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ROBUST A POSTERIORI ERROR ESTIMATES FOR FINITE ELEMENT
DISCRETIZATIONS OF THE HEAT EQUATION WITH DISCONTINUOUS

COEFFICIENTS ∗

Stefano Berrone
1

Abstract. In this work we derive a posteriori error estimates based on equations residuals for the heat
equation with discontinuous diffusivity coefficients. The estimates are based on a fully discrete scheme
based on conforming finite elements in each time slab and on the A-stable θ-scheme with 1/2 ≤ θ ≤ 1.
Following remarks of [Picasso, Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237; Verfürth,
Calcolo 40 (2003) 195–212] it is easy to identify a time-discretization error-estimator and a space-
discretization error-estimator. In this work we introduce a similar splitting for the data-approximation
error in time and in space. Assuming the quasi-monotonicity condition [Dryja et al., Numer. Math.
72 (1996) 313–348; Petzoldt, Adv. Comput. Math. 16 (2002) 47–75] we have upper and lower bounds
whose ratio is independent of any meshsize, timestep, problem parameter and its jumps.

Mathematics Subject Classification. 65M60, 65M15, 65M50.
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1. Introduction

In many practical applications a heat conduction problem involving a non homogeneous medium, made for
example by different materials, has to be solved. To deal with these situations, we propose robust a posteriori
error estimates for the heat equation with discontinuous, piecewise constant coefficients based on a discretization
by conforming finite elements and the classical A-stable θ-scheme with 1/2 ≤ θ ≤ 1.

Since the pioneering work of Babuška and Rheinboldt [1] a posteriori error estimates and adaptive algorithms
have become an important field for scientific computing [2, 7, 10, 12, 16, 18] and many works were devoted to
parabolic problems [3, 9, 14, 17].

The estimator here derived is based on equation residuals as in [3, 14, 17]. In [14] residual based error

estimators bound the error measured in the norm
∫ t[n]

t[n−1] ‖∇. ‖2
0dt from above and from below; the implicit Euler

scheme with linear finite elements is considered and only refinement is allowed; further, a condition between
the meshsize and the timestep-length has to be satisfied. In [17] residual based error estimators bounding the

error containing also the term
∫ t[n]

t[n−1]

∥∥ ∂ .
∂t

∥∥2

−1
dt are presented for constant diffusivity coefficients. The proof of
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the upper bound is performed deriving an upper bound of the error estimator in terms of a “time functional
residual” and a “space functional residual”. In [3] linear and semilinear heat equations are considered: first,
a semidiscretization in time by implicit Euler scheme is introduced; second, a discretization in space by finite
elements is performed. This approach is considered in order to uncouple as much as possible the time and the
space errors. Continuously differentiable diffusivity coefficients are considered.

In our work we consider the case of discontinuous coefficients. We use a full discretization approach instead
of considering a semidiscrete formulation as in [3]. Our estimates allow us to perform a control of the space-
discretization used in each time slab and of the timestep-length. The ratio between the upper and the lower
bounds for the error is independent on any meshsize, timestep, diffusivity parameter and its jumps across the
domain. To ensure this robustness with respect to the parameters jumps the quasi-monotonicity condition [8,13]
is assumed. In the proof of the lower bound we introduce an orthogonal space of edge bubble functions. In
our estimates we consider the data-approximation error and we propose a splitting of this error in two terms:
a data-approximation error in space and a data-approximation error in time; this splitting can be used in the
adaptation of the mesh and in the choice of the timestep-length in each time slab.

In Section 4 we present some numerical results on uniform meshes and constant timestep-lengths to carefully
analyze the behaviour of the effectivity indices and prove robustness of the estimates. These results also confirm
that the terms forming the error estimator and the data-approximation error mainly depend either on the space
discretization or on the time discretization. This splitting can be very useful in an adaptive algorithm to adapt
mesh and timestep-length. A simple adaptive strategy and some preliminary numerical results are proposed in
the Appendix.

2. The heat equation

2.1. The continuous problem

Let Ω be a polygonal domain in R
2 with boundary ∂Ω and let (0, Ξ) be the time interval of interest. For any

f ∈L2(0, Ξ; L2(Ω) ) and u[0]∈L2(Ω), we want to find u : Ω × (0, Ξ) → R such that

∂u

∂t
−∇ · (κ∇u) = f, in Ω × (0, Ξ), (1)

u(x, t) = 0, on ∂Ω × (0, Ξ), (2)

u(x, 0) = u[0](x), in Ω. (3)

The diffusivity parameter κ(x), 0 < κmin ≤ κ ≤ κMax < ∞, is a function constant in time and piecewise
constant on the polygonal subdomains Ωd, d = 1, . . . , D, with ∪D

d=1Ωd = Ω and Ωi ∩ Ωj = ∅, ∀i �= j.
Setting W =

{
w∈L2(0, Ξ; H1

0(Ω) ) : ∂w
∂t ∈L2(0, Ξ; H−1(Ω) )

}
the variational formulation of the above prob-

lem is: Find u∈W such that u(., 0) = u[0] and

〈
∂u

∂t
, v

〉
+ (κ∇u,∇v) = (f, v), ∀v ∈ H1

0(Ω), a.e. in (0, Ξ) . (4)

Here 〈 . , . 〉 stands for the duality pairing between H−1(Ω) and H1
0(Ω),( . , . ) is the usual inner product in L2(Ω).

If u∈W , then u∈C0([0, Ξ]; L2(Ω) ) and the initial condition u(., 0) = u[0] is meaningful in L2(Ω).

2.2. The numerical discretization

Let us consider a partition of (0, Ξ) into subintervals
(
t[n−1], t[n]

)
of length ∆t[n] = t[n] − t[n−1], with

0 = t[0] < t[1] < · · · < t[N ] = Ξ; set I [n] =
[
t[n−1], t[n]

]
. In each time-slab Ω × I [n], n ≥ 1, we consider a

regular family of partitions T [n]
h of Ω into triangles T ∈ T [n]

h which satisfy the usual conformity and minimal-
angle conditions [5], we denote by h

[n]
T the diameter of each element T ∈T [n]

h and by h[n] the maximum of h
[n]
T
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over all the elements T ∈ T [n]
h . From now on the subscript h stands for h[n]. We assume that each triangu-

lation T [n]
h induces triangulations T [n]

h,d of the subdomains Ωd, d = 1, .., D, such that T [n]
h = ∪D

d=1 T
[n]

h,d . Let

V[n]
h =

{
vh∈H1

0(Ω)∩C0(Ω) : v|T ∈Pk(T ), ∀T ∈T [n]
h

}
⊂ V = H1

0(Ω) be a family of conforming finite element

spaces based on the partitions T [n]
h . We denote by Pk(T ) the space of polynomials of degree k ≥ 1 on the

element T ∈T [n]
h . Assuming u[0] ∈L2(Ω), we define u

[0]
h,∆t = P

[1]
h,k u[0] to be the L2(Ω)-projection of u[0] on the

finite element space V[1]
h defined on T [1]

h . The subscript h, ∆t is used to refer to the full discretization in space
and in time. Then, we introduce the discretization based on the classical θ-scheme for the time integration:
Find u

[n]
h,∆t∈V[n]

h such that ∀vh∈V[n]
h , n = 1, ..., N

(
u

[n]
h,∆t − u

[n−1]
h,∆t

t[n] − t[n−1]
, vh

)
+ θ

(
κ∇u

[n]
h,∆t,∇vh

)
+ (1 − θ)

(
κ∇u

[n−1]
h,∆t ,∇vh

)

= θ
(
ΠT f [n], vh

)
+ (1 − θ)

(
ΠT f [n−1], vh

)
, ∀vh∈V[n]

h . (5)

In the last scalar products of the previous equation we assume that f ∈ C0([0, Ξ]; L2(Ω) ) and we set f [r] =
f(., t[r]), r ∈ {n − 1, n}. Moreover we introduce an arbitrary piecewise polynomial approximation ΠT f of the
data f . If the initial condition u[0] belongs to C0(Ω), instead of the projection operator P

[1]
h,k, we can use the

interpolation operator π
[1]
h,k : C0(Ω) → V[1]

h .
At last we define the continuous, piecewise affine in time approximation of the solution u(., t):

uh,∆t(x, t) =
t − t[n−1]

t[n] − t[n−1]
u

[n]
h,∆t(x) +

t[n] −t

t[n] − t[n−1]
u

[n−1]
h,∆t (x), x ∈ Ω, t ∈ I [n], n = 1, ..., N. (6)

3. A residual-based A POSTERIORI error estimator

In this section we derive a residual-based error estimator for our fully discretized model problem following
the work in [14, 17]. In particular, we shall derive a global-in-space local-in-time upper and lower bounds. At
first, we introduce some notation which will be used for the construction of the estimator.

3.1. Definitions and general results

For each time-slab Ω × I [n] we define a partitions T [n−1,n]
h that is a common refinement of T [n−1]

h and T [n]
h ,

satisfying conformity and minimal angle condition and a transition condition or moderate coarsening condition
[17]: there exists a constants Ctr such that

sup
n=1,...,N

sup
T∈T [n]

h

sup
T∗∈T [n−1,n]

h :T∗⊆T

h
[n]
T

h
[n−1,n]
T∗

≤ Ctr, (7)

being h
[n−1,n]
T∗ the diameter of the element T ∗ ∈ T [n−1,n]

h . For any T ∈ T [n−1,n]
h we denote by E(T ) the set of

its edges; we denote by E [n−1,n]
h = ∪

T∈T [n−1,n]
h

E(T ) the set of all edges of the triangulation T [n−1,n]
h . Moreover,

we split E [n−1,n]
h into the form E [n−1,n]

h = E [n−1,n]
h,Ω ∪E [n−1,n]

h,∂Ω with E [n−1,n]
h,Ω =

{
E∈E [n−1,n]

h : E �⊂∂Ω
}
, and

E [n−1,n]
h,∂Ω =

{
E∈E [n−1,n]

h : E⊂∂Ω
}
. Similarly, we define the corresponding sets E [n]

h , E [n]
h,Ω and E [n]

h,∂Ω of edges E

of T [n]
h . For any edge E∈E [n−1,n]

h and we define:

ω
[n]
E =

⋃
{T ′∈T [n−1,n]

h
: E∈E(T ′)}

T ′.
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Figure 1. The mapping FE,T : T̂ → T2.
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Figure 2. The support of the func-
tion b

[n]
E .

To any edge E ∈ E [n−1,n]
h,Ω we associate an orthogonal unit vector nE and denote by [[ . ]]E the jump across E in

the direction nE . Let us denote by T̂ the reference triangle and by Ê the reference edge as shown in Figure 1 on
the left. Let λi, i = 0, 1, 2 be the barycentric coordinates on the reference triangle, then the reference triangle
bubble function is b̂T̂ = 27λ0λ1λ2, and the reference edge bubble function is b̂Ê = 4x̂(1− x̂− ŷ) and F

[n]
T : T̂ → T

is the affine mapping from the reference triangle to the triangle T ∈ T [n−1,n]
h [5, 15]. For sake of simplicity, we

will drop the superscript [n] in the symbols of the mappings. For any T ∈ T [n−1,n]
h we indicate with b

[n]
T the

triangle bubble function defined by b
[n]
T = b̂T̂ ◦ F−1

T . Note that this bubble function does not depend on time in
each time-slab.

Given any E∈E [n−1,n]
h,Ω , let T � and T � the two triangles of T [n−1,n]

h such that ω
[n]
E = T � ∪T �. Let us enumerate

the vertices of T � and T � counterclockwise in such a way that the vertices of E are numbered first. Let T be
one of the triangles T � and T �, assume that E has vertices a0 and a1 and denote by ac = (xc, yc) the barycentre
of the triangle T ; let us partition T into the triangles T0, T1, T2 with T2 having E as a side (see Fig. 1). Let
FE,T : T̂ → T2 be the invertible affine mapping that maps the reference triangle T̂ onto the triangle T2

FE,T (x̂, ŷ) = a0 λ0(x̂, ŷ) + a1 λ1(x̂, ŷ) + ac λ2(x̂, ŷ) , if (x̂, ŷ) ∈ T̂ .

