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Qualitative Ordinal Scales: The Concept of Ordinal Range
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dell’Azienda, Corso Duca degli Abruzzi 24, Torino, Italy

ABSTRACT

Many practical problems of quality control involve the use of ordinal scales.

Questionnaires planned to collect judgments on qualitative or linguistic scales,

whose levels are terms such as ‘‘good,’’ ‘‘bad,’’ ‘‘medium,’’ etc., are extensively

used both in evaluating service quality and in visual controls for manufacturing

industry. In an ordinal environment, the concept of distance between two generic

levels of the same scale is not defined. Therefore, a population (universe) of

judgments cannot be described using ‘‘traditional’’ statistical distributions since

they are based on the notion of distance. The concept of ‘‘distribution shape’’

cannot be defined as well. In this article, we introduce a new statistical entity, the

so-called ordinal distribution, to describe a population of judgments expressed on

an ordinal scale. We also discuss which of the traditional location and dispersion

measures can be used in this context and we briefly analyze some of their

properties. A new dispersion measure, the ordinal range, as an extension of the

cardinal range to ordinal scales, is then proposed. A practical application in the

field of quality is developed throughout the article.

Key Words: Quality; Quality measurements; Ordinal scales; Linguistic

scales; OWA.

INTRODUCTION

Many practical problems involve the use of a

linguistic or qualitative scale in assessing the attri-

butes of products or services. This is the case, for

example, when performing visual controls on manu-

factured products or when assessing the expected or

perceived quality of a service.
Typical levels of a linguistic scale are terms such

as ‘‘good,’’ ‘‘bad,’’ or ‘‘medium.’’ (Agresti, 1984,
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ORDER                        REPRINTS

2002). An example is reported in Franceschini and

Romano (1999) for a production line of fine liqueurs.

Operators in charge of visual control of the corking

and closing process have the following assessment

possibilities:

. ‘‘reject’’ if the cork does not work;

. ‘‘poor quality’’ if the cork must not be

rejected but has some defects;
. ‘‘medium quality’’ if the cork has relevant

aesthetic flaws but no other defects;
. ‘‘good quality’’ if the cork only has small

aesthetic flaws;
. ‘‘excellent quality’’ if the cork is perfect.

An example of results of the visual control for a

sample of 30 corks is reported in Table 1.
How can we analyze these data? A simple

answer to this question is the numerical conversion

of verbal information; i.e., the assignment of a

numerical value to each level of the ordinal scale.

However, this operation introduces into the scale the

property of distance between the levels of the scale

itself (Franceschini and Rossetto, 1995).
Let us assume, for example, the following

codification:

. ‘‘reject’’¼ 1;

. ‘‘poor quality’’¼ 2;

. ‘‘medium quality’’¼ 3;

. ‘‘good quality’’¼ 4;

. ‘‘excellent quality’’¼ 5.

This codification allows us to calculate all

location and dispersion measures of the sample; for

example, its arithmetic mean is: �xx ¼ 3:7.
This result seems to suggest that the mean of the

sample is between ‘‘medium quality’’ and ‘‘good

quality’’ and that it is nearer to the latter than to the

former.
The numerical conversion we have adopted is

based on the implicit assumption that, in the

evaluator’s mind, all scale levels are equispaced.

However, we are not sure that the evaluator
perceives the subsequent levels of the scale as
equispaced, nor even if he or she has been pre-
liminarily trained. For example, the evaluator might
perceive the upper levels as more distinguished from
the others. The suitable codification of the levels of
the scale for this inspector might be the following
(Roberts, 1979):

. ‘‘reject’’¼ 1;

. ‘‘poor quality’’¼ 3;

. ‘‘medium quality’’¼ 9;

. ‘‘good quality’’¼ 27;

. ‘‘excellent quality’’¼ 81.

In case this codification were adopted, we
would obtain an arithmetic mean equal to �xx ¼ 32:9,
that is to say that the sample mean is near to
‘‘good quality,’’ but between ‘‘good quality’’ and
‘‘excellent quality,’’ not between ‘‘medium quality’’
and ‘‘good quality.’’

Which is the right value of the mean of the
sample at hand? We cannot answer this question
because an ‘‘exact’’ codification does not exist.

