICATIONS. - ISSN 0098-9886. - STAMPA. - 36:4(2008), pp. 421-439.
[10.1002/CTA.440]

Original

A frequency-domain approach to the analysis of stability and bifurcations in nonlinear systems described
by differential-algebraic equations

Publisher:

Published
DOI:10.1002/CTA.440

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1641004 since: 2018-02-28T10:34:58Z

Wiley



INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS
Int. J. Circ. Theor. Appl. 2008; 36:421–439
Published online 20 August 2007 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cta.440

A frequency-domain approach to the analysis of stability
and bifurcations in nonlinear systems described

by differential-algebraic equations‡

F. L. Traversa, F. Bonani∗,† and S. Donati Guerrieri

Politecnico di Torino, Dipartimento di Elettronica, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy

SUMMARY

A general numerical technique is proposed for the assessment of the stability of periodic solutions and the
determination of bifurcations for limit cycles in autonomous nonlinear systems represented by ordinary
differential equations in the differential-algebraic form. The method is based on the harmonic balance
(HB) technique, and exploits the same Jacobian matrix of the nonlinear system used in the Newton
iterative numerical solution of the HB equations for the determination of the periodic steady state. To
demonstrate the approach, it is applied to the determination of the bifurcation curves in the parameters’
space of Chua’s circuit with cubic nonlinearity, and to the study of the dynamics of the limit cycle of a
Colpitts oscillator. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The assessment of stability of periodic solutions of circuits and systems is of increasing interest,
both from the standpoint of the determination of complex dynamical behaviours, such as bifurca-
tions and routes to chaotic attractors, and of the definition of system stable operation [1]. From
a circuit perspective, such an interest is directed both to autonomous (i.e. oscillators) and forced
systems where the forcing term is a periodic function of time: in both cases, a periodic solution
is assumed to exist. In order to study its stability, a perturbative approach is often employed [2],
leading to Floquet theory which, ultimately, allows to assess the stability properties by estimating
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422 F. L. TRAVERSA, F. BONANI AND S. D. GUERRIERI

a set of characteristic exponents called Floquet multipliers (FMs) (see Section 2). Furthermore,
Floquet analysis plays a significant role in the analysis of phase noise in oscillators (see e.g. [3]).
In this work, we shall focus on the case of autonomous systems admitting self-sustained oscillations:
the extension to the study of the stability of periodic solutions of forced systems is straightforward.

The harmonic balance (HB) technique [4] is, in particular in the area of microwave and wireless
circuit analysis and design, very common for the determination of periodic solutions due to
its numerical efficiency, customarily related to the fact that the steady-state solution is directly
determined, thus avoiding the computation of the transient part. On the other hand, in most
cases time-domain approaches are exploited for studying the stability of the solution [5]. Only
recently frequency-domain techniques have been proposed for the study of dynamic behaviour
and bifurcations of nonlinear systems, often by making use of the describing function technique
(i.e. HB with one harmonic only): see [6] and references therein. A more general, semi-analytical
approach, able to include an HB description with an arbitrary number of harmonics, was proposed
in [7], though limited to nonlinear systems that can be expressed in the Lur’e form. Finally,
Mees [8] presented a general technique for the determination with HB of the Floquet Exponents
of limit cycles of autonomous ordinary differential equations (ODEs) in canonical form.

In this paper we propose a general, fully numerical method for the direct estimation of the
Floquet exponents (FEs) of a periodic solution based on the same Jacobian of the HB system
already exploited in most numerical implementations of HB for the determination of the steady-
state solution. Moreover, we propose an extended formulation valid not only for dynamical systems
represented by ODEs in the canonical form, but also applicable to differential-algebraic equations
(DAEs). This makes the methodology directly implementable even into commercial circuit-oriented
simulation CAD tools, at least if the circuit considered is lumped and if the system Jacobian is made
available.§ The proposed technique is applied to the simulation of two dynamical systems: Chua’s
circuit, which exhibits a very complex dynamic behaviour with a large number of bifurcations,
and a classical Colpitts oscillator.

The paper is structured as follows: a brief review of the Floquet theory for systems described by
DAEs is the subject of Section 2, while the frequency-domain approach to the determination of the
corresponding FEs and multipliers is presented in Section 3: the generalized eigenvalue problem
(27) is shown to allow the numerical computation of the FEs. Two examples of application are
discussed in Section 4, and finally Section 5 is devoted to the conclusions.