Then we define the edge bubble function b
[n]
E by patching the two bubble functions:

b
[n]

E,T � = b̂Ê ◦ F−1
E,T � , b

[n]
E,T � = b̂Ê ◦ F−1

E,T � ,

each one being nonzero only on T �
2 and T �

2 , respectively. Finally, let us define the set �
ω

[n]

E = T �
2 ∪T �

2 (dashed
area in Fig. 2). For the boundary edge E that belongs to the element T only, we naturally identify b

[n]
E with

b
[n]
E,T = b̂Ê ◦ F−1

E,T .
With this definition of edge bubble functions we have a set of orthogonal functions, in the sense that the

intersection of the supports of two different edge bubble functions is the empty set or a whole segment. This
property is also true for the set of triangle bubble functions.

Moreover, for the reference edge Ê we define the extension operator P̂Ê : Pi(Ê) → Pi(T̂ ) which extends a
polynomial of degree i defined on the edge Ê to a polynomial of the same degree defined on T̂ with constant
values along lines orthogonal to the edge Ê. Then, we define the extension operator PE : Pi(E) → Pi(

�
ω

[n]

E )
which extends a polynomial of degree i defined on the edge E to a piecewise polynomial of the same degree
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defined on �
ω

[n]

E by patching the two operators:

PE|
T �

= FE,T �
2
◦ P̂Ê ◦ F−1

E,T �
2 |E

, PE|
T�

= FE,T �
2
◦ P̂Ê ◦ F−1

E,T �
2 |E

.

The extension operator PE is continuous, but not C1 in �
ω

[n]

E . In the following we will need to collect all the

triangles belonging to some set �
ω

[n]

E , so let us define T [n−1,n]

h,
�
ω

=
{

T2 ∈ �
ω

[n]

E : E ∈ E [n−1,n]
h

}
.

The symbol a � b means that there exists a constant c independent of any meshsize, timestep, parameter
and jump of parameters such that a ≤ c b. The symbol a � b means that a � b and b � a.

For any time interval I [n], T ∈ T [n−1,n]
h and E ∈ E [n−1,n]

h , the bubble functions b
[n]
T and b

[n]
E have the

following properties: supp b
[n]
T = T , 0 ≤ b

[n]
T ≤ 1, max(x,y)∈T b

[n]
T (x, y) = 1; supp b

[n]
E = �

ω
[n]

E , 0 ≤ b
[n]
E ≤ 1,

max(x,y)∈E b
[n]
E (x, y) = 1;

∥∥∥ b
[n]
T

∥∥∥2

0,T
� |T |,

∥∥∥ b
[n]
E

∥∥∥2

0,T
� |T |,

∥∥∥ b
[n]
E

∥∥∥2

0,E
� |E |. Thanks to the regularity

hypothesis on T [n−1,n]
h , there exist constants depending on the smallest angle in the triangulation, but not

on the mesh size, such that for each n = 1, ..., N we have: |T | �
(
h

[n−1,n]
T

)2

, ∀T ∈ T [n−1,n]
h , h

[n−1,n]
T �

h
[n−1,n]
E , ∀E ∈ E(T ) and |T | �

(
h

[n−1,n]
E

)2

, ∀T ∈ ω
[n]
E .

In the following κT will denote the constant value of κ in the triangle T ∈ T [n]
h , κ̂

ω
[n]
E

is the maximum

of the values of κT over the two triangles T ∈ T [n]
h sharing the edge E (we will use the same symbol to

denote the maximum of κT over the two triangles T ∈ T [n−1,n]
h sharing the edge E ∈ E [n−1,n]

h , it will be clear
from the context which situation we are referring to). Moreover we shall use a modified quasi-interpolation
operator Ih : V → V[n]

h like the quasi-interpolation operator of Clément, [6]. The definition of this kind of
interpolation operator requires the quasi-monotonicity hypothesis [8, 13] of κ(x) with respect to any node x

[n]
h

of the triangulation T [n]
h . This hypothesis implies the existence of “robust” interpolation estimates [4, 8, 13].

For any subset ω ⊆ Ω, let N [n]
h (ω) be the set of the vertices x of the triangulation T [n]

h such that x ∈ ω; let
ω

x
[n]
h

be the set of the triangles having x
[n]
h as a vertex. Moreover, let T̂

x
[n]
h

be a triangle from ω
x
[n]
h

where the
coefficient κT achieves its maximum in ω

x
[n]
h

. We recall the following definition of quasi-monotonicity for κ(x)
from [13], referring to this reference for more details.

Definition 3.1 (Quasi-monotonicity). The distribution of coefficients κT , T ∈ ω
x
[n]
h

is said to be quasi-monotone

with respect to the node x
[n]
h ∈ N [n]

h

(
Ω
)

if for each triangle T ∈ ω
x
[n]
h

there exists a Lipschitz set ω̃
T,x

[n]
h

containing
triangles T ′ ∈ ω

x
[n]
h

such that

• if x
[n]
h ∈ Ω, then T ∪ T̂

x
[n]
h

⊆ ω̃
T,x

[n]
h

and κT ≤ κT ′ , ∀T ′ ∈ ω̃
T,x

[n]
h

;

• if x
[n]
h ∈ ∂Ω, then T ⊆ ω̃

T,x
[n]
h

,
∣∣∣∂ ω̃

T,x
[n]
h

∩∂Ω
∣∣∣ > 0 and κT ≤ κT ′ , ∀T ′ ∈ ω̃

T,x
[n]
h

.

Let the distribution of coefficients κT , T ∈ T [n]
h be quasi-monotone with respect to every point x

[n]
h ∈ N [n]

h

(
Ω
)
.

For a triangle T ∈ T [n]
h and an edge E ∈ E [n]

h,Ω, being E [n]
h,Ω the set of the edges of the triangulation T [n]

h , let us
define two sets containing some neighboring triangles

ω̃
[n]
T =

⋃
x
[n]
h ∈N [n]

h (T )

ω̃
T,x

[n]
h

, ω̃
[n]
E =

⋃
x
[n]
h ∈N [n]

h (TE)

ω̃
T,x

[n]
h

,

where TE is the triangle of the two triangles sharing E where κT achieves the maximum.
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Definition 3.2 (Quasi-interpolation operator). [4, 8, 13] Let the distribution of coefficients κT , T ∈ T [n]
h be

quasi-monotone, then we define the quasi-interpolation operator Ih : V → V[n]
h as

Ihv =
dimN [n]

h (Ω)∑
i=1

λi(x)p
x
[n]
h,i

, p
x
[n]
h,i

=
1

T̂
x
[n]
h,i

∫
T̂

x
[n]
h,i

vdΩ, ∀x
[n]
h,i ∈ N [n]

h (Ω) .

Let px = 0 for nodal points x ∈ ∂Ω.

We recall from [13] the following results:

Lemma 3.3. Let T ∈ T [n]
h and E ∈ E [n]

h be arbitrary. Let the quasi-monotonicity condition be satisfied with
respect to any node x

[n]
h of T and TE. Then we have the following interpolation error estimates:

‖ v − Ihv ‖0,T ≤ C̃lR
h

[n]
T√
κT

∑
T ′∈ω̃

[n]
T

‖√κT ′ ∇v ‖0,T ′ , ∀v ∈ H1( ω̃
[n]
T ), (8)

| v − Ihv |1,T ≤ C̃lR,1
1

√
κT

∑
T ′∈ω̃

[n]
T

‖√κT ′ ∇v ‖0,T ′ , ∀v ∈ H1( ω̃
[n]
T ), (9)

‖ v − Ihv ‖0,E ≤ C̃lE

√
h

[n]
E√

κ̂
ω

[n]
E

∑
T ′∈ω̃

[n]
E

‖√κT ′ ∇v ‖0,T ′ , ∀v ∈ H1( ω̃
[n]
E ), (10)

the constants C̃lR, C̃lR,1 and C̃lE depending only on the smallest angle in the triangulation.

For each triangle T ∗ ∈ T [n−1,n]
h such that T ∗ ⊆ T ∈ T [n]

h we define ω̃
[n]
T∗ =

{
T ′∈T [n−1,n]

h : T ′⊆T ′′∈ ω̃
[n]
T ⊆T [n]

h

}
,

i.e. the set of the triangles of T [n−1,n]
h contained in, or equal to, a triangle T ′′ ∈ T [n]

h belonging to ω̃
[n]
T .

Moreover if E∗ ∈ E [n]
h or if E∗ ⊂ E ∈ E [n]

h , then we define ω̃
[n]
E∗ =

{
T ′∈T [n−1,n]

h : T ′⊆T ′′∈ ω̃
[n]
E ⊆T [n]

h

}
, else

if E∗ ∈ E [n−1,n]
h / E [n]

h and E∗ �⊂ E ∈ E [n]
h let T ∈ T [n]

h be the triangle such that E∗ is inside T , then

ω̃
[n]
E∗ =

{
T ′∈T [n−1,n]

h : T ′⊆T ′′∈ ω̃
[n]
T ⊆T [n]

h

}
, i.e. the sets of triangles of T [n−1,n]

h contained in, or equal to, a

triangle of ω̃
[n]
T .

Lemma 3.4. Let T ∗∈T [n−1,n]
h and E∗∈E [n−1,n]

h be arbitrary. Then we have the following interpolation error
estimates:

‖ v − Ihv ‖0,T∗≤ ClR
h

[n−1,n]
T∗√

κT∗

∑
T ′∈ω̃

[n]
T∗

‖√κT ′ ∇v ‖0,T∗=ClR
h

[n−1,n]
T∗√

κT∗

∥∥√κ∇v
∥∥

0,ω̃
[n]
T∗

, ∀v ∈ H1( ω̃
[n]
T∗ ), (11)

‖ v − Ihv ‖0,E∗≤ ClE

√
h

[n−1,n]
E∗√
κ̂

ω
[n]
E∗

∑
T ′∈ω̃

[n]
E∗

‖√κT ′ ∇v ‖0,T∗=ClE

√
h

[n−1,n]
E∗√
κ̂

ω
[n]
E∗

∥∥√κ∇v
∥∥

0,ω̃
[n]
E∗

, ∀v ∈ H1( ω̃
[n]
E∗ ), (12)

the constants ClR, and ClE depending only on the smallest angle in the triangulation T [n]
h and the constant Ctr.

Proof. Inequality (11) follows from (8) noting that ‖ v − Ihv ‖0,T∗ ≤ ‖ v − Ihv ‖0,T where T ∗ ∈ T [n−1,n]
h ⊆ T ∈

T [n]
h , that κT = κT∗ and applying condition (7). If E∗ = E ∈ E [n]

h or E∗ ⊂ E ∈ E [n]
h inequality (12) comes
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from (10), (7) and considering that κ̂
ω

[n]
E∗

= κ̂
ω

[n]
E

. While if E∗ ∈ E [n−1,n]
h / E [n]

h and E∗ �⊂ E ∈ E [n]
h then E∗ is

inside T ∈ T [n]
h and we apply standard trace inequality with (8) and (9) to one of the two triangles T ∗ ∈ T [n−1,n]

h

sharing E∗, with κ̂
ω

[n]
E∗

= κT and condition (7) to get (12). �

Let us consider the spaces H1
0(Ω) and H−1(Ω) respectively equipped with the norms:

‖ v ‖2
κ,1 =

∥∥√κ∇v
∥∥2

0
=
∫

Ω

κ(x)∇v · ∇vdΩ, ‖F ‖κ,−1 = sup
v∈H1

0(Ω)

〈F , v〉
‖ v ‖κ,1

·

Let us define the error of our approximation uh,∆t in the interval I [n] as eh,∆t = uh,∆t −u and define ∂ uh,∆t

∂t =
u
[n]
h,∆t −u

[n−1]
h,∆t

t[n] − t[n−1] .

Definition 3.5. Let us define the residuals in the triangles T ∗ ∈ T [n−1,n]
h and inter-element jumps on the edges

E∗ ∈ E [n−1,n]
h,Ω of our approximation uh,∆t

R
[n]
T∗ =

∂ uh,∆t

∂t
−θ κT∗ �u

[n]
h,∆t − (1−θ)κT∗ �u

[n−1]
h,∆t −θ ΠT f [n]−(1−θ)ΠT f [n−1]

∣∣∣∣
T∗

,

R
[n]
Ω =

∑
T∗∈T [n−1,n]

h

R
[n]
T∗ , J

[n]
E∗ =

[[
θκT ′

∂ u
[n]
h,∆t

∂nE∗
+ (1 − θ)κT ′

∂ u
[n−1]
h,∆t

∂nE∗

]]
E∗

.

