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A Passivity Enforcement Scheme for Delay-Based
Transmission Line Macromodels
Alessandro Chinea and Stefano Grivet-Talocia, Senior Member, IEEE

Abstract—This letter presents an algorithm for the enforcement
of passivity in transmission-line macromodels based on the gen-
eralized Method of Characteristics. The algorithm is based on
first-order perturbations of the solutions to a frequency-depen-
dent eigenvalue problem. The theoretical formulation provides
an extension of techniques that were available only for lumped
models to the more general class of delay-based models.

Index Terms—Eigenvalues, Hamiltonian matrices, passivity,
perturbation, transmission lines.

I. INTRODUCTION

THE automated design of highly interconnected systems
requires accurate and efficient models for all components.

This applies even to the simplest structures such as uniform
transmission lines, since all spurious effects that have an in-
fluence on the signals must be considered in the models. Most
of these effects are natively described in frequency domain,
leading to frequency-dependent parameters. The conversion
from frequency to time domain descriptions for transient
analysis using standard circuit solvers such as SPICE has
been a subject of intense research over the last few decades.
Nonetheless, several open problems remain.

This letter deals with one of these problems. Namely, the
preservation of passivity during the derivation of a SPICE-com-
patible transmission line model. This is a fundamental physical
property, requiring that no energy can be generated from any
passive structure. However, this property may be lost during the
model manipulation and approximation steps required for the
conversion. It is well-known that nonpassive models are unre-
liable, since they may lead to exponential instability in a tran-
sient simulation, depending on their terminations. We concen-
trate here on models based on the so-called Method of Charac-
teristics (MoC), since it has been demonstrated that such models
are the most efficient for lines characterized by a significant
propagation delay. Preservation of passivity for such models is
still an open issue.

Significant advancements have been recently achieved in [1]
and [2]. In these papers, the authors present a systematic proce-
dure for checking the passivity of MoC-based transmission line
models. Here, we start from their formulation and we present
a perturbation approach that is able to enforce model passivity
once some passivity violations have been detected. The basics
of MoC formulation are first reviewed in Section II, and the pas-
sivity check of [1], [2] is outlined in Section III in order to set
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the notations. The proposed perturbation scheme is presented in
Section IV together with an application example.

II. MOC MACROMODELS

We consider a multiconductor transmission line of length
governed by the telegrapher equations, here, stated in the

Laplace-domain

(1)

where represents the longitudinal coordinate along which sig-
nals propagate. The matrices and denote the -PUL
(frequency dependent per-unit-length) impedance and admit-
tance parameters, respectively. Following the MoC approach,
the solution of telegrapher equations is obtained as [3]

(2)

where and represent the terminal voltages and
currents of the line and where ,

, and . A SPICE-compatible
stamp is derived from (2) by extracting the asymptotic modal
delays from the propagation operator

(3)

using the asymptotic modal decomposition matrix , and by
approximating the remaining matrix operators ,
with low-order rational functions , , respectively.
The well-known Vector Fitting algorithm [4] can be used for
this task, leading to a state-space realization for

(4)

and similarly for . Note that the model poles are the eigen-
values of , whereas the corresponding residues are stored in
matrix .

III. PASSIVITY CHARACTERIZATION

Following [1], [2], the passivity of the line MoC macromodel
is here characterized using the short-circuit admittance matrix

. The latter is readily obtained from (2) and (3) and reads

(5)

where
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(6)

with denoting the identity matrix. As in [1], [2], we concen-
trate on the scalar case (two conductors transmission line) only,
for which

(7)

A multiport described by the admittance matrix is pas-
sive if and only if is positive real [5]. If , ,
and are asymptotically stable (do not have poles in the
right-half plane of the -domain) with 0 for ,
the positive realness of is equivalent to the condition

(8)

which can be verified by checking that all eigenvalues of
are nonnegative throughout the frequency axis. It turns out that
these eigenvalues correspond to the real parts (for ) of
the eigenvalues of , which can be easily calculated as

(9)

The elegant theory in [1], [2] provides purely algebraic
criteria for checking (8) that do not require any sampling the
frequency axis, which is intrinsically problematic. This formu-
lation involves restating in time-domain as algebraic
delay-differential equations (ADDE), for which a delayed
state-space realization is readily obtained from (9) using in-
verse Laplace transform [2]. Then, the passivity of the MoC
macromodel is guaranteed when there are no purely imaginary
values for that satisfy the following frequency-dependent
eigenvalue problems (FD–EP)

(10)

where

(11)

The constant matrices and are easily constructed fol-
lowing a tedious but simple algebraic manipulation, using as
building blocks the state-space matrices defining the ADDEs
above. We remark that, as a result, both matrices are
a quadratic function of the state-space matrix of (4) for any
fixed frequency . Note that the frequency-dependent matrices

provide a generalization of the concept of Hamiltonian
matrices [6] to the ADDE case. Hence, the purely imaginary
eigenvalues of FD-EPs above, if any, correspond to those fre-
quencies at which the eigenvalues of change sign (Fig. 1).
If no such solutions are found, the eigenvalues remain positive
at all frequencies and the model is passive.