2. FLOQUET THEORY FOR DAEs

DAEs are very common in the analysis of nonlinear electrical circuits, since the popular modified
node analysis (MNA) [9] results in a mathematical description of the Kirchhoff laws and of the
circuit elements’ constitutive relationships in the form of a system of DAEs. In abstract form, we
are interested in a vector autonomous differential system written as

d

dt
q(x) + g(x)= 0 (1)

§ In most cases, the system Jacobian is not available to the user; therefore, the implementation of this approach
should be carried out by the software vendor.
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ANALYSIS OF STABILITY AND BIFURCATIONS IN NONLINEAR SYSTEMS 423

where x(t) ∈ RM is an M-dimensional real continuous vector function of time, and q, g : RM → RM

are continuous nonlinear functions. For the sake of our discussion, we assume that a nontrivial
T -periodic solution xs(t) (i.e. T>0 and xs(t + T ) = xs(t) ∀t ∈ R) exists, called a limit cycle for
Equation (1).

The aim of Floquet theory is to develop a perturbative analysis of Equation (1) around the
limit cycle xs(t), thus allowing for an assessment of the (local) stability properties of the limit
cycle itself. Floquet theory was originally developed for the solution of periodically time-varying
systems of linear ODEs [2] such as

ẋ=B(t)x (2)

where B(t) : R → RM×M is a continuous T -periodic matrix function of time and ẋ denotes the
time derivative of x(t). Recently, it has been extended to the solution of linearized DAEs in [10, 11],
at least in the case of index-1 equations. We shall now briefly review the main results, following
the formulation developed in [11].

According to the discussion in [11], the assessment of the stability properties of the steady-state
solution xs(t) of Equation (1) requires to decompose the solution x(t) of the system forced by a
small perturbation into a phase (�) and an orbital (y) component: x(t) = xs[t + �(t)] + y(t). A
detailed analysis allows us to demonstrate that stability is ultimately related to the solution of the
homogeneous system obtained by linearizing (1) around xs(t)

d

dt
[C(t)z(t)] − A(t)z(t) = 0 (3)

where the two matrix functions C and A are T -periodic, since they are the Jacobian of q and g,
respectively, evaluated in the limit cycle xs(t):

C(t) = dq
dx

∣∣∣∣
xs(t)

, A(t) =−dg
dx

∣∣∣∣
xs(t)

(4)

Notice that C is not necessarily full rank: however, we assume that rank{C(t)}=m�M does not
depend on t [11].

According to [2, 11], the solution of Equation (3) can be expressed in terms of the fundamental
state-transition matrix U(t, s), meaning that solution z(t; z0) of Equation (3) satisfying the initial
condition z(0; z0) = z0¶ is given by

z(t; z0) =U(t, 0)z0 (5)

The fundamental state-transition matrix can be expressed as [2, 11]
U(t, s) =U(t)e(t−s)DV(s)C(s) (6)

where U,D,V∈ RM×M , and U(t),V(t) are T -periodic invertible matrix functions such that

V(t)C(t)U(t) =
[
Im 0

0 0

]
(7)

¶We assume here that z0 ∈ S(0), where S(t) is the m-dimensional subspace where the index-1 equation (3) has
solutions [11].
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424 F. L. TRAVERSA, F. BONANI AND S. D. GUERRIERI

Im being the identity matrix of size m. Furthermore

exp(tD) = diag{exp(�1t), . . . , exp(�mt), 0, . . . , 0} (8)

is a diagonal matrix: the m coefficients of �k are the FEs of system (3), while �k = exp(�kT ) are
the corresponding FMs. Notice that Equation (8) implies that D has M − m eigenvalues equal
to −∞, i.e. system (3) has M − m FMs equal to 0. By denoting as uk(t) the columns of U(t),
and as vTk (t) the rows of V(t), the following remarks hold [11]:

1. for 1�k�m, z(t) =uk(t) exp(�k t) is a solution of Equation (3) with initial condition z(0)=
uk(0);

2. for 1�k�m, z̃(t) = vk(t) exp(−�k t) is a solution of system

CT(t)
d

dt
z̃(t) + AT(t)z̃(t) = 0 (9)

with initial condition z̃(0) = vk(0); Equation (9) represents the adjoint system associated with
Equation (3).