Definition 3.6. Let us define the following local-in-space local-in-time estimators

(
η
[n]
R,T∗

)2

= ∆t[n]

⎛
⎜⎝(h

[n−1,n]
T∗

)2
∥∥∥∥ 1
√

κT∗
R

[n]
T∗

∥∥∥∥
2

0,T∗
+

1
2

∑
E∗∈E(T∗)∩E [n−1,n]

h,Ω

h
[n−1,n]
E∗

∥∥∥∥∥∥
1√
κ̂

ω
[n]
E∗

J
[n]
E∗

∥∥∥∥∥∥
2

0,E∗

⎞
⎟⎠ ,

(
η
[n]
∇,T∗

)2

= ∆t[n]
∥∥∥√κT∗ ∇

(
u

[n]
h,∆t − u

[n−1]
h,∆t

)∥∥∥2

0,T∗
.

Then, we define the following global-in-space and local-in-time estimators

(
η
[n]
R

)2

=
∑

T∗∈T [n−1,n]
h

(
η
[n]
R,T∗

)2

,
(
η
[n]
∇

)2

=
∑

T∗∈T [n−1,n]
h

(
η
[n]
∇,T∗

)2

,

(
η
[n]

f,θ,∆t[n]

)2

=
∫ t[n]

t[n−1]

∥∥∥ΠT f −θ ΠT f [n] −(1 − θ)ΠT f [n−1]
∥∥∥2

κ,−1
dt,

(
η
[n]
f,ΠT

)2

=
∫ t[n]

t[n−1]
‖ f − ΠT f ‖2

κ,−1dt,
(
η
[n]
f

)2

=
(
η
[n]

f,θ,∆t[n]

)2

+
(
η
[n]
f,ΠT

)2

.

In the sequel we will derive upper and lower bounds for the error involving the following norm:

||| eh,∆t |||κ,I[n] =

(∫ t[n]

t[n−1]

∥∥∥∥ ∂ eh,∆t

∂t

∥∥∥∥
2

κ,−1

dt +
∫ t[n]

t[n−1]
‖ eh,∆t ‖2

κ,1dt

) 1
2

.

Remark 3.7. Following considerations of [14,17], we can say that η
[n]
R is a space error estimator related to the

triangulation T [n]
h , whereas η

[n]
∇ gives information on the error due to time discretization.
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Remark 3.8. The quantity η
[n]
f is an estimator of the data approximation error and can be split into two

terms: η
[n]
f,ΠT

, that gives information essentially on the space data approximation error and η
[n]

f,θ,∆t[n] , that is a
time data approximation error.

3.2. Upper bound

Theorem 3.9. Under the assumptions on the continuous problem (4) and on the discrete formulation (5), for
each n = 1, ..., N , there exists a constant C̃

[n]
[n−1] independent of any meshsize, timestep, problem-parameter and

depending only on the smallest angle of the triangulation T [n]
h , on the constant Ctr and on the parameter θ,

such that

∥∥∥u
[n]
h,∆t − u[n]

∥∥∥2

0
+
∫ t[n]

t[n−1]

∥∥√κ∇ eh,∆t

∥∥2

0
dt ≤

∥∥∥u
[n−1]
h,∆t − u[n−1]

∥∥∥2

0
+ C̃

[n]
[n−1]

[(
η
[n]
R

)2

+
(
η
[n]
∇

)2

+
(
η
[n]
f

)2
]

. (13)

Proof. Let us define

E
[n]
h,∆t =

∫ t[n]

t[n−1]

[〈
∂ eh,∆t

∂t
, eh,∆t

〉
+ (κ∇ eh,∆t,∇ eh,∆t)

]
dt (14)

and

E
[n]
h,∆t =

1
2

∥∥∥u
[n]
h,∆t − u[n]

∥∥∥2

0
−1

2

∥∥∥u
[n−1]
h,∆t − u[n−1]

∥∥∥2

0
+
∫ t[n]

t[n−1]

∥∥√κ∇ eh,∆t

∥∥2

0
dt . (15)

From the continuous variational formulation of problem (4) it immediately follows that

E
[n]
h,∆t =

∫ t[n]

t[n−1]

[(
∂ uh,∆t

∂t
, eh,∆t

)
+ (κ∇uh,∆t,∇ eh,∆t)

]
dt−

∫ t[n]

t[n−1]

[〈
∂u

∂t
, eh,∆t

〉
+ (κ∇u,∇ eh,∆t)

]
dt .

Recalling (5) with Iheh,∆t ∈ V[n]
h as test function, we get

E
[n]
h,∆t =

∫ t[n]

t[n−1]

[(
∂ uh,∆t

∂t
, eh,∆t − Iheh,∆t

)
+
(
θκ∇u

[n]
h,∆t +(1 − θ)κ∇u

[n−1]
h,∆t ,∇ (eh,∆t − Iheh,∆t)

)
−
(
θ ΠT f [n] +(1 − θ)ΠT f [n−1], eh,∆t − Iheh,∆t

)]
dt

+
∫ t[n]

t[n−1]
θ
(
κ∇

(
uh,∆t − u

[n]
h,∆t

)
,∇ eh,∆t

)
dt +

∫ t[n]

t[n−1]
(1 − θ)

(
κ∇

(
uh,∆t − u

[n−1]
h,∆t

)
,∇ eh,∆t

)
dt

−
∫ t[n]

t[n−1]
(f − ΠT f, eh,∆t)dt−

∫ t[n]

t[n−1]

(
ΠT f −θ ΠT f [n] −(1 − θ)ΠT f [n−1], eh,∆t

)
dt .

Now we define t[θ,n] = θ t[n] +(1 − θ) t[n−1] and we note that

uh,∆t − u
[n]
h,∆t =

t − t[n]

t[n] − t[n−1]

(
u

[n]
h,∆t − u

[n−1]
h,∆t

)
, (16)

uh,∆t − u
[n−1]
h,∆t =

t − t[n−1]

t[n] − t[n−1]

(
u

[n]
h,∆t − u

[n−1]
h,∆t

)
, (17)

θ
(
uh,∆t − u

[n]
h,∆t

)
+ (1 − θ)

(
uh,∆t − u

[n−1]
h,∆t

)
=

t − t[θ,n]

t[n] − t[n−1]

(
u

[n]
h,∆t − u

[n−1]
h,∆t

)
. (18)
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After integration by parts of the term
(
θκ∇u

[n]
h,∆t +(1 − θ)κ∇u

[n−1]
h,∆t ,∇ (eh,∆t − Iheh,∆t)

)
we apply Cauchy-

Schwarz’s inequality, Poincaré-Friedrichs’ inequality and the inequalities of Lemma 3.4 getting

E
[n]
h,∆t �

∫ t[n]

t[n−1]

∑
T∗∈T [n−1,n]

h

h
[n−1,n]
T∗

∥∥∥∥ 1
√

κT∗
R

[n]
T∗

∥∥∥∥
0,T∗

∥∥√κ∇ eh,∆t

∥∥
0,ω̃

[n]
T∗

dt

+
∫ t[n]

t[n−1]

∑
E∗∈E [n−1,n]

h,Ω

√
h

[n−1,n]
E∗

∥∥∥∥∥∥
1√
κ̂

ω
[n]
E∗

J
[n]
E∗

∥∥∥∥∥∥
0,E∗

∥∥√κ∇ eh,∆t

∥∥
0,ω̃

[n]
E∗

dt

+
∫ t[n]

t[n−1]

t − t[θ,n]

t[n] − t[n−1]

∥∥∥√κ∇
(
u

[n]
h,∆t − u

[n−1]
h,∆t

)∥∥∥
0

∥∥√κ∇ eh,∆t

∥∥
0
dt

+
∫ t[n]

t[n−1]
‖ f − ΠT f ‖κ,−1

∥∥√κ∇ eh,∆t

∥∥
0
dt +

∫ t[n]

t[n−1]

∥∥∥ΠT f −θ ΠT f [n] −(1 − θ)ΠT f [n−1]
∥∥∥

κ,−1

∥∥√κ∇ eh,∆t

∥∥
0
dt .

Applying Young’s inequality with a suitable choice of constants, we conclude that there exists a constant ˜̃C [n]
[n−1]

such that

∥∥∥u
[n]
h,∆t − u[n]

∥∥∥2

0
+
∫ t[n]

t[n−1]

∥∥√κ∇ eh,∆t

∥∥2

0
dt ≤

∥∥∥u
[n−1]
h,∆t − u[n−1]

∥∥∥2

0

+ ˜̃C [n]
[n−1]

⎡
⎢⎣∆t[n]

⎛
⎜⎝ ∑

T∗∈T [n−1,n]
h

h
[n−1,n]
T∗

2
∥∥∥∥ 1
√

κT∗
R

[n]
T∗

∥∥∥∥
2

0,T∗
+

∑
E∗∈E [n−1,n]

h,Ω

h
[n−1,n]
E∗

∥∥∥∥∥∥
1√
κ̂

ω
[n]
E∗

J
[n]
E∗

∥∥∥∥∥∥
2

0,E∗

+
∑

T∗∈T [n−1,n]
h

∥∥∥√κT∗ ∇
(
u

[n]
h,∆t − u

[n−1]
h,∆t

)∥∥∥2

0,T∗

⎞
⎟⎠

+
∫ t[n]

t[n−1]
‖ f − ΠT f ‖2

κ,−1dt +
∫ t[n]

t[n−1]

∥∥∥ΠT f −θ ΠT f [n] −(1 − θ)ΠT f [n−1]
∥∥∥2

κ,−1
dt

]
(19)

and we get the thesis. �

The result given by Theorem 3.9 is an upper bound of the error measured in the L2(Ω)-norm at time t[n] and
in the L2( t[n−1], t[n]; H1

0(Ω) )-norm. To have an upper bound in the same norm for which we can get a lower
bound we also need an upper bound in the L2( t[n−1], t[n]; H−1(Ω) )-norm for ∂ eh,∆t /∂t.

Lemma 3.10. Under the assumptions on the continuous problem (4) and on the discrete formulation (5) for
each n = 1, ..., N and for each t ∈

(
t[n−1], t[n]

)
, we have

∥∥∥∥ ∂ eh,∆t

∂t

∥∥∥∥
κ,−1

≤

√√√√√ ∑
T∗∈T [n−1,n]

h

(
h

[n−1,n]
T∗

)2
∥∥∥∥ 1√

κT∗
R

[n]
T∗

∥∥∥∥
2

0,T∗
+

√√√√√√ ∑
E∗∈E[n−1,n]

h,Ω

h
[n−1,n]
E∗

∥∥∥∥∥∥
1√
κ̂

ω
[n]
E∗

J
[n]
E∗

∥∥∥∥∥∥
2

0,E∗

+ ‖ f − ΠT f ‖κ,−1 +
∥∥∥ΠT f −θ ΠT f [n] −(1 − θ)ΠT f [n−1]

∥∥∥
κ,−1

+
t − t[θ,n]

t[n] − t[n−1]

∥∥∥√κ∇
(
u

[n]
h,∆t − u

[n−1]
h,∆t

)∥∥∥
0
+
∥∥√κ∇ eh,∆t

∥∥
0
. (20)
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Proof. Let us observe that 〈
∂ eh,∆t

∂t
, v

〉
+ (κ∇ eh,∆t,∇v) =

(
∂ uh,∆t

∂t
, v

)
+ (κ∇uh,∆t,∇v)− (f, v)

=
(

∂ uh,∆t

∂t
, v

)
+
(
κ∇

(
θ u

[n]
h,∆t +(1 − θ)u

[n−1]
h,∆t

)
,∇v

)
−
(
θ ΠT f [n] +(1 − θ)ΠT f [n−1], v

)

+
t − t[θ,n]

t[n] − t[n−1]

(
κ∇

(
u

[n]
h,∆t − u

[n−1]
h,∆t

)
,∇v

)
− (f − ΠT f, v)−

(
ΠT f −θ ΠT f [n] −(1 − θ)ΠT f [n−1], v

)
.