A more correct approach, alternative to a
numerical conversion of the levels of an ordinal
scale, is based on usage of the only properties of
ordinal scales themselves. In practice, we do not
convert the ordinal scale into a numerical one, but
we focus our attention only on the order of levels.
That is to say that if an evaluator asserts that the
cork is of ‘‘good quality,’’ he or she simply says that
cork quality is better than ‘‘medium quality’’ but
worse than ‘‘excellent quality.’’

In the next sections we analyze the consequences
of this approach. Particularly, we point out the
‘‘traditional’’ statistical properties and measures that
are still valid on ordinal scales. We also introduce
new ones that are specific to ordinal scales.

THE CONCEPT OF

ORDINAL DISTRIBUTION

In a framework where the distance between the
levels of a scale is not defined, the use of traditional
statistical distributions is not correct. A distribution
requires the concept of distance to be defined, since
its argument is a number on the real axis. Denoting
by X a discrete random variable whose possible
values belong to the set x1, x2, . . . , xnf g � R, its
probability distribution fX(x) can be defined as

Table 1. Results of the visual control of a sample of 30

corks.

‘‘Reject’’

‘‘Poor

quality’’

‘‘Medium

quality’’

‘‘Good

quality’’

‘‘Excellent

quality’’

1 2 10 9 8
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ORDER                        REPRINTS

(Montgomery and Runger, 1999; Vicario and Levi,
2001):

fX ðxÞ ¼
P ½X ¼ xj � if x¼ xj,with j ¼ 1, 2, . . . ,n

0 if x 6¼ xj:

�

In an ordinal environment, instead, the argument
of a hypothetical probability distribution is an
element of a set of ordered levels. Denoting by S an
ordinal random variable whose values belong to
the set {S1,S2, . . . ,St}, where Si is the ith level of the
ordinal scale and t is the number of levels of the scale,
the equivalent of the probability distribution in an
ordinal environment can be defined as

fSðSÞ ¼
P ½S ¼ Sj� if S ¼ Sj, with j ¼ 1, 2, . . . , t
0 if S 6¼ Sj:

�

The empirical frequency distribution in an
ordinal environment can be obtained in the same
way as in a cardinal space. Denoting by n the
sample size and by ni, i¼ 1, 2, . . . , t, the number of
judgments of the sample at level Si, the relative
frequency of Si can be calculated as

pi ¼
ni

n
:

The abscissas of these values; i.e., the levels of the
ordinal scale, cannot be fixed on a real axis, since
their relative distance is undefined. Therefore, a
probability distribution in an ordinal environment,
hereinafter called ordinal distribution, is made up by
points whose abscissas are ‘‘free to move’’ along their
axis provided that they keep their order.

Figure 1 points out the difference between a
traditional probability distribution and an ordinal
distribution. Figure 1a represents the frequency
distribution of data reported in Table 1 with the
first numerical codification. Figure 1b shows the
frequency distribution obtained with the second
numerical codification. Figure 1c illustrates the
ordinal distribution of the same data: vertical bars
are not fixed at a precise point of the horizontal axis,
since their relative distances are undefined. To
represent this characteristic, a ‘‘skate’’ symbol is
considered.

Figure 1c shows an ordinal distribution with
equispaced bars. However, we must remember that
the position of these bars on the real axis is
undefined: the only information we have is about
their order. The same ordinal distribution can be
represented in various equivalent forms. For exam-
ple, Figs. 1c and 2 are equivalent representations of
the same ordinal distribution.

A direct consequence of the absence of the
concept of distance among the levels of an ordinal
scale is the lack of another important concept: the
distribution shape. It is not correct to refer to the
shape of an ordinal distribution, but only to analyze
the heights of its vertical bars (probabilities or
relative frequencies). For example, it is not correct
to say that the distribution of judgments follows a
binomial distribution, because the assumption of a
specific distribution requires the fixing of its shape,
which in turn requires the introduction of the concept
of distance between the levels of the ordinal scale.
Nevertheless, it is correct to assert that the heights of
the vertical bars of an ordinal distribution are the
same as those of a binomial distribution whose
variable can assume values corresponding (one to
one) to the ordinal distribution levels, since this
statement does not require the introduction of the
concept of distance.