Since uk(t) is associated with the corresponding FE �k , it is denoted as the Floquet eigenvector
associated with �k .

Substituting z(t) = uk(t) exp(�k t) into Equation (3), the FE and Floquet eigenvectors are shown
to satisfy

�kC(t)uk(t) + C(t)u̇k(t) = [A(t) − Ċ(t)]uk(t) (10)

2.1. Stability and bifurcations in autonomous DAEs

According to the discussion in [11], for an autonomous system ẋs(t) = dxs/dt is a solution of the
linearized system (3): this means that �1 = 1 is one of the FMs associated with the limit cycle
itself, with the corresponding Floquet eigenvector u1(t) = ẋs(t). Furthermore, the state-transition
matrix (6) can be decomposed according to [11]:

U(t, s) =
m∑

k=1
e�k(t−s)uk(t)vTk (s)C(s) (11)

As a consequence, for the limit cycle of the autonomous system to be asymptotically stable,
all the remaining m − 1 FMs must lie within the unit circle in the complex plane, i.e. |�k |<1
∀k = 2, . . . ,m.

Concerning bifurcations, the conditions for a fold and a flip (period doubling) phenomenon to
take place are simply that one FM equals 1 or −1, respectively [2, 7].

3. FREQUENCY-DOMAIN DETERMINATION OF FLOQUET MULTIPLIERS

The aim of this section is to introduce a novel technique, amenable to be implemented in circuit
analysis CAD tools, for the evaluation of the FMs associated with a limit cycle completely in
the frequency domain. The main reason behind the development of such an approach is that the
HB technique is probably the most popular and effective tool for evaluating the limit cycle in
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ANALYSIS OF STABILITY AND BIFURCATIONS IN NONLINEAR SYSTEMS 425

microwave and RF nonlinear circuits, both in the case of forced and autonomous systems.‖ In
order to introduce the algorithm, we shall make use of the formalism presented in [4, 7].
3.1. HB formulation

Let us consider a T -periodic scalar real continuous and differentiable function x(t), represented in
the frequency domain by a truncated Fourier series, made of NH harmonics plus the DC component

x(t)=
NH∑
h=0

xh(t), xh(t) =
⎧⎨
⎩
x fc0, h = 0

x fch cos(h�t) + x fsh sin(h�t), h = 1, . . . , NH

(12)

where x fch and x fsh are the (cosine and sine) harmonic amplitudes associated with the hth harmonic
of (angular) frequency h� (�= 2�/T ). Of course, the finite sum in Equation (12) is just an
approximation of the full Fourier representation, necessary for computational purposes: we shall
assume that NH is large enough to approximate the ‘real’ x(t) within an acceptable error. By
collecting the harmonic amplitudes into a column vector

xf = [x fc0, x fc1, x fs1, . . . , x fcNH
, x fsNH

]T (13)

and defining the 2NH + 1 time samples th = hT/(2NH + 1) (h = 1, . . . , 2NH + 1) equally spaced
into the period ]0, T ], an invertible linear operator C allows for the time–frequency transformation
[4, 7]

xf =Cx ⇐⇒ x=C−1xf (14)

where we have denoted by x the column vector collecting the time samples of x(t):

x=[x(t1), x(t2), . . . , x(t2NH+1)]T (15)

The expression for the transformation from harmonic components to time samples can be easily
derived from Equation (12)

C−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 �c1,1 �s1,1 . . . �c1,NH
�s1,NH

1 �c2,1 �s2,1 . . . �c2,NH
�s2,NH

...
...

...
...

...

1 �c2NH+1,1 �s2NH+1,1 . . . �c2NH+1,NH
�s2NH+1,NH

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(16)

where �c and �s are given by

�cp,q = cos(q�tp) = cos

(
q2�p

2NH + 1

)
, �sp,q = sin(q�tp) = sin

(
q2�p

2NH + 1

)
(17)

Notice that operator C, due to the choice of the time samples, is independent of �, and
therefore, the formulation can be exploited for the determination of the limit cycle of autonomous
systems [4, 7].

‖In the latter case, the frequency � = 2�/T of the limit cycle is also an unknown to be solved for, see e.g. [4].