Moreover, using (5) with vh = Ihv, v ∈ H1
0(Ω), we have

∥∥∥∥ ∂ eh,∆t

∂t

∥∥∥∥
κ,−1

= sup
v∈H1

0(Ω)

〈
∂ eh,∆t

∂t
, v

〉
‖ v ‖κ,1

≤ sup
v∈H1

0(Ω)

1
‖ v ‖κ,1

∑
T∗∈T [n−1,n]

h

(
R

[n]
T∗ , v − Ihv

)
T∗

+ sup
v∈H1

0(Ω)

1
‖ v ‖κ,1

∑
E∗∈E[n−1,n]

h,Ω

(
J

[n]
E∗ , v − Ihv

)
E∗

+ sup
v∈H1

0(Ω)

1
‖ v ‖κ,1

t − t[θ,n]

t[n] − t[n−1]

(
κ∇

(
u

[n]
h,∆t − u

[n−1]
h,∆t

)
,∇v

)
+ sup

v∈H1
0(Ω)

1
‖ v ‖κ,1

(f − ΠT f, v)

+ sup
v∈H1

0(Ω)

1
‖ v ‖κ,1

(
ΠT f −θ ΠT f [n] −(1 − θ)ΠT f [n−1], v

)
+ sup

v∈H1
0(Ω)

1
‖ v ‖κ,1

(κ∇ eh,∆t,∇v) .

Applying Hölder inequalities and Lemma 3.4 we get

∥∥∥∥ ∂ eh,∆t

∂t

∥∥∥∥
κ,−1

� sup
v∈H1

0(Ω)

1
‖ v ‖κ,1

√√√√√ ∑
T∗∈T [n−1,n]

h

(
h

[n−1,n]
T∗

)2
∥∥∥∥ 1√

κT∗
R

[n]
T∗

∥∥∥∥
2

0,T∗

√√√√ ∑
T∗∈T [n−1,n]

h

∥∥√κ∇v
∥∥2

0,ω̃
[n]
T∗

+ sup
v∈H1

0(Ω)

1
‖ v ‖κ,1

√√√√√√ ∑
E∗∈E[n−1,n]

h,Ω

h
[n−1,n]
E∗

∥∥∥∥∥∥
1√
κ̂

ω
[n]
E∗

J
[n]
E∗

∥∥∥∥∥∥
2

0,E∗

√√√√ ∑
E∗∈E [n−1,n]

h,Ω

∥∥√κ∇v
∥∥2

0,ω̃
[n]
E∗

+ sup
v∈H1

0(Ω)

1
‖ v ‖κ,1

t − t[θ,n]

t[n] − t[n−1]

(
κ∇

(
u

[n]
h,∆t − u

[n−1]
h,∆t

)
,∇v

)
+ sup

v∈H1
0(Ω)

1
‖ v ‖κ,1

(f − ΠT f, v)

+ sup
v∈H1

0(Ω)

1
‖ v ‖κ,1

(
ΠT f −θ ΠT f [n] −(1 − θ)ΠT f [n−1], v

)
+ sup

v∈H1
0(Ω)

1
‖ v ‖κ,1

(κ∇ eh,∆t,∇v)

and then we easily get the thesis. �

Theorem 3.11. Under the assumptions on the continuous problem (4) and on the discrete formulation (5), for
each n = 1, ..., N , we have

∫ t[n]

t[n−1]

∥∥∥∥ ∂ eh,∆t

∂t

∥∥∥∥
2

κ,−1

dt ≤ 6

[(
η
[n]
R

)2

+
(
η
[n]
f

)2

+
(

θ2 − θ +
1
3

)(
η
[n]
∇

)2

+
∫ t[n]

t[n−1]

∥∥√κ∇ eh,∆t

∥∥2

0
dt

]
. (21)

Proof. Applying Young inequality to the square of (20) and integrating in time on the n-th time interval, the
thesis readily follows. �
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Corollary 3.12. Under the hypotheses of Theorems 3.9 and 3.11 there exist constants C
↑,[n]
[n−1], independent of

any meshsize, timestep, problem-parameter, but depending on the smallest angle of triangulations T [n]
h and on

the constant Ctr such that the following inequality holds true for n = 1, ..., N

7
∥∥∥u

[n]
h,∆t − u[n]

∥∥∥2

0
+ ||| eh,∆t |||2κ,I[n] ≤ 7

∥∥∥u
[n−1]
h,∆t − u[n−1]

∥∥∥2

0
+ C

↑,[n]
[n−1]

((
η
[n]
R

)2

+
(
η
[n]
∇

)2

+
(
η
[n]
f

)2
)

. (22)

Proof. Multiplying by 7 inequality (13) and summing to it (21) we get (22). �

Theorem 3.13. Under the hypotheses of Theorems 3.9 and 3.11 there exists a constant C
↑,[N ]
[0] = max

n=1,...,N
C

↑,[n]
[n−1],

independent of any meshsize, timestep, problem-parameter, but depending on the smallest angle of triangulations
T [n]

h and on the constant Ctr such that the following inequality holds true

7
∥∥∥u

[m]
h,∆t − u[m]

∥∥∥2

0
+ ||| eh,∆t |||2κ,(0,t[m]) ≤ 7

∥∥∥u
[0]
h,∆t − u[0]

∥∥∥2

0
+ C

↑,[N ]
[0]

m∑
n=1

((
η
[n]
R

)2

+
(
η
[n]
∇

)2

+
(
η
[n]
f

)2
)

. (23)

3.3. Lower bound

We prove that the terms η
[n]
R and η

[n]
∇ bound from below the error of the discretized problem with respect

to the exact solution of the continuous variational formulation. We consider separately the contribution of the
equation residual, the inter-element jumps and η

[n]
∇ . We remark that the lower bound will not be local-in-space

as in the elliptic case; instead, it will be global-in-space, but local-in-time.

3.3.1. Equation residual

Here we show how the residual of the equation can bound the error from below on the time interval(
t[n−1], t[n]

)
. For any triangle T ∗∈T [n−1,n]

h , let us define the following functions in Ω

w
[n]
R,T∗(x) =

⎧⎨
⎩h

[n−1,n]
T∗

2 1√
κT∗

R
[n]
T∗ b

[n]
T∗(x), if x ∈ T ∗,

0, if x �∈ T ∗,

w
[n]
R,Ω =

∑
T∗∈T [n−1,n]

h

w
[n]
R,T∗ .

Lemma 3.14. There exist constants CR and C∗
R independent of any meshsize, timestep and problem-parameter

such that

h
[n−1,n]
T∗

2
∥∥∥∥ 1√

κT∗
R

[n]
T∗

∥∥∥∥
2

0,T∗
≤ CR

(
1√
κT∗

R
[n]
T∗ , w

[n]
R,T∗

)
T∗

, (24)

∥∥∥w
[n]
R,T∗

∥∥∥
0,T∗

≤ h
[n−1,n]
T∗

2
∥∥∥∥ 1
√

κT∗
R

[n]
T∗

∥∥∥∥
0,T∗

, (25)

∥∥∥∇w
[n]
R,T∗

∥∥∥
0,T∗

≤ C∗
R

1

h
[n−1,n]
T∗

∥∥∥w
[n]
R,T∗

∥∥∥
0,T∗

. (26)

Proof. These results come exploiting the properties of bubble functions and the finite dimensionality of the
residual function [16]. �
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Proposition 3.15. Under the assumptions on the continuous problem (4) and on the discrete formulation (5),
on each time interval

(
t[n−1], t[n]

)
, ∀α ≥ 0, we have

√√√√√ ∑
T∗∈T [n−1,n]

h

h
[n−1,n]
T∗

2
∥∥∥∥ 1√

κT∗
R

[n]
T∗

∥∥∥∥
2

0,T∗
∆t[n] ≤ CRC∗

R

[
2

α + 1√
2α + 1

(
||| eh,∆t |||2κ,I[n]+

(
η
[n]
f

)2
)1
2

+
∣∣∣∣θ−α + 1

α + 2

∣∣∣∣ η[n]
∇

]
. (27)

Proof. In the following we introduce an arbitrary function of time b[n](t) ≥ 0, ∀t ∈ I [n]. We start by subtracting
to
(
R

[n]
Ω /

√
κ, w

[n]
R,Ω

)
the continuous variational formulation (4) with w

[n]
R,Ω /

√
κ as test function and integrating

on the time interval I [n] the result against b[n], then we apply (18). We have

∫ t[n]

t[n−1]

∑
T∗∈T [n−1,n]

h

(
1√
κT∗

R
[n]
T∗ , w

[n]
R,T∗

)
T∗

b[n]dt =
∫ t[n]

t[n−1]

〈
1√
κ

∂ eh,∆t

∂t
, w

[n]
R,Ω

〉
b[n]dt

−
(√

κ∇
(
u

[n]
h,∆t − u

[n−1]
h,∆t

)
,∇w

[n]
R,Ω

) ∫ t[n]

t[n−1]

t − t[θ,n]

t[n] − t[n−1]
b[n]dt +

∫ t[n]

t[n−1]

(√
κ∇ eh,∆t,∇w

[n]
R,Ω

)
b[n]dt

+
∫ t[n]

t[n−1]

(
1√
κ

(f − ΠT f) , w
[n]
R,Ω

)
b[n]dt +

∫ t[n]

t[n−1]

(
1√
κ

(
ΠT f −θ ΠT f [n] −(1 − θ)ΠT f [n−1]

)
, w

[n]
R,Ω

)
b[n]dt .

Now we apply Cauchy-Schwarz’s and Hölder inequality. Moreover we observe that

(
1√
κ

g, w
[n]
R,Ω

)
=
(

g,
1√
κ

w
[n]
R,Ω

)
≤ ‖ g ‖κ,−1

∥∥∥∥√κ∇
(

1√
κ

w
[n]
R,Ω

)∥∥∥∥
0

= ‖ g ‖κ,−1

∥∥∥∇w
[n]
R,Ω

∥∥∥
0
.

Hence

∫ t[n]

t[n−1]

∑
T∗∈T [n−1,n]

h

(
1√
κT∗

R
[n]
T∗ , w

[n]
R,T∗

)
T∗

b[n]dt ≤

√√√√∫ t[n]

t[n−1]

∥∥∥∥ ∂ eh,∆t

∂t

∥∥∥∥
2

κ,−1

dt

√∫ t[n]

t[n−1]

∥∥∥∇w
[n]
R,Ω

∥∥∥2

0
b[n]2dt

+

√∫ t[n]

t[n−1]

∥∥√κ∇ eh,∆t

∥∥2

0
dt

√∫ t[n]

t[n−1]

∥∥∥∇w
[n]
R,Ω

∥∥∥2

0
b[n]2dt

+

√∫ t[n]

t[n−1]
‖ f − ΠT f ‖2

κ,−1dt

√∫ t[n]

t[n−1]

∥∥∥∇w
[n]
R,Ω

∥∥∥2

0
b[n]2dt

+

√∫ t[n]

t[n−1]

∥∥ΠT f −θ ΠT f [n] −(1 − θ)ΠT f [n−1]
∥∥2

κ,−1
dt

√∫ t[n]

t[n−1]

∥∥∥∇w
[n]
R,Ω

∥∥∥2

0
b[n]2dt

+
∥∥∥√κ∇

(
u

[n]
h,∆t − u

[n−1]
h,∆t

) ∥∥∥
0

∥∥∥∇w
[n]
R,Ω

∥∥∥
0

∣∣∣∣∣
∫ t[n]

t[n−1]

t − t[θ,n]

t[n] − t[n−1]
b[n]dt

∣∣∣∣∣
≤ 2

(
||| eh,∆t |||2κ,I[n] +

(
η
[n]
f,ΠT

)2

+
(
η
[n]

f,θ,∆t[n]

)2
) 1

2 ∥∥∥∇w
[n]
R,Ω

∥∥∥
0

√∫ t[n]

t[n−1]
b[n]2dt

+
∥∥∥√κ∇

(
u

[n]
h,∆t − u

[n−1]
h,∆t

) ∥∥∥
0

∥∥∥∇w
[n]
R,Ω

∥∥∥
0

∣∣∣∣∣
∫ t[n]

t[n−1]

t − t[θ,n]

t[n] − t[n−1]
b[n]dt

∣∣∣∣∣ .
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After, inequalities (24)–(26) give