Fig. 1. Modeling a L = 10 cm microstrip (w = 0.007 and t = 0.0014 )
over a h = 1/16 FR4 substrate with permittivity " = 4.7. Solutions ! of
the FD–EP and their perturbation !̂ . The solid line depicts � (j!) as in (9).

IV. PASSIVITY ENFORCEMENT

Once the above procedure for passivity characterization is ap-
plied to a given MoC model, and the model is found to be non-
passive, some correction must be applied in order to enforce its
passivity. Let us consider the example in Fig. 1. In this case,
four frequencies are found as solutions of the FD–EP in (10),
leading to two separate frequency bands where passivity viola-
tions occur. In the following sections, we describe a procedure
that allows to perturb matrix in (4) (i.e., the residues of a par-
tial fraction expansion of ) so that the nonpassive bands are
eliminated. This is accomplished by a first-order perturbation
of the frequencies . In fact, this is the main contribution of
this work, namely an extension of the perturbation scheme of
[6], which is applicable to lumped models only, to the delayed
transmission-line case. Section IV-A provides a general result
on the perturbation of nonlinear eigenvalue problems such as
the FD–EP in (10). Section IV-B applies this result for the MoC
passivity enforcement.

A. Perturbation of Eigenvalues

Let us consider the FD–EP

(12)

where the system matrix depends on an additional param-
eter 0. We denote a generic eigensolution of (12) as

, where and are the right and left eigen-
vectors associated to the eigenvalue , in order to highlight its
dependence on . Also, we denote the reference eigensolution
for 0 as

(13)

where denotes the conjugate transpose. Differentiating (12)
with respect to and setting 0 in the result, we obtain

(14)

where

(15)
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and where and are the first-order perturbation coefficients
of eigenvalue and eigenvector, respectively. Premultiplying now
by the left eigenvector and using (13), we have

(16)

which establishes a linear relation between the first-order per-
turbation coefficients of system matrix and the corre-
sponding eigenvalue . Of course, in case of
a regular frequency-independent eigenvalue problem, we have

0 and standard perturbation results are obtained [6], [7].

B. MoC Passivity Enforcement

Equation (16) enables the derivation of a passivity enforce-
ment scheme similar to [6]. Each imaginary eigensolution

is displaced to a target location inwards into the
violation bandwidth (see Fig. 1). This is obtained by computing
a new state-space matrix

(17)

such that the first-order perturbation induced in the system
matrix has the desired perturbed eigensolution. After
some straightforward manipulation of (16) we obtain

(18)

to be enforced , where the complex vectors , are easily
derived using a first-order expansion of in terms of .
The final (linear) system to be solved for eigenvalue displace-
ment is obtained via the following equivalence

(19)

where is the Kronecker product [8] and the operator
stacks the columns of its matrix argument. Passivity of the MoC
model is enforced by iterative solution of (18) and (19).

C. Example

We apply the proposed methodology for the generation of a
passive macromodel of the microstrip line of Fig. 1, which was
characterized by four imaginary eigenvalues and two frequency
bands with passivity violations. The passivity compensation al-
gorithm of Section IV-B was applied in order to eliminate these
violations. Fig. 1 provides a schematic view of the compensation
process, by highlighting the perturbation that is applied in order
to displace the imaginary eigenvalues. The final result after only
one iteration of (18) and (19) is a passive macromodel, as de-
picted in Fig. 2, without any imaginary eigenvalues left. Fig. 3
shows a comparison between the elements of the original
nonpassive and perturbed passive macromodels. As expected,
the difference is almost unnoticeable, confirming that the accu-
racy is preserved during the passivity enforcement process.

V. CONCLUSION

We have presented a new algorithm for the passivity enforce-
ment in transmission-line macromodels based on the general-

Fig. 2. Eigenvalue � (j!) of original and perturbed model. The perturbed
model is passive because the eigenvalue is positive for all values of !.

Fig. 3. Comparison of input short-circuit admittances of original and perturbed
model.

ized MoC. The proposed technique is able to perturb the model
coefficients until passivity is achieved, with control over the
model accuracy. The main algorithm extends to delay-extrac-
tion based macromodels existing methodologies that were avail-
able only for lumped macromodels. Only preliminary results on
single transmission lines were presented here. Extension to mul-
ticonductor lines will be the subject of a forthcoming report.
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