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2008; 36:421–439
DOI: 10.1002/cta

Rettangolo

Rettangolo



426 F. L. TRAVERSA, F. BONANI AND S. D. GUERRIERI

Also the time derivative of x(t) can be expressed in the frequency domain as a function of the
harmonic components xf. An explicit evaluation of ẋ(t) from Equation (12) leads to [7]:

ẋf =Cẋ= �Xxf (18)

where ẋ denotes the collection of time samples of ẋ(t), ẋf are the harmonic components of ẋ(t),
and X is a constant (2NH + 1) × (2NH + 1) matrix given by

X=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 . . . 0 0

0 0 1 0 0 . . . 0 0

0 −1 0 0 0 . . . 0 0

0 0 0 0 2 . . . 0 0

0 0 0 −2 0 . . . 0 0

...
...

...
...

...
...

...

0 0 0 0 0 . . . 0 NH

0 0 0 0 0 . . . −NH 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

Equations (14)–(19) can be exploited for the definition of the HB system used for the deter-
mination of the limit cycle harmonic amplitudes xfs, both for the cases of forced and autonomous
systems (see [4] for details), in the latter case by taking into account that the inclusion of the
additional unknown � (the limit cycle angular frequency) can be treated by arbitrarily fixing one
of the harmonic amplitudes (i.e. fix the phase reference of the limit cycle) [4, 7]. For instance, a
possible choice is to set to zero the sine amplitude of the first harmonic of the first component of
xs(t), i.e. x fs,1,s1 = 0.

3.2. HB-based algorithm for FM determination

The frequency-domain evaluation of the FMs is based on a HB formulation of Equation (10). To
keep the notation as simple as possible, we shall denote by uk the vector of collected time samples
for the vector function of time uk(t), ordered according to its components u p,k(t) (p= 1, . . . , M):

uk =[uk,1(t1), . . . , uk,1(t2NH+1), . . . , uk,M (t1), . . . , uk,M (t2NH+1)]T (20)

ufk is the corresponding collection of harmonic components

ufk =[ufk,1,c0, ufk,1,c1, ufk,1,s1, . . . , ufk,1,sNH
, . . . , ufk,M,c0, . . . , u

f
k,M,sNH

]T (21)

so that the relationship between the time samples and the frequency components for the vector
functions is a simple generalization of the scalar one (14)

ufk =CMuk ⇐⇒ uk =C−1
M ufk (22)

where CM is a block-diagonal linear operator made of M blocks each equal to C:

CM = diag{C, . . . ,C} M blocks (23)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2008; 36:421–439
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ANALYSIS OF STABILITY AND BIFURCATIONS IN NONLINEAR SYSTEMS 427

A direct application of Equation (18) leads also to

u̇fk =CM u̇k = �XMufk (24)

where XM is a block-diagonal linear operator made of M blocks each equal to X:

XM = diag{X, . . . ,X} M blocks (25)

Similar arguments can be applied to show that for the matrix T -periodic function Ċ(t) the
following relationship holds∗∗:

CM [Ċuk + Cu̇k] = �XMCM (Cuk) = �XM Ĉufk (26)

where C and Ċ are (2NH + 1)M × (2NH + 1)M constant matrices built up by expanding each
element of matrix functions C(t) and Ċ(t), respectively, with a diagonal block of the corresponding
time samples, and Ĉ = CMCC−1

M .
Multiplying by CM the time samples of Equation (10) and making use of the identity C−1

M CM =
I(2NH+1)M and of Equations (22), (24), and (26), the following generalized eigenvalue problem is
found

(Â − �XM Ĉ)ufk = �kĈu
f
k (27)

for the FEs and the harmonic amplitudes of the associated Floquet eigenvectors, where:

Â = CMAC−1
M (28)

From an implementation standpoint, it is worth noticing that matrices C and A are the Jacobian
matrices of the nonlinear functions q and −g evaluated in the steady-state limit cycle. Since the HB
system is generally solved by exploiting Newton iterations, such Jacobians are directly available
for the FM estimation.