∑
T∗∈T [n−1,n]

h

h
[n−1,n]
T∗

2
∥∥∥∥ 1
√

κT∗
R

[n]
T∗

∥∥∥∥
2

0,T∗

∫ t[n]

t[n−1]
b[n]dt

≤ CRC∗
R

⎡
⎣2
(
||| eh,∆t |||2κ,I[n] +

(
η
[n]
f,ΠT

)2

+
(
η
[n]

f,θ,∆t[n]

)2
) 1

2

√∫ t[n]

t[n−1]
b[n]2dt

+
∥∥∥√κ∇

(
u

[n]
h,∆t − u

[n−1]
h,∆t

) ∥∥∥
0

∣∣∣∣∣
∫ t[n]

t[n−1]

t − t[θ,n]

t[n] − t[n−1]
b[n]dt

∣∣∣∣∣
]√√√√√ ∑

T∗∈T [n−1,n]
h

h
[n−1,n]
T∗

2
∥∥∥∥ 1
√

κT∗
R

[n]
T∗

∥∥∥∥
2

0,T∗
. (28)

Now, let us choose the function b[n] as [17]

b[n] = (α + 1)
(

t − t[n−1]

t[n] − t[n−1]

)α

, α ≥ 0 (29)

and compute the following integrals to be inserted into the previous inequality:

∫ t[n]

t[n−1]
b[n]dt=∆t[n],

∣∣∣∣∣
∫ t[n]

t[n−1]

t − t[θ,n]

t[n] − t[n−1]
b[n]dt

∣∣∣∣∣=
∣∣∣∣θ − α + 1

α + 2

∣∣∣∣∆t[n],

∫ t[n]

t[n−1]
b[n]2dt=

(α + 1)2

2α + 1
∆t[n] .

From inequality (28) we obtain the following relation

∑
T∗∈T [n−1,n]

h

h
[n−1,n]
T∗

2
∥∥∥∥ 1√

κT∗
R

[n]
T∗

∥∥∥∥
2

0,T∗
∆t[n] ≤CRC∗

R

[
2

α + 1√
2α + 1

(
||| eh,∆t |||2κ,I[n]+

(
η
[n]
f,ΠT

)2

+
(
η
[n]

f,θ,∆t[n]

)2
) 1

2

+
√

∆t[n]

∣∣∣∣θ − α + 1
α + 2

∣∣∣∣
∥∥∥√κ∇

(
u

[n]
h,∆t − u

[n−1]
h,∆t

)∥∥∥
0

]√√√√√∆t[n]
∑

T∗∈T [n−1,n]
h

h
[n−1,n]
T∗

2
∥∥∥∥ 1√

κT∗
R

[n]
T∗

∥∥∥∥
2

0,T∗

from which inequality (27) follows. �
3.3.2. Inter-element jumps

Now we consider the edges E∗∈E [n−1,n]
h,Ω and we show how the jumps J

[n]
E∗ can bound the error from below.

Let us define

w
[n]
J,E∗(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h
[n−1,n]
E∗ PE

⎛
⎝ 1√

κ̂
ω

[n]
E∗

J
[n]
E∗

⎞
⎠ b

[n]
E∗(x), if x ∈ �

ω
[n]

E∗ ,

0, if x �∈ �
ω

[n]

E∗ .

We remark that w
[n]
J,E∗ vanishes on the edges of the triangles T ∗ ∈ T [n−1,n]

h,
�
ω

inside the triangles T ∗ ∈ T [n−1,n]
h .

Remark 3.16. Thanks to the orthogonality of our system of edge-bubble functions we have∥∥∥∥∥∥∥
∑

E∗∈E[n−1,n]
h,Ω

∇w
[n]
J,E∗

∥∥∥∥∥∥∥
2

0

=
∑

E∗∈E [n−1,n]
h,Ω

∥∥∥∇w
[n]
J,E∗

∥∥∥2

0
.
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Lemma 3.17. There exist constants CE and C∗
E independent of any meshsize, timestep and problem-parameter

such that

h
[n−1,n]
E∗

∥∥∥∥∥∥
1√
κ̂

ω
[n]
E∗

J
[n]
E∗

∥∥∥∥∥∥
2

0,E∗

≤ CE

⎛
⎝ 1√

κ̂
ω

[n]
E∗

J
[n]
E∗ , w

[n]
J,E∗

⎞
⎠

E∗

, (30)

∥∥∥w
[n]
J,E∗

∥∥∥
0,

�
ω

[n]
E∗

≤
√

h
[n−1,n]
E∗ h

[n−1,n]
E∗

∥∥∥∥∥∥
1√
κ̂

ω
[n]
E∗

J
[n]
E∗

∥∥∥∥∥∥
0,E∗

, (31)

∥∥∥∇w
[n]
J,E∗

∥∥∥
0,

�
ω

[n]
E∗

≤ C∗
E

1

h
[n−1,n]
E∗

∥∥∥w
[n]
J,E∗

∥∥∥
0,

�
ω

[n]
E∗

. (32)

Proof. The previous results are derived exploiting the properties of bubble functions and inverse inequalities
for the jump functions. �

Proposition 3.18. Under the assumptions on the continuous problem (4) and on the discrete formulation (5),
on each time interval

(
t[n−1], t[n]

)
we have

√√√√√√ ∑
E∗∈E [n−1,n]

h,Ω

h
[n−1,n]
E∗

∥∥∥∥∥∥
1√
κ̂

ω
[n]
E∗

J
[n]
E∗

∥∥∥∥∥∥
2

0,E∗

∆t[n] ≤ CE (C∗
E + CRC∗

R)
[
2

α + 1√
2α + 1

(
||| eh,∆t |||2κ,I[n]

+
(
η
[n]
f

)2
) 1

2

+
∣∣∣∣θ − α + 1

α + 2

∣∣∣∣ η[n]
∇

]
. (33)

Proof. We start by integrating
(

J
[n]
E∗ /

√
κ̂

ω
[n]
E∗

, w
[n]
J,E∗

)
against the arbitrary bubble function b[n](t), we introduce

the continuous variational formulation (4) and we apply Poincaré-Friedrichs’ inequality obtaining

∫ t[n]

t[n−1]

∑
E∗∈E[n−1,n]

h,Ω

⎛
⎝ 1√

κ̂
ω

[n]
E∗

J
[n]
E∗ , w

[n]
J,E∗

⎞
⎠

E∗

b[n]dt =

∫ t[n]

t[n−1]

∑
E∗∈E[n−1,n]

h,Ω

∑
T ′∈�

ω
[n]
E∗

∫
T ′

∇ ·

⎡
⎣ 1√

κ̂
ω

[n]
E∗

(
θκ∇u

[n]
h,∆t +(1 − θ)κ∇u

[n−1]
h,∆t

)
w

[n]
J,E∗

⎤
⎦ dΩ b[n]dt

=
∫ t[n]

t[n−1]

〈
∂ eh,∆t

∂t
,

∑
E∗∈E [n−1,n]

h,Ω

1√
κ̂

ω
[n]
E∗

w
[n]
J,E∗

〉
b[n]dt +

∫ t[n]

t[n−1]

⎛
⎜⎝∇ e

[n]
h,∆t,

∑
E∗∈E[n−1,n]

h,Ω

κ√
κ̂

ω
[n]
E∗

∇w
[n]
J,E∗

⎞
⎟⎠ b[n]dt
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+
∫ t[n]

t[n−1]

⎛
⎜⎝f − ΠT f,

∑
E∗∈E [n−1,n]

h,Ω

1√
κ̂

ω
[n]
E∗

w
[n]
J,E∗

⎞
⎟⎠ b[n]dt

+
∫ t[n]

t[n−1]

⎛
⎜⎝ΠT f −θ f [n] −(1 − θ) f [n−1],

∑
E∗∈E [n−1,n]

h,Ω

1√
κ̂

ω
[n]
E∗

w
[n]
J,E∗

⎞
⎟⎠ b[n]dt

−
∫ t[n]

t[n−1]

∑
E∗∈E[n−1,n]

h,Ω

∑
T ′∈�

ω
[n]
E∗

⎛
⎝ 1√

κ̂
ω

[n]
E∗

R
[n]
T∗ , w

[n]
J,E∗

⎞
⎠

T ′

b[n]dt

−
∫ t[n]

t[n−1]

t − t[θ,n]

t[n] − t[n−1]

⎛
⎜⎝∇

(
u

[n]
h,∆t − u

[n−1]
h,∆t

)
,

∑
E∗∈E[n−1,n]

h,Ω

κ√
κ̂

ω
[n]
E∗

∇w
[n]
J,E∗

⎞
⎟⎠ b[n]dt .

Then we apply Cauchy-Schwarz’s inequality to get

∫ t[n]

t[n−1]

∑
E∗∈E[n−1,n]

h,Ω

⎛
⎝ 1√

κ̂
ω

[n]
E∗

J
[n]
E∗ , w

[n]
J,E∗

⎞
⎠ b[n]dt

≤
∫ t[n]

t[n−1]

∥∥∥∥ ∂ eh,∆t

∂t

∥∥∥∥
κ,−1

∥∥∥∥∥∥∥
∑

E∗∈E[n−1,n]
h,Ω

√
κ√

κ̂
ω

[n]
E∗

∇w
[n]
J,E∗

∥∥∥∥∥∥∥
0

b[n]dt

+
∫ t[n]

t[n−1]

∥∥√κ∇ eh,∆t

∥∥
0

∥∥∥∥∥∥∥
∑

E∗∈E[n−1,n]
h,Ω

√
κ√

κ̂
ω

[n]
E∗

∇w
[n]
J,E∗

∥∥∥∥∥∥∥
0

b[n]dt

+
∫ t[n]

t[n−1]
‖ f − ΠT f ‖κ,−1

∥∥∥∥∥∥∥
∑

E∗∈E [n−1,n]
h,Ω

√
κ√

κ̂
ω

[n]
E∗

∇w
[n]
J,E∗

∥∥∥∥∥∥∥
0

b[n]dt

+
∫ t[n]

t[n−1]

∥∥∥ΠT f −θ ΠT f [n] −(1 − θ)ΠT f [n−1]
∥∥∥

κ,−1

∥∥∥∥∥∥∥
∑

E∗∈E[n−1,n]
h,Ω

√
κ√

κ̂
ω

[n]
E∗

∇w
[n]
J,E∗

∥∥∥∥∥∥∥
0

b[n]dt

+
∑

E∗∈E[n−1,n]
h,Ω

∑
T ′∈�

ω
[n]
E∗

∥∥∥∥ 1√
κT ′

R
[n]
T ′

∥∥∥∥
0,T ′

∥∥∥∥∥∥
√

κ√
κ̂

ω
[n]
E∗

w
[n]
J,E∗

∥∥∥∥∥∥
0,T ′

∫ t[n]

t[n−1]
b[n]dt

+
∥∥∥√κ∇

(
u

[n]
h,∆t − u

[n−1]
h,∆t

) ∥∥∥
0

∥∥∥∥∥∥∥
∑

E∗∈E [n−1,n]
h,Ω

√
κ√

κ̂
ω

[n]
E∗

∇w
[n]
J,E∗

∥∥∥∥∥∥∥
0

×
∣∣∣∣∣
∫ t[n]

t[n−1]

t − t[θ,n]

t[n] − t[n−1]
b[n]dt

∣∣∣∣∣ .
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Applying Hölder’s inequality, inequalities (31), (32), the definition of b[n] given by (29) and orthogonality of the
edge-bubble functions we get

∫ t[n]

t[n−1]

∑
E∗∈E [n−1,n]

h,Ω

⎛
⎝ 1√

κ̂
ω

[n]
E∗

J
[n]
E∗ , w

[n]
J,E∗

⎞
⎠ b[n]dt ≤ C∗

E

[
2

α + 1√
2α + 1

(
||| eh,∆t |||2κ,I[n] +

(
η
[n]
f

)2
) 1

2

+
∣∣∣∣θ − α + 1

α + 2

∣∣∣∣ η[n]
∇

]√√√√√√∆t[n]
∑

E∗∈E [n−1,n]
h,Ω

h
[n−1,n]
E∗

∥∥∥∥∥∥
1√
κ̂

ω
[n]
E∗

J
[n]
E∗

∥∥∥∥∥∥
2

0,E∗

+ ∆t[n]

√√√√√ ∑
E∗∈E[n−1,n]

h,Ω

∑
T ′∈�

ω
[n]
E∗

h
[n−1,n]
E∗

2
∥∥∥∥ 1
√

κT ′
R

[n]
T ′

∥∥∥∥
2

0,T ′

√√√√√√ ∑
E∗∈E[n−1,n]

h,Ω

h
[n−1,n]
E∗

∥∥∥∥∥∥
1√
κ̂

ω
[n]
E∗

J
[n]
E∗

∥∥∥∥∥∥
2

0,E∗

.