LOCATION AND DISPERSION

MEASURES IN AN

ORDINAL ENVIRONMENT

All statistical measures that can be used in an
ordinal environment cannot make use of the concept
of distance between the levels of the scale.

Location Measures

A location measure for an ordinal environment is
the median. Denoting by n the number of sample
elements, ai the ith element of the sample and bi the
ith element of the ordered sample, the sample median
~xx can be defined as (n odd)

~xx ¼ bk, where k ¼
nþ 1

2
:

If n is even, the median is a couple of values
~xx ¼ ðbi, bjÞ, with i ¼ n=2 and j ¼ n=2þ 1.

In the example at hand (Table 1), n¼ 30. Since
b15¼ ‘‘good quality’’ and b16¼ ‘‘good quality,’’ we
have

~xx ¼ ðb15, b16Þ ¼ “good quality:”

The median is the 50th centile. Of course, all
other centiles can be defined in the same way.

Another ‘‘traditional’’ location measure usable
in an ordinal environment is the mode, which is the
value of the scale with the maximum probability.
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ORDER                        REPRINTS

Obviously, different values with the same maximum

probability are possible, that is to say different

modes. In the example of the corking process

(Table 1), the modal level is ‘‘medium quality.’’ A

survey of the main properties of the median and the
mode can be found in Kendall and Stuart (1977).

A more specific ordinal location measure is the
OWA (ordered weighted average) emulator of
arithmetic mean, described by Yager and Filev
(Yager, 1993; Yager and Filev, 1994). This operator
is typically used with linguistic scales. It is defined as

OWA ¼ Max
n

k¼1
½MinfQðkÞ, bkg�,

where Q(k)¼Sg(k), k¼ 1, 2, . . . , n, with:

. Q(k) the average linguistic quantifier (the
weights of the OWA operator);

. gðkÞ ¼ Int 1þ kððt� 1Þ=nÞ½ �
� �

;
. Int(a) a function that gives the integer closest

to a;
. bk the kth element of the sample previously

ordered in a decreasing order.

This OWA operator is said to be an emulator of
arithmetic mean since it operates, in an ordinal
environment, in the same way as the arithmetic mean

(a) (b)

 

(c)

Figure 1. Frequency distributions (a), (b) and ordinal distribution (c) of data reported in Table 1. The ‘‘skate’’ symbol is used

in the ordinal distribution to point out that only the relative position of the bars is known.

Ordinal distribution
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Figure 2. An alternative representation of the ordinal

distribution of data reported in Table 1. The concept of

distance is not defined.
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works in a cardinal one. It can take value only in the

set of levels of the ordinal scale, while a numerical

codification of these levels could lead to some

intermediate mean values.
As an example, let us suppose we have a scale

with t¼ 5 levels, namely, S1, S2, S3, S4, and S5, and a

sample of size n¼ 10, whose elements, previously

ordered in a decreasing order, are [S5, S5, S5, S4, S4,

S3, S3, S3, S2, S1].
The ‘‘weights’’ of the OWA operator are

. Q(1)¼S1;

. Q(2)¼Q(3)¼S2;

. Q(4)¼Q(5)¼Q(6)¼S3;

. Q(7)¼Q(8)¼S4;

. Q(9)¼Q(10)¼S5.

Therefore, we have:

OWA ¼ Max½MinfS1,S5g,MinfS2,S5g,

MinfS2,S5g,MinfS3,S4g,MinfS3,S4g,

MinfS3,S3g,MinfS4,S3g,MinfS4,S3g,

MinfS5,S2g,MinfS5,S1g� ¼ S3:

Figure 3 shows a graphical representation of the

OWA calculation (Franceschini and Rossetto, 1999).

The value of the OWA emulator of arithmetic mean

is given by the intersection of the ‘‘ascending stair’’

(OWA weights) and the ‘‘descending stair’’ (ordered

sample elements).
Referring to the example of the corking process

(Table 1), we have

. t¼ 5; n¼ 30;

. S1¼ ‘‘reject’’; S2¼ ‘‘poor quality’’; S3¼

‘‘medium quality’’; S4¼ ‘‘good quality’’;
S5¼ ‘‘excellent quality.’’