The size of the generalized eigenvalue problem (27) is (2NH + 1)M × (2NH + 1)M , therefore,
the number of FEs numerically derived from a full eigenvalue determination is (2NH + 1)M .
According to the remark in [2], the FEs are actually infinite in number: there are m independent
FMs, which correspond to an infinite set of FEs distributed in the complex plane along m vertical
lines. For each line k, the infinite FEs �k,q are located at a constant distance equal to j2�/T

( j=√−1) from each other:

�k,q = �k,0 + qj
2�

T
, q ∈ Z 
⇒ �k = e�k,q T = e�k,0T+qj2� = e�k,0T (29)

The truncated relationship (27) yields an approximate estimation of the FEs �k,q . In fact, as
discussed in Section 4, the numerical distribution in the complex plane of FEs evaluated from
Equation (27) tends to diverge from the theoretical one moving far from the eigenvalues nearest to
the real axis. For this reason, numerical accuracy requires the inclusion of the FEs with minimal
(absolute value of) imaginary part for the FM estimation. This remark, justified here only on the
basis of numerical results, can be supported by a more rigorous derivation which is neglected here
for the sake of conciseness and will be published elsewhere.

∗∗Corrections made to Equations (26)–(28) and to the paragraph following Equation (26) after initial online publication.
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428 F. L. TRAVERSA, F. BONANI AND S. D. GUERRIERI

Furthermore, in order to reduce the computational burden for very large systems, specialized
numerical algorithms allowing for the calculation of the eigenvalues in Equation (27) in a predefined
region of the complex plane [12] can also be exploited.

3.3. Frequency-domain estimation of bifurcation conditions

Let us consider that the dynamical system depends on a parameter �, used as a bifurcation parameter.
The limit cycle’s FEs are the solutions of the generalized eigenvalue problem (27), where all the
terms apart from XM depend on the parameter �: in order to satisfy the bifurcation condition, we
have to determine a value �0 of the parameter (if it exists) which makes one of the limit cycle
FMs of magnitude equal to 1 (see Section 2.1). The bifurcation parameter value �0 satisfies the
equation

�k0(�0) =

⎧⎪⎪⎨
⎪⎪⎩

+1 for a fold bifurcation

e j�, �∈ R\{0, �} for a Neimark–Sacker bifurcation

−1 for a flip bifurcation

(30)

where k0 is the index labelling the FM taking the value required by the bifurcation condition.
Notice that, as discussed in Section 2.1, for a fold bifurcation to occur in an autonomous system
a second FM must be equal to +1, besides the FM equal to +1 always present in such a case.

In this work, Equation (30) is numerically solved by applying the standard secant method [13].
This corresponds to build up a sequence {�i } of values of the parameter which, if the secant approach
converges, tends to �0: for each iteration of the numerical approach (i.e. for each parameter value
�i ) the limit cycle is determined solving the HB problem, and the corresponding FMs are estimated
solving Equation (27). Then, the FM closest to the required value is chosen (this amounts to select
k0) and is used for determining the new approximation of the solution.

4. EXAMPLES OF APPLICATION

The methodology described in Section 3 has been applied to the simulation of two autonomous
systems: we have considered the well-known Chua’s circuit, characterized by a very complex
dynamic behaviour, and a standard Colpitts oscillator. In order to determine the limit cycles, we
have implemented the homotopy scheme proposed in [14, 15] which enables us to compute the
autonomous working point starting from a nonautonomous simulation, thus avoiding the use of
several (often randomly chosen) initial conditions to find different limit cycles.

4.1. Chua’s circuit

The first example of application is the well-known Chua’s circuit with cubic nonlinearity [16],
characterized by the normalized equations

ẋ = �[y − n(x) − x]
ẏ = x − y + z

ż = −�y

(31)
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ANALYSIS OF STABILITY AND BIFURCATIONS IN NONLINEAR SYSTEMS 429

where �, � are real parameters, and the nonlinear function n(x) is a cubic polynomial:

n(x)= − 8
7 x + 4

63 x
3 (32)

This system is in a canonical form (i.e. q in Equation (1) is the identity operator), and is charac-
terized by M =m = 3. Thus,

C(t) = I3 
⇒ Ĉ= I3, Â
′ = Â (33)

Chua’s circuit was chosen as a first case study because it allows for a direct comparison with
the results in [7], where its bifurcations were studied in the frequency domain with a different
approach for the estimation of the FMs.