Inequality (30) give us the following relation

√√√√√√ ∑
E∗∈E [n−1,n]

h,Ω

h
[n−1,n]
E∗

∥∥∥∥∥∥
1√
κ̂

ω
[n]
E∗

J
[n]
E∗

∥∥∥∥∥∥
2

0,E∗

∆t[n] ≤ CEC∗
E

[
2

α + 1√
2α + 1

(
||| eh,∆t |||2κ,I[n] +

(
η
[n]
f

)2
) 1

2

+
∣∣∣∣θ − α + 1

α + 2

∣∣∣∣ η[n]
∇

]
+ CE

√√√√√ ∑
T ′∈T [n−1,n]

h,
�
ω

h
[n−1,n]
T ′

2
∥∥∥∥ 1√

κT ′
R

[n]
T ′

∥∥∥∥
2

0,T ′
∆t[n]

and by (27) we conclude with (33). �

3.3.3. Time discretization estimator

Now we show how the norm
∥∥∥√κ∇

(
u

[n]
h,∆t − u

[n−1]
h,∆t

)∥∥∥
0

can bound the error from below. Let us define

w
[n]
∇,Ω =

t − t[θ,n]

t[n] − t[n−1]

(
u

[n]
h,∆t − u

[n−1]
h,∆t

)
.

Proposition 3.19. Under the assumptions on the continuous problem (4) and on the discrete formulation (5),
on each time interval

(
t[n−1], t[n]

)
the following inequality

η
[n]
∇ ≤ 2

√
3ClE

√√√√√√∆t[n]
∑

E∗∈E [n−1,n]
h,Ω

h
[n−1,n]
E∗

∥∥∥∥∥∥
1√
κ̂

ω
[n]
E∗

J
[n]
E∗

∥∥∥∥∥∥
2

0,E∗

+ 2
√

3ClR

√√√√√∆t[n]
∑

T∗∈T [n−1,n]
h

h
[n−1,n]
T∗

2
∥∥∥∥ 1
√

κT∗
R

[n]
T∗

∥∥∥∥
2

0,T∗
+ 4

√
3
(
||| eh,∆t |||2κ,I[n] +

(
η
[n]
f

)2
) 1

2

(34)

holds true.
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Proof. In the proof we use the following relations

∫ t[n]

t[n−1]

t − t[θ,n]

t[n] − t[n−1]

(
κ∇

(
u

[n]
h,∆t − u

[n−1]
h,∆t

)
,∇w

[n]
∇,Ω

)
dt =

(
θ2 − θ +

1
3

)
∆t[n]

∥∥∥√κ∇
(
u

[n]
h,∆t − u

[n−1]
h,∆t

) ∥∥∥2

0
,

t − t[θ,n]

t[n] − t[n−1]

(
u

[n]
h,∆t − u

[n−1]
h,∆t

)
= uh,∆t −θ u

[n]
h,∆t −(1 − θ)u

[n−1]
h,∆t ,

∫ t[n]

t[n−1]

〈
∇ · (κ∇u) , w

[n]
∇,Ω

〉
dt = −

∫ t[n]

t[n−1]

(
κ∇u,∇w

[n]
∇,Ω

)
dt .

From the first of the previous relations we get

(
θ2 − θ +

1
3

)
∆t[n]

∥∥∥√κ∇
(
u

[n]
h,∆t − u

[n−1]
h,∆t

)∥∥∥2

0
=
∫ t[n]

t[n−1]

t − t[θ,n]

t[n] − t[n−1]

(
κ∇

(
u

[n]
h,∆t − u

[n−1]
h,∆t

)
,∇w

[n]
∇,Ω

)
dt

=
∫ t[n]

t[n−1]

t − t[θ,n]

t[n] − t[n−1]

∑
T∗∈T [n−1,n]

h

(
γ[n]

∂T∗

(
n̂ ·
(
κ∇

(
u

[n]
h,∆t − u

[n−1]
h,∆t

)))
, γ[n]

∂T∗

(
w

[n]
∇,Ω

))
∂T∗

dt

−
∫ t[n]

t[n−1]

t − t[θ,n]

t[n] − t[n−1]

∑
T∗∈T [n−1,n]

h

(
∇ ·

(
κ∇

(
u

[n]
h,∆t − u

[n−1]
h,∆t

))
, w

[n]
∇,Ω

)
T∗

dt

= −
∫ t[n]

t[n−1]

∑
E∗∈E [n−1,n]

h,Ω

(
J

[n]
E∗ , γ

[n]
E∗

(
w

[n]
∇,Ω

))
E∗

dt−
∫ t[n]

t[n−1]

∑
T∗∈T [n−1,n]

h

(
R

[n]
T∗ , w

[n]
∇,Ω

)
T∗

dt

+
∫ t[n]

t[n−1]

〈
∂ eh,∆t

∂t
, w

[n]
∇,Ω

〉
dt−

∫ t[n]

t[n−1]

(
κ∇ eh,∆t,∇w

[n]
∇,Ω

)
dt

+
∫ t[n]

t[n−1]

(
f − ΠT f, w

[n]
∇,Ω

)
dt +

∫ t[n]

t[n−1]

(
ΠT f −θ ΠT f [n] −(1 − θ)ΠT f [n−1], w

[n]
∇,Ω

)
dt .

Now we observe that the discrete equation (5) can be written as

∑
T∗∈T [n−1,n]

h

(
R

[n]
T∗ , vh

)
T∗

+
∑

E∗∈E [n−1,n]
h,Ω

(
J

[n]
E∗ , γ

[n]
E∗ (vh)

)
E∗

= 0,

then we insert this equation with the test function vh = Ih(w[n]
∇,Ω) ∈ V[n]

h in the previous one, obtaining

(
θ2 − θ +

1
3

)
∆t[n]

∥∥∥√κ∇
(
u

[n]
h,∆t − u

[n−1]
h,∆t

) ∥∥∥2

0
≤
∫ t[n]

t[n−1]

∑
E∗∈E[n−1,n]

h,Ω

∥∥∥ J
[n]
E∗

∥∥∥
0,E∗

∥∥∥w
[n]
∇,Ω −Ih(w[n]

∇,Ω)
∥∥∥

0,E∗
dt

+
∫ t[n]

t[n−1]

∑
T∗∈T [n−1,n]

h

∥∥∥R
[n]
T∗

∥∥∥
0,T∗

∥∥∥w
[n]
∇,Ω −Ih(w[n]

∇,Ω)
∥∥∥

0,T∗
dt +

∫ t[n]

t[n−1]

∥∥∥∥ ∂ eh,∆t

∂t

∥∥∥∥
κ,−1

∥∥∥√κ∇w
[n]
∇,Ω

∥∥∥
0
dt

+
∫ t[n]

t[n−1]

∥∥√κ∇ eh,∆t

∥∥
0

∥∥∥√κ∇w
[n]
∇,Ω

∥∥∥
0
dt +

∫ t[n]

t[n−1]
‖ f − ΠT f ‖κ,−1

∥∥∥√κ∇w
[n]
∇,Ω

∥∥∥
0
dt

+
∫ t[n]

t[n−1]

∥∥∥ΠT f −θ ΠT f [n] −(1 − θ)ΠT f [n−1]
∥∥∥

κ,−1

∥∥∥√κ∇w
[n]
∇,Ω

∥∥∥
0
dt .
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Now we apply quasi-interpolation inequalities (11), (12) and Hölder inequality to get

(
θ2 − θ +

1
3

)
∆t[n]

∥∥∥√κ∇
(
u

[n]
h,∆t − u

[n−1]
h,∆t

)∥∥∥2

0
≤

⎡
⎢⎢⎣ClE

√√√√√√∆t[n]
∑

E∗∈E [n−1,n]
h,Ω

h
[n−1,n]
E∗

∥∥∥∥∥∥
1√
κ̂

ω
[n]
E∗

J
[n]
E∗

∥∥∥∥∥∥
2

0,E∗

+ ClR

√√√√√∆t[n]
∑

T∗∈T [n−1,n]
h

h
[n−1,n]
T∗

2
∥∥∥∥ 1
√

κT∗
R

[n]
T∗

∥∥∥∥
2

0

+ 2
(
||| eh,∆t |||2κ,I[n]+

(
η
[n]
f

)2
) 1

2

⎤
⎥⎦

×

√√√√√
∫ t[n]

t[n−1]

∑
T∗∈T [n−1,n]

h

∥∥∥√κT∗ ∇w
[n]
∇,Ω

∥∥∥2

0,T∗
dt

from which we derive (34) observing that ∀θ ∈ R, θ2 − θ + 1
3 ≥ 1

12 . �

3.3.4. Final lower bounds

Now we want to collect the results of Propositions 3.15, 3.18 and 3.19 to get a lower bound for the error√
||| eh,∆t |||2κ,I[n] +

(
η
[n]
f

)2

in term of η
[n]
∇ . Then we use this result to derive a lower bound for the same quantity

with respect to η
[n]
R .

Theorem 3.20. Under the assumptions on the continuous problem (4) and on the discrete formulation (5),
on each time interval

(
t[n−1], t[n]

)
there exists a constant c̃

[n]
[n−1] independent of any meshsize, timestep and

problem-parameter, but depending on the quality of the mesh T [n]
h and on Ctr such that

η
[n]
∇ ≤ c̃

[n]
[n−1]

(
||| eh,∆t |||2κ,I[n] +

(
η
[n]
f

)2
) 1

2

. (35)

Proof. We use (27), (33) and (34) to get

η
[n]
∇ ≤ 2

√
3
[
[ClECE (C∗

E + CRC∗
R) + ClRCRC∗

R] 2
α + 1√
2α + 1

+ 2
](

||| eh,∆t |||2κ,I[n] +
(
η
[n]
f

)2
) 1

2

+ 2
√

3 (ClECE (C∗
E + CRC∗

R) + ClRCRC∗
R)
∣∣∣∣θ − α + 1

α + 2

∣∣∣∣ η[n]
∇ .

We define C = 2
√

3 max {ClECE (C∗
E + CRC∗

R) + ClRCRC∗
R, 1} and we play with the parameter α to get

C

∣∣∣∣θ − α + 1
α + 2

∣∣∣∣ ≤ 1
2
· (36)

By simple algebraic manipulations it is straightforward to see that exist values of α ≥ 0 satisfying (36).
Being (36) satisfied we conclude that

η
[n]
∇ ≤ 4

[
C

α + 1√
2α + 1

+ 2
√

3
](

||| eh,∆t |||2κ,I[n] +
(
η
[n]
f

)2
) 1

2

. (37)

�
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Now we collect the previous results to get a lower bound for the error in term of the residual η
[n]
R .