The weights of the OWA operator are

. Q(1)¼Q(2)¼Q(3)¼ ‘‘reject’’;

. Q(4)¼Q(5)¼ � � � ¼Q(11)¼ ‘‘poor quality’’;

. Q(12)¼Q(13)¼ � � � ¼Q(18)¼ ‘‘medium
quality’’;

. Q(19)¼Q(20)¼ � � � ¼Q(26)¼ ‘‘good quality’’;

. Q(27)¼Q(28)¼Q(29)¼Q(30)¼ ‘‘excellent
quality.’’

Therefore, we have

OWA

¼ Max½MinfS1,S5g,MinfS1,S5g,MinfS1,S5g,

MinfS2,S5g,MinfS2,S5g,MinfS2,S5g,

MinfS2,S5g,MinfS2,S5g,MinfS2,S4g,

MinfS2,S4g,MinfS2,S4g,MinfS3,S4g,

MinfS3,S4g,MinfS3,S4g,MinfS3,S4g,

MinfS3,S4g,MinfS3,S4g,MinfS3,S3g,

MinfS4,S3g,MinfS4,S3g,MinfS4,S3g,

MinfS4,S3g,MinfS4,S3g,MinfS4,S3g,

MinfS4,S3g,MinfS4,S3g,MinfS5,S3g,

MinfS5,S2g,MinfS5,S2g,MinfS5,S1g�

¼ S3 ¼ ‘‘medium quality.’’

This result is different from that obtained by the
codification of the scale levels.

Dispersion Measures

With regard to dispersion measures, none of the
‘‘traditional’’ ones can be used in an ordinal
environment, since they all need a cardinal codifica-
tion of levels of the scale. They all require the concept
of distance to be defined.

A preliminary ordinal dispersion measure, first
introduced by Franceschini and Romano (1999), is
the range of ranks rS, defined as the total number of
levels contained between the maximum and the
minimum value of a sample of evaluations (the
rank is the sequential number of a level on a ordinal
scale):

rs ¼ ½rðqÞmax � rðqÞmin�,

where r(q) is the rank of a generic ordinal level.

0 5 10

Position in the ordered
sample

Le
ve

ls
 o

f t
he

 s
ca

le

Weights

Sample
Elements

S1

S2

S3

S4

S5

Figure 3. Graphical representation of the OWA calcula-

tion. The value of the OWA emulator of arithmetic mean is

given by the intersection of the ‘‘ascending stair’’ (OWA

weights) and the ‘‘descending stair’’ (ordered sample

elements). (View this art in color at www.dekker.com.)
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In the example of the corking process (Table 1),
we would have

rS ¼ rðExcellent qualityÞ � rðRejectÞ

¼ rðS5Þ � rðS1Þ ¼ 5� 1 ¼ 4:

This dispersion measure assumes that the scale
ranks do not depend on the position of levels of the
ordinal variable. Table 2 shows two different samples
with the same value of rS.

The actual dispersion of samples in Table 2 is the
same if and only if the distance between ‘‘good quality’’
and ‘‘excellent quality’’ is equal to the distance between
‘‘reject’’ and ‘‘poor quality.’’ However, this cannot be
asserted since the concept of distance is not defined.

To overcome this difficulty, we introduce a new
dispersion measure, the so-called ordinal range, that
considers not only the number of levels between the
maximum and the minimum value of the sample, but
also their positioning on the scale. The ordinal range is
based on the concept of ‘‘dangerousness’’ that in turn
depends on the ‘‘meaning’’ of the particular scale at
hand. It is defined on a scale with t(tþ 1)/2 levels,
where t is the number of levels of the ordinal scale
considered. Each level is ordered according to an
increasing ‘‘dangerousness’’ of dispersion. With the
same difference of scale levels, the dispersion is more
‘‘dangerous’’ if the sample is centered on a more
‘‘dangerous’’ level of the scale (that is a lower level in
the example at hand, since lower levels are associated
with a more negative judgment on product quality).

Table 3 shows, for the example of the corking
process (t¼ 5), the 15 (t(tþ 1)/2¼ 15) levels of the
corresponding scale of ordinal range.