As a function of the parameters � and �, Equation (31) gives rise to a wide variety of dynamic
behaviours [7, 16]: for �<7 two equilibria exist, symmetric with respect to the origin of the state
space. As � is increased, first two asymmetric limit cycles are born from a Hopf bifurcation
of the two equilibria [16], followed for an even larger � by two further symmetric limit cycles
(one stable and one unstable). Figure 1 shows the relationship between the cycle period T and
the system parameter � (�= 15 is held constant) for both the asymmetric and symmetric limit
cycles. Simulations are carried out by solving the HB system with 15�NH�50 (the actual value
of NH is chosen by controlling the relative error in the solution between simulations with NH
and NH + 1 harmonics) for the determination of the steady-state solution, and changing the initial
conditions in order to detect the various limit cycles. Notice that for � close to 11.5377 (and
T ≈ 11.514) a second symmetric cycle appears, leading to the dash-dotted curve in the inset of
Figure 1.

Figure 1. Chua’s circuit: �-parameter dependence of the limit cycle period T for symmetric and asymmetric
cycles. Symmetric cycle: continuous and dash-dotted lines. Asymmetric cycle: dashed line.
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430 F. L. TRAVERSA, F. BONANI AND S. D. GUERRIERI

Figure 2. Chua’s circuit: example of FE distribution in the complex plane for the symmetric limit cycle
(NH = 50, T = 13.827). Top inset: FE distribution for NH = 20, T = 13.827. Middle inset: zoom of the

FE distribution for T = 13.027. Bottom inset: zoom of the FE distribution for T = 13.827.

The stability of such limit cycles is studied according to the approach presented in Section 3.2, i.e.
by evaluating their three FMs. As expected for an autonomous system, one of them is always equal
to 1. The distribution in the complex plane of the FEs calculated from the generalized eigenvalue
problem (27) is shown in Figure 2 for the case of the principal symmetric cycle (continuous line
of Figure 1, � = 15 and T = 13.827). As discussed in Section 3.2, the numerically calculated FEs
are distributed on vertical lines in the complex plane according to Equation (29). The position
of the FEs tends to diverge from the theoretical one as the imaginary part becomes larger, thus
suggesting that for a better numerical accuracy, the FMs must be calculated by choosing the FEs
with minimal imaginary part: this heuristic remark is also supported by a more rigorous analysis,
omitted here for the sake of brevity. The FEs are calculated including NH = 50 harmonics in the
HB simulation: for comparison, the same system is solved for NH = 20 (see top inset in Figure 2),
showing a much worse distribution of FEs in the complex plane. Notice that such a large number
of harmonics is necessary for an accurate estimation of the FEs is related to the properties of this
limit cycle, which is unstable with a very large FM: our numerical experiments show that for lower
values of the FM magnitude a satisfactory accuracy is achieved with a much lower NH. As a final
remark, the bottom inset of Figure 2 shows that, besides the 0 FE, the other two FMs correspond
to FEs with minimal imaginary part different from zero. They actually give rise to two FMs only,
because their imaginary part is exactly equal to �/T . For comparison, the middle inset of Figure 2
shows the FEs with minimal imaginary part for a different symmetric limit cycle (T = 13.027),
which are all real.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2008; 36:421–439
DOI: 10.1002/cta

Rettangolo

Rettangolo



ANALYSIS OF STABILITY AND BIFURCATIONS IN NONLINEAR SYSTEMS 431

Figure 3. Chua’s circuit: T dependence of the real part of the FM responsible for bifurcations of the
symmetric limit cycles. The dash-dotted line represents a function equal to 0 if the FE nearest to the real

axis is real, and to 1 if it is complex.

In order to assess the stability properties of the symmetric limit cycles, the real part of the
FM responsible for bifurcations†† (the principal FM defined in [7]) is shown in Figure 3 as a
function of the cycle period T : the continuous curve corresponds to the symmetric cycle present
for � = 2, while the dashed line corresponds to the symmetric cycle detected for �>11.5377 only.
In the first case, the FM is always nonnegative, and, therefore, it undergoes fold bifurcations only:
they are denoted as f ks (k ∈ N) [7], where the higher the value of k, the larger the corresponding
cycle period. For the second symmetric cycle, on the other hand, the FM can become negative,
thus giving rise also to period-doubling bifurcations here named as dks (k ∈ N): notice that these
bifurcations, not discussed in [7], require the corresponding FE to be complex. As T is increased,
the sequence of bifurcations f k1s –dk2s –dk2+1

s – f k1+1
s is always observed: correspondingly, the FEs

are real, complex, and real again (see the dash-dotted line in Figure 3). As a further insight, we
consider in Figure 4 the evolution as a function of T of the two FEs not identically equal to 0
between f 2s and f 3s : both are always real, and in f 2s and f 3s one of them is equal to 0, the other
is negative. As T increases, the values of the two FEs get closer, eventually becoming equal for
T slightly larger than 4.55. This corresponds to a collision between the corresponding FMs. Then,
the two FEs diverge again, one increasing until f 3s is reached. This pattern is followed for all the
transitions between two consecutive fold bifurcations.