Theorem 3.21. Under the assumptions on the continuous problem (4) and on the discrete formulation (5),
on each time interval

(
t[n−1], t[n]

)
there exists a constant ˜̃c[n]

[n−1] independent of any meshsize, timestep and

problem-parameter, but depending on the quality of the mesh T [n]
h and on Ctr such that

η
[n]
R ≤ ˜̃c[n]

[n−1]

(
||| eh,∆t |||2κ,I[n] +

(
η
[n]
f

)2
) 1

2

. (38)

Proof. If θ = 1/2, α = 0 and the thesis comes immediately from (27) and (33), else we consider the square of
inequalities (27), (33) and (37), Young’s inequality to get

∑
T∗∈T [n−1,n]

h

h
[n−1,n]
T∗

2
∥∥∥∥ 1√

κT∗
R

[n]
T∗

∥∥∥∥
2

0,T∗
∆t[n]≤ 2C2

R (C∗
R)2

[
4
(α + 1)2

2α + 1

(
||| eh,∆t |||2κ,I[n] +

(
η
[n]
f

)2
)

+
1

4C2

(
η
[n]
∇

)2
]

,

∑
E∗∈E[n−1,n]

h,Ω

h
[n−1,n]
E∗

∥∥∥∥∥∥
1√
κ̂

ω
[n]
E∗

J
[n]
E∗

∥∥∥∥∥∥
2

0,E∗

∆t[n]≤ 2C2
E(C∗

E + CRC∗
R)2

[
4
(α + 1)2

2α + 1

(
||| eh,∆t |||2κ,I[n] +

(
η
[n]
f

)2
)

+
1

4C2

(
η
[n]
∇

)2
]

,

(
η
[n]
∇

)2

≤ 16
(

C
α + 1√
2α + 1

+ 2
√

3
)2(

||| eh,∆t |||2κ,I[n] +
(
η
[n]
f

)2
)

.

We define D2 = 2C2
R (C∗

R)2 + 2C2
E (C∗

E + CRC∗
R)2 and we get

(
η
[n]
R

)2

≤ 4D2

⎛
⎝(α + 1)2

2α + 1
+

(
α + 1√
2α + 1

+
2
√

3
C

)2
⎞
⎠(||| eh,∆t |||2κ,I[n] +

(
η
[n]
f

)2
)

.

�

We finally state the lower bound collecting Theorems 3.20 and 3.21.

Theorem 3.22. Under the assumptions on the continuous problem (4) and on the discrete formulation (5),
there exists a constant C

[n]
↓,[n−1] independent of any meshsize, timestep, problem-parameter, but depending on

the parameter θ, on the smallest angle of the triangulation T [n]
h and on Ctr such that the following inequalities

hold true

(
η
[n]
R

)2

+
(
η
[n]
∇

)2

≤ C
[n]
↓,[n−1]

(
||| eh,∆t |||2κ,I[n] +

(
η
[n]
f

)2
)

, (39)

m∑
n=1

((
η
[n]
R

)2

+
(
η
[n]
∇

)2
)

≤ C
[N ]
↓,[0]

m∑
n=1

(
||| eh,∆t |||2κ,I[n] +

(
η
[n]
f

)2
)

, m = 1, ..., N, (40)

where C
[N ]
↓,[0] = maxn=1,...,N C

[n]
↓,[n−1].
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ΩΩ

Ω Ω43

2 1

κ=1

κ=100 κ=10

κ=10

Figure 3. Test Problem 1: domain.
Figure 4. Test Problem 1: solution,
t = 0.

4. Numerical results on uniform grids and constant timestep-length

In this section we want to compare the true error and the error estimator in the norms we have defined in
the previous sections for some test problem in order to get some indication about the values of the constants
and the sharpness of the estimates with respect to the meshsize and the timestep-length. For this reason we
consider different uniform meshes and different constant timestep-lengths. We consider some challenging test
problem that are designed to be good test problems for an adaptive algorithm, so their solutions are obtained by
the sum of different functions each one describing a structure evolving with a different velocity. These solutions
display sharp internal layers that make the solution hard to describe on uniform grids. One of our target is to
see how we can detect each one of the possible errors (poor time discretization or poor mesh) by the values of
the different components of the error estimator. The domains of the test problems we consider are shown in
Figures 3 and 13 and a frame of their solutions in Figures 4 and 14, respectively. All the ‖ v ‖κ,−1-norms are
approximated by the ‖ r ‖κ,1-norms of the solution of the problem ∇ · (κ∇r) = v with homogeneous Dirichlet

boundary conditions. The norms
∫ t[n]

t[n−1] ‖ v ‖2
κ,−1dt are then computed by a Gaussian quadrature formula with

three nodes in time.

4.1. Test case 1

The problem (1)–(3) is solved in the domain Ω = (−1, 1) × (−1, 1) and in the time interval (0, Ξ) = (0, 0.5)
with κ = 1 in (0, 1) × (0, 1), with κ = 10 in (−1, 0) × (0, 1) and in (0, 1) × (−1, 0), and with κ = 100 in
(−1, 0)× (−1, 0) (Fig. 3). The initial condition u[0](x, y) and the forcing function f(x, y, t) are defined such that
the solution is

u(x, y, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U(x, y, t, 1), if x > 0, y > 0,
U(x + 1, y, t, 10), if x < 0, y > 0,
U(x + 1, y + 1, t, 100), if x < 0, y < 0,
U(x, y + 1, t, 10), if x > 0, y < 0,
0, if x = 0 or y = 0,
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Figure 5. Test Problem 1: Compar-
ison between the true error and the
estimated error of the upper bound.

0 0.1 0.2 0.3 0.4 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12
Lower bound: true error against estimed error

(l.t.e.[n])2

(l.e.e.[n])2

Figure 6. Test Problem 1: Compar-
ison between the true error and the
estimated error of the lower bound.
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Figure 7. Test Problem 1: Data ap-
proximation errors.
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Figure 8. Test Problem 1: Upper
and lower effectivity indices.

where

U(x, y, t, κ) = 500 x2 (1 − x)2 y2 (1 − y)2

e−e(R3 −R4
√

κt)
(
(x− 1

2−
1
4 cos(2 π (1+sin(2 π

√
κt))))2

+(y− 1
2−

1
4 sin(2 π (1+sin(2 π

√
κt))))2

)4

(
1 − e−R5

(
(x− 1

2 )
2
+(y− 1

2 )
2
)

x(1−x) y(1−y)
)

1
1 + ln

(
1 +

√
κt
) ·

This solution is made by four Gaussian peaks running and smearing with different velocities; the velocity of each
peak is proportional to the value of κ in the corresponding portion of the domain (Fig. 4). The parameters Ri are:
R3 = 18, R4 = 1, R5 = 100. In Figures 5–8 we plot some results concerning a constant uniform discretization
with a number of nodes Nnode = 2113 and N = 3200 uniform timesteps. In Figure 5 we compare the behaviour
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Table 1. Test Problem 1: Nnode = 2113, N = 3200.

n
∥∥∥u

[n]
h,∆t − u[n]

∥∥∥2

2

(
ε
[n]
κ,−1

)2 (
ε
[n]
κ,1

)2 (
η
[n]

f,θ,∆t[n]

)2 (
η
[n]
f,ΠT

)2 (
η
[n]
∇

)2 (
η
[n]
R

)2

0 1.39E-04 0.00 0.00 0.00 0.00 0.00 0.00

1 3.73E-03 1.50E-03 2.73E-04 6.85E-03 4.48E-02 2.66E-02 7.09E-02

800 1.59E-02 1.24E-03 1.96E-04 1.08E-05 1.81E-02 1.37E-05 2.62E-02

1600 2.88E-03 8.90E-05 1.05E-04 2.15E-04 1.77E-03 5.28E-05 9.49E-03

2400 1.33E-03 5.87E-05 8.90E-05 1.26E-06 6.12E-04 2.26E-06 6.97E-03

3200 1.00E-03 6.28E-05 6.25E-05 1.69E-05 1.80E-04 1.58E-05 4.53E-03

Table 2. Test Problem 1: Nnode = 2113, N = 3200.

(e.i.)max (e.i.)min (e.i.)mean (e.i.)rms

upper 2.9447 1.0443 1.3576 1.7263E-1
lower 4.9689 1.1380 2.7774 6.8730E-1

of the true error for which we derive an upper bound
(
u.t.e.[n]

)2
= 7

∥∥∥u
[n]
h,∆t − u[n]

∥∥∥2

0
+
∣∣∣∣∣∣∣∣∣ e[n]

h,∆t

∣∣∣∣∣∣∣∣∣2
κ,I[n]

and the

upper error estimator
(
u.e.e.[n]

)2
= 7

∥∥∥u
[n−1]
h,∆t − u[n−1]

∥∥∥2

0
+
(
η
[n]
R

)2

+
(
η
[n]
∇

)2

+
(
η
[n]
f

)2

. We can observe a perfect
agreement between the true error and the error estimator. In Figure 6 we compare the behaviour of the true

error for which we derive the lower bound
(
l.t.e.[n]

)2

=
∣∣∣∣∣∣∣∣∣ e[n]

h,∆t

∣∣∣∣∣∣∣∣∣2
κ,I[n]

+
(
η
[n]
f

)2

and the lower error estimator(
l.e.e.[n]

)2

=
(
η
[n]
R

)2

+
(
η
[n]
∇

)2

, again the agreement is good. In Figure 7 we plot the two data approximation

errors and in Figure 8 we plot, for each timestep, the effectivity indices u.e.i.[n] = u.e.e.[n] / u.t.e.[n] and l.e.i[n] =
l.e.e.[n] / l.t.e.[n]. We remark that the values of this effectivity indices are not far from one.

In Table 1, we report some values of the terms of the local-in-time global-in-space true error and error
estimator at t = 0, at the end of the first time-step and at the times t = 0.125, 0.25, 0.375, 0.5 for Nnode = 2113

and N = 3200 timesteps. We define
(
ε
[n]
κ,−1

)2

=
∫ t[n]

t[n−1]

∥∥∥∥ ∂ e
[n]
h,∆t

∂t

∥∥∥∥
2

κ,−1

dt and
(
ε
[n]
κ,1

)2

=
∫ t[n]

t[n−1]

∥∥∥ e
[n]
h,∆t

∥∥∥2

κ,1
dt.

In Table 2, we report the maximal and minimal values of the effectivity indices for the upper and the lower
estimate. In these table we report also the mean values and the root mean square of these values. In Table 3,
we report some values of the terms of the global-in-time and global-in-space true error and error estimator at
the times t = 0.125, 0.25, 0.375, 0.5. In Figures 9 and 10 we plot the quantities η2

∇ and η2
f,θ,∆t[n] with respect to

the number of timesteps N for two different constant uniform grids. We can clearly see that these quantities
are strongly dependent on the timestep-length. In Figures 11 and 12 we plot the quantities η2

R and η2
f,ΠT

with
respect to the number of timesteps N for the same grids. We can clearly see that these quantities are essentially
independent of the timestep-length, but they are dependent on the mesh-size. These behaviours justify the
Remarks 3.7 and 3.8.
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Table 3. Test Problem 1: Nnode = 2113, N = 3200.

m m ∑ n
=

1

( ε[n
]

κ
,−

1

) 2

m ∑ n
=

1

( ε[n
]

κ
,1

) 2

m ∑ n
=

1

( η
[n

]

f
,θ

,∆
t[

n
]) 2

m ∑ n
=

1

( η
[n

]
f
,Π

T

) 2

m ∑ n
=

1

( η
[n

]
∇

) 2

m ∑ n
=

1

( η
[n

]
R

) 2

800 5.40E-01 1.74E-01 5.09E-01 5.60 6.44E-01 2.95E+01

1600 7.19E-01 2.83E-01 6.22E-01 7.26 7.40E-01 4.11E+01

2400 8.03E-01 3.62E-01 6.51E-01 7.90 7.72E-01 4.78E+01

3200 8.68E-01 4.26E-01 6.59E-01 8.34 7.84E-01 5.22E+01

0 500 1000 1500 2000 2500 3000 3500
10

-1

10
0

10
1

10
2

10
3

N

η
∇
2

N
node

=2113

N
node

=33025

Figure 9. Test Problem 1: η2
∇ for

different timesteps.
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Figure 10. Test Problem 1: η2
f,θ,∆t[n]

for different timesteps.

4.2. Test case 2

The problem (1)–(3) is solved in the domain Ω = (−1, 1)× (0, 1) and in the time interval (0, Ξ) = (0, 1) with
κ = 1 in (0, 1) × (0, 1) and with κ = 100 in (−1, 0) × (0, 1) (Fig. 13). The initial condition u[0](x, y) and the
forcing function f(x, y, t) are defined such that the solution is

u(x, y, t) =

{
u1(x, y, t), if x ≥ 0, y ≥ 0,

u2(x, y, t), if x < 0, y ≥ 0,
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Figure 11. Test Problem 1: η2
R for

different timesteps.
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Figure 12. Test Problem 1: η2
f,ΠT

for different timesteps.