††For the other two FMs, one is always equal to 1, the other is always stable.
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Figure 4. Chua’s circuit: evolution of the FEs not identically equal to 0 for the symmetric limit cycle
between f 2s and f 3s as a function of the cycle period T .

A similar analysis is carried out for the study of the bifurcations of the asymmetric limit cycle.
Figure 5 reports the real part of the principal FM [7] as a function of the asymmetric cycle period T .
The first flip bifurcation da gives rise to the spiral attractor [7], then the cycle becomes unstable
until a sequence of period doubling (d1a ) and fold ( f 1a ) bifurcations is observed. Starting from
d1a , as T grows bifurcations follow the sequence dka – f

k
a – f

k+1
a –dk+1

a , where the cycle is stable
between dka – f

k
a and f k+1

a –dk+1
a only. In particular, in the regions of stability between the flip and

fold bifurcations the principal FM becomes complex, and thus the other FM not identically equal
to 1 must be the complex conjugate of the former. This is demonstrated in Figure 6, where the two
FMs not identically equal to 1 for the asymmetric cycle are shown as a function of T between d3a
and f 3a : at d

3
a , the principal FM is equal to −1 and is represented in the figure by circles, while

the other FM is real and close to 0 (see the stars in Figure 6). As T is increased, the principal FM
increases and the other decreases, both remaining real: when the two FMs collide, both become
complex with increasing real part, up to a T value for which they collide again becoming real. The
role of the two FMs is now exchanged, since the circle’s real part is now a decreasing function
of T , while the stars exhibit a growing real part which takes them to the fold bifurcation f 3a (and,
thus, this becomes the principal FM responsible for the bifurcation).

Finally, some bifurcation curves in the parameter space (�, �) have been computed according
to the method described in Section 3.3 by means of continuation as a function of the � parameter,
choosing as a starting point the bifurcation points detected for � = 15 (Figures 3 and 5). The result,
shown in Figure 7, is in agreement with [7].

4.2. Colpitts oscillator

The second example of dynamical system considered is a Colpitts oscillator, which cannot be easily
analysed with the semi-analytical approach in [7]. The circuit, shown in Figure 8, is modelled by
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Figure 5. Chua’s circuit: T dependence of the real part of the FM responsible of bifurcations for the
asymmetric limit cycle. The dash-dotted line represents a function equal to 0 if the FE nearest to the real

axis is real, and to 1 if it is complex.

Figure 6. Chua’s circuit: evolution in the complex plane of the FMs not identically equal to 1 for the
asymmetric limit cycle between d3a and f 3a as a function of the cycle period T .
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Figure 7. Bifurcation diagram in the parameter space (�, �) for several flip and fold bifurcations of both
the symmetric and asymmetric Chua’s circuit limit cycles.

Figure 8. Circuit of the Colpitts oscillator.
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assuming a static approximation for the bipolar transistor, which is described by the memoryless
simplified model:

iB = IS

[
exp

(
vBE

VT

)
− 1

]
, iE = �FiB (34)

where IS and �F are constants, VT = 26mV at room temperature, and vBE = vB − vE. The circuit
is described by the following MNA equations:

C2
dvC
dt

+ i3 + iC + vC − VCC
RC

= 0

L
di3
dt

− vC + v0 = 0

CS
d

dt
(vB − v0) − C1

dv0
dt

+ i3 = 0 (35)

CS
d

dt
(vB − v0) + vB

R2
+ vB − VCC

R1
+ iB = 0

vE

RE
− iC − iB = 0

which, completed by the constitutive relations (34), allow for the computation of the circuit working
point. Substituting Equation (34) into Equation (35) and defining the normalized variables

x1 = v0

VT
, x2 = RCi3

VCC
, x3 = vC

VT
(36)

x4 = vB

VT
, x5 = vE

VT
, 	 = �0t (37)

the system equations are written as

x2 +
(


 + �2
d

d	

)
x3 + �F�[exp(x4 − x5) − 1] − 1= 0

x1 + �
dx2
d	

− x3 = 0

(� + �1)
dx1
d	

− x2 − �
dx4
d	

= 0 (38)

�
dx1
d	

+
(


�� + �
d

d	

)
x4 + �[exp(x4 − x5) − 1] − � = 0


�1x5 − (�F + 1)�[exp(x4 − x5) − 1] = 0
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where the normalization frequency is �0 =√
C1 + C2/

√
LC1C2, and the following parameters are

defined:

� = �0CSRC
VT
VCC

, �1 = �
C1

CS
, �2 = �

C2

CS
(39)


 = VT
VCC

, �= RC

R1
, �1 = RC

RE
(40)

� = R1 + R2

R2
, � = �0

LVCC
RCVT

, � = RC IS
VCC

(41)

System (38) is of the form (1), where q(x) =Cx is a linear relation characterized by the noninvertible
matrix C

C=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 
 + �2 0 0

0 � 0 0 0

� + �1 0 0 −� 0

� 0 0 � 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(42)

and the nonlinear function g(x) is

g(x)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2 + 
x3 + �F�[exp(x4 − x5) − 1] − 1

x1 − x3

−x2


��x4 + �[exp(x4 − x5) − 1] − �


�1x5 − (�F + 1)�[exp(x4 − x5) − 1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(43)

Therefore, M = 5 and m = 4. Notice also that, since C(	) is independent of 	, Ċ= 0 and Â
′ = Â.

The circuit has been simulated with the HB method with NH = 15, and assuming for the
parameters the values

R2 = 100 k�, RC = 4.9 k�, RE = 90� (44)

C1 = 0.3 �F, C2 = 9.09 nF, CS = 1 �F (45)

VCC = 15V, L = 27.78 nH (46)

while the transistor parameters are �F = 100 and IS = 10−18 A.
Of the m = 4 FMs not identically equal to 0, one is equal to 1 (as expected for an oscillator),

two are complex conjugate with negative real part, and the fourth is real, positive and close to 1.
We have determined the oscillator limit cycle as a function of two parameters (R1 and �1, see
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Figure 9. Colpitts oscillator: angular frequency of the limit cycle as a function of �1 and R1 parameters.
The main curve is plotted for R1 = 100 k�

Figure 10. Colpitts oscillator: regions of unstable operation in the (�1, R1) parameter plane. The frontiers
of the shaded regions represent fold bifurcation curves, since the FM is real and positive.

Figure 9), and computed the corresponding FMs. In several regions of this parameter space the
cycle becomes unstable, i.e. one FM exhibits magnitude larger than 1, as shown in Figure 10. A
similar result was obtained in [17], making use of the describing function technique. Notice that
the borders of the unstable regions represent fold bifurcation curves, since the represented FM is
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Figure 11. Colpitts oscillator: evolution in the complex plane of the FE as a function of parameter �1.

real and positive. The evolution in the complex plane of the corresponding FE as a function of �1
(for R1 held constant to 100 k�) is represented in Figure 11, where the limit cycle is shown to
undergo a period-doubling bifurcation for �1<60 (see also Figure 10).

5. CONCLUSION

We have proposed a general numerical technique for the assessment of the stability properties
of periodic solutions in nonlinear dynamical systems described by differential-algebraic equations
(DAEs), based on the estimation of the Floquet exponents (FEs) of the steady-state solution
performed directly in the frequency domain. This allows to directly extend the standard harmonic
balance (HB) technique, widely used for the determination of the steady state, to the perturbative
stability analysis, since the matrices involved in the FE calculation are strictly related to the Jacobian
matrices exploited for the Newton iterative solution of the HB problem. Moreover, the approach
can in principle be directly implemented even in commercial CAD tools for circuit analysis, since
the DAE form is typically found in the MNA equations such simulators usually employ.

In order to validate the approach, we have determined the stability and bifurcations of the
limit cycles of the well-known Chua’s circuit with cubic nonlinearity, and of a standard Colpitts
oscillator. A parametric analysis has been carried out, allowing for the accurate determination of
a wide variety of bifurcation curves, both for the cases of fold and flip bifurcations.
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