ΩΩ2 1

κ=1κ=100

Figure 13. Test Problem 2: domain.

Figure 14. Test Problem 2: solu-
tion, t = 0.74.

with

u1(x, u, t)=500x2(1 − x)2y2 (1 − y)2e−eR3−κt
(
(x− 1

2−
1
4 cos(2π(1+sin(2πκt))))2

+(y− 1
2−

1
4 sin(2π(1+sin(2πκt))))2

)4

×1 − e−R4

(
(x− 1

2 )
2
+(y− 1

2 )
2
)

x(1−x) y(1−y)

1 + ln (1 + κt)
+
((

−R5

R1
− sin (2πt)

)
x2 +

R5x

R1
+ sin (2πt)

)
y (1 − y)

and

u2(x, y, t) =
((

R5

R2
− sin (2πt)

)
x2 +

R5x

R2
+ sin (2πt)

)
y (1 − y) .
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Figure 15. Test Problem 2: Com-
parison between the true error and the
estimated error of the upper bound.

Figure 16. Test Problem 2: Com-
parison between the true error and the
estimated error of the lower bound.

Figure 17. Test Problem 2: Data
approximation errors.

Figure 18. Test Problem 2: Upper
and lower effectivity indices.

The normal derivatives ∂u/∂x of this function on the edge x = 0, 0 ≤ y ≤ 1 are discontinuous with continuous
κ ∂u/∂x. Moreover the function u in x > 0, y > 0 includes a Gaussian peak moving at a velocity proportional
to κ (Fig. 14). The parameters Ri are: R1 = 1, R2 = 100, R3 = 18, R4 = 100, R5 = 10.

In Figures 15–18 we plot some results concerning a uniform discretization with a number of nodes Nnode =
2145 and N = 3200 uniform timesteps. In Figure 15 we compare the behaviour of the error for which we derive
an upper bound and the upper error estimator. We can observe a perfect agreement between the error and the
error estimator. In Figure 16 we compare the behaviour of the error for which we derive the lower bound and
the lower error estimator, again the agreement is good. In Figure 17 we plot the two data approximation errors
and in Figure 18 we plot the effectivity index for each timestep for the upper and lower error estimate. Again
the values of this effectivity indices are close to one.
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Table 4. Test Problem 2: Nnode = 2145, N = 3200.

n
∥∥∥u

[n]
h,∆t − u[n]

∥∥∥2

2

(
ε
[n]
κ,−1

)2 (
ε
[n]
κ,1

)2 (
η
[n]

f,θ,∆t[n]

)2 (
η
[n]
f,ΠT

)2 (
η
[n]
∇

)2 (
η
[n]
R

)2

0 1.55E-05 0.00 0.00 0.00 0.00 0.00 0.00

1 6.08E-05 1.71E-04 6.40E-05 4.14E-07 1.69E-04 4.64E-05 1.41E-03

800 5.52E-02 4.50E-06 3.47E-04 1.87E-11 5.69E-05 6.26E-10 7.12E-04

1600 3.04E-02 9.60E-06 2.36E-04 1.72E-07 7.94E-06 1.61E-07 3.97E-04

2400 1.96E-02 3.80E-07 1.78E-04 6.24E-12 5.21E-06 1.20E-10 5.62E-04

3200 2.97E-02 1.06E-05 2.13E-04 6.37E-08 1.07E-05 1.12E-07 2.72E-04

Table 5. Test Problem 2: Nnode = 2145, N = 3200.

(e.i.)max (e.i.)min (e.i.)mean (e.i.)rms

upper 1.6196 0.9956 1.0010 1.3114E-2
lower 1.8976 0.9685 1.3756 1.7288E-1

Table 6. Test Problem 2: Nnode = 2145, N = 3200.

m m ∑ n
=

1

( ε[n
]

κ
,−

1

) 2

m ∑ n
=

1

( ε[n
]

κ
,1

) 2

m ∑ n
=

1

( η
[n

]

f
,θ

,∆
t[

n
]) 2

m ∑ n
=

1

( η
[n

]
f
,Π

T

) 2

m ∑ n
=

1

( η
[n

]
∇

) 2

m ∑ n
=

1

( η
[n

]
R

) 2

800 2.80E-02 2.30E-01 1.94E-04 2.30E-02 2.84E-04 5.92E-01
1600 3.23E-02 4.79E-01 2.79E-04 3.62E-02 4.03E-04 1.02
2400 3.57E-02 6.40E-01 3.49E-04 4.38E-02 4.98E-04 1.37
3200 3.84E-02 7.93E-01 3.93E-04 4.89E-02 5.62E-04 1.67

In Table 4, we report some values of the terms of the local-in-time true error and error estimator at the time
t = 0, at the end of the first time-step and at the times t = 0.25, 0.5, 0.75, 1, for Nnode = 2145 and N = 3200.
In Table 5, we report the maximal and minimal values of the effectivity indices for the upper and the lower
estimate with their mean values and the root mean square. In Table 6, we report some values of the terms of
the global-in-time true error and error estimator at the times t = 0.25, 0.5, 0.75, 1.

In Figures 19 and 20 we plot the quantities η2
∇ and η2

f,θ,∆t[n] with respect to the number of timesteps N for
two different grids. In Figures 21 and 22 we plot the quantities η2

R and η2
f,ΠT

with respect to the number of
timesteps N for the same grids. Again, these behaviours agree with Remarks 3.7 and 3.8.

5. Conclusions

From our numerical experiments we conclude that both the upper and the lower bounds are sharp and
robust. Moreover, for the test problems here proposed, hard to solve with a uniform grid and with a constant
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Figure 19. Test Problem 2: η2
∇ for

different timesteps.
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Figure 20. Test Problem 2: η2
f,θ,∆t[n]

for different timesteps.
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Figure 21. Test Problem 2: η2
R for

different timesteps.
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Figure 22. Test Problem 2: η2
f,ΠT

for different timesteps.

timestep-length, the components of the error estimator η
[n]
∇ and η

[n]
R are good estimators respectively for the

quality of the time-discretization and the space-discretization. Comparing these quantities for the same test

problem on the same grid for different timesteps we find a stronger reduction of
(
η
[n]
∇

)2

and
∑m

n=1

(
η
[n]
∇

)2

with

respect to the changes of
(
η
[n]
R

)2

and
∑m

n=1

(
η
[n]
R

)2

and comparing the results obtained with the same number

of timesteps on different grids we find a stronger reduction of
(
η
[n]
R

)2

and
∑m

n=1

(
η
[n]
R

)2

with respect to the

changes of
(
η
[n]
∇

)2

and
∑m

n=1

(
η
[n]
∇

)2

. These remarks justify the idea to use η
[n]
∇ to adapt the timestep-length

and η
[n]
R to adapt the grid in each time-slab in an adaptive algorithm.
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Figure 23. Test Problem 2: number
of dofs for each timestep, TOLΩ = 0.4,
TOLI[n] = 0.2.
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Figure 24. Test Problem 2:
timestep-length for each timestep,
TOLΩ = 0.4, TOLI[n] = 0.2.

Moreover, the behaviour showed in Figures 10, 12, 20 and 22 confirm the splitting of the data-approximation
errors suggested in Remark 3.8.

Acknowledgements. The author thanks Professor Pedro Morin for his useful comments about a previous version of this
manuscript and the anonymous Referees for several helpful comments and suggestions.

Appendix

A simple adaptive algorithm

In this section we present a simple possible use of the estimates presented in the previous sections to adapt
the grid and the timestep-length for each timestep. The presented estimates can be applied in many different
adaptive algorithms, possibly more complex and efficient than the one presented here. Our approach is based
on equidistribution and on the splitting between space and time error estimators and data-approximation errors
described in Remarks 3.7 and 3.8. First, let us define the following space error estimator on the triangles
T ∈ T [n]

h : (
η
[n]
R,T

)2

=
∑

{
T∗∈T [n−1,n]

h :T∗⊆T
}
(
η
[n]
R,T∗

)2

and let us denote by NT the number of elements in T [n]
h . We choose a space tolerance TOLΩ and a time

tolerance TOLI[n] for each timestep.
We mark for refining or coarsening each triangle T ∈T [n]

h according the following rules:
• if

(1 + α)2 TOL2
Ω

NT
|||uh,∆t |||2κ,I[n] <

(
η
[n]
R,T

)2

+

(
η
[n]
f,ΠT

)2

NT

mark for refinement,
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Figure 25. Test Problem 2: adapted mest at time t = 0.1, TOLΩ = 0.4, TOLI[n] = 0.2.
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Figure 26. Test Problem 2: number
of dofs for each timestep, TOLΩ = 0.2,
TOLI[n] = 0.2.
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Figure 27. Test Problem 2:
timestep-length for each timestep,
TOLΩ = 0.2, TOLI[n] = 0.2.

• else if (
η
[n]
R,T

)2

<
(1 − α)2 TOL2

Ω

NT
|||uh,∆t |||2κ,I[n]

mark for coarsening.
We enlarge or shorten the timestep-length according to the following rules:

• if

(1 + α)2 TOL2
I[n] |||uh,∆t |||2κ,I[n] <

(
η
[n]
∇

)2

+
(
η
[n]

f,θ,∆t[n]

)2

then ∆t[n] :=
∆t[n]

ρ
,

• else if (
η
[n]
∇

)2

< (1 − α)2 TOL2
I[n] |||uh,∆t |||2κ,I[n]

then ∆t[n] :=
∆t[n]

ρ
,
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where

ρ = min

⎧⎪⎨
⎪⎩
(
η
[n]
∇

)2

+
(
η
[n]

f,θ,∆t[n]

)2

TOL2
I[n] |||uh,∆t |||2κ,I[n]

, 2

⎫⎪⎬
⎪⎭ .

We repeat the same timestep performing the mesh changes required by the previous marking strategy if

(1 + α)2 TOL2
Ω |||uh,∆t |||2κ,I[n] <

(
η
[n]
R

)2

+
(
η
[n]
f,ΠT

)2

or if
(
η
[n]
R

)2

< (1 − α)2 TOL2
Ω |||uh,∆t |||2κ,I[n] at most ten times

for each timestep. Moreover, we repeat the timestep also if (1 + α)2 TOL2
I[n] |||uh,∆t |||2κ,I[n] <

(
η
[n]
∇

)2

+
(
η
[n]

f,θ,∆t[n]

)2

.
If none of the previous situations occurs, we keep the same mesh and we possibly enlarge the timestep-length
for the next timestep. Leaving the last mesh of the previous timestep unchanged we never need to project the
solution at the end of the previous timestep on a different mesh for the current timestep so we never have any
transmission error to consider.

Numerical experiments with the adaptive algorithm

In this subsection we present some numerical results obtained by a simplified version of our adaptive algorithm
applied to the test case 2. In Figures 23 and 24 we report the final number of degrees of freedom and the timestep-
length accepted for each timestep for the following choices of the tolerances: TOLΩ = 0.4, TOLI[n] = 0.2,
α = 0.5. In these computations we neglect the contribution of the data-approximation errors considering only
the space error estimator η

[n]
R and the data error estimator η

[n]
∇ . This implementation is based on the library

LibMesh [11], in these computations we allow the presence of hanging nodes and we do not coarsen the elements
of the starting mesh, that is a uniform mesh with 1073 nodes. We point out that, due to the implementation of
LibMesh, not all the elements marked for coarsening are actually coarsened, since some additional conditions
have to be satisfied to have LibMesh coarsening such elements [11]. In Figure 25 we report the mesh obtained
at time t = 0.1. In Figures 26 and 27 we report the same quantities of Figures 23 and 24 for the choices
TOLΩ = 0.2, TOLI[n] = 0.2, α = 0.5.

From Figures 23 and 26 we see that the adaptive algorithm recognize that the two big structures in the two
subdomains are vanishing at times t = 0, t = 0.5 and t = 1.0. This means that the number of degrees of freedom
required by the solution is only related to the small Gaussian peak moving in the second subdomain. On the
other hand, the timestep-lengths plotted in Figures 24 and 27 reflect the fact that the Gaussian peak in the
second subdomain is moving with a varying velocity and stops at times t = 0.25 and t = 0.75, allowing the use
of larger timestep-lengths.
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