Table 4 reports some different samples of judg-
ments from the example of the corking process and the
related values of the ordinal range. Samples 1 and 2
have the same difference of levels between the
maximum and the minimum rank value. However,
their dispersion is not the same. Dispersion of sample 2
is more ‘‘dangerous’’ than dispersion of sample 1
because values of sample 2 are nearer to the lower
values of the scale of judgments. As a consequence, the
value of ordinal range of sample 2 is greater than the
value of ordinal range of sample 1. A similar analysis
can be developed regarding samples 3 and 4.

Distribution of Location and Dispersion

Measures in an Ordinal Environment

In ‘‘traditional’’ cardinal statistics, the introduc-
tion of location and dispersion measures is followed
by the analysis of their statistical properties. The

knowledge of their distributions is necessary to

develop statistical techniques such as hypothesis

testing.
The ordinal distribution of location and disper-

sion measures can be easily obtained from the ordinal

distribution of the population (universe) of

judgments. This can be done through the following

procedure, based on the exploration of the entire

sample space:

1. Initialize to zero all probabilities of location

or dispersion measure at hand.

Table 3. Levels of the scale of ordinal range for the

example of the corking process.

Minimum

sample

value

Maximum

sample

value

Level of the scale

of ordinal range

(in increasing

‘‘dangerousness’’)

Excellent quality Excellent quality R1

Good quality Good quality R2

Medium quality Medium quality R3

Poor quality Poor quality R4

Reject Reject R5

Good quality Excellent quality R6

Medium quality Good quality R7

Poor quality Medium quality R8

Reject Poor quality R9

Medium quality Excellent quality R10

Poor quality Good quality R11

Reject Medium quality R12

Poor quality Excellent quality R13

Reject Good quality R14

Reject Excellent quality R15

Table 2. Two different samples with the same sample size

and the same range of ranks.

(a)

‘‘Reject’’

‘‘Poor

quality’’

‘‘Medium

quality’’

‘‘Good

quality’’

‘‘Excellent

quality’’

0 3 10 9 8

(b)

‘‘Reject’’ ‘‘Poor

quality’’

‘‘Medium

quality’’

‘‘Good

quality’’

‘‘Excellent

quality’’

3 10 9 8 0
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2. Select a sample of size n from the population

of judgments.
3. Calculate its probability (assuming that the

sample elements are independent from each

other).
4. Calculate the corresponding value of loca-

tion or dispersion measure.
5. Add the probability at point (3) to prob-

ability of value at point (4).
6. Go to (2) until all possible samples have been

analyzed.

The complexity of this procedure can be reduced

by observing that all samples corresponding to the

same ordered sample have the same probability.

By means of the described procedure, we can

determine, for example, the ordinal distribution of

the OWA emulator of arithmetic mean. Let

us assume a uniform ordinal distribution of the

population of judgments (i.e., all levels of the ordinal

scale have the same probability to be selected by

evaluators). Table 5 reports the ordinal distributions

of the OWA emulator of arithmetic mean for

different sample sizes and different numbers of

levels of the ordinal scale. Results are obtained by a

software program implemented in The MATLAB 5.2

environment.
The obtained ordinal distributions are symmetric

(the concept of symmetry in an ordinal environment

will be discussed in the next section). The probabil-

Table 5. Ordinal distributions of the OWA emulator of arithmetic mean for different sample sizes (n) and different numbers

of levels of the ordinal scale (t).

Ordinal distribution of the population (universe) of judgments

t S1 S2 S3 S4 S5 S6 S7 S8 S9

5 0.2 0.2 0.2 0.2 0.2

7 0.14 0.14 0.14 0.14 0.14 0.14 0.14

9 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Ordinal distribution of the OWA emulator of arithmetic mean

t n S1 S2 S3 S4 S5 S6 S7 S8 S9

5 5 0 0.09 0.83 0.09 0

10 0 0.05 0.89 0.05 0

20 0 0.02 0.96 0.02 0

7 5 0 0.03 0.34 0.26 0.34 0.03 0

10 0 0 0.22 0.56 0.22 0 0

20 0 0 0.09 0.81 0.09 0 0

7 5 0 0 0.04 0.35 0.21 0.35 0.04 0 0

10 0 0 0.02 0.23 0.50 0.23 0.02 0 0

20 0 0 0 0.12 0.76 0.12 0 0 0

Table 4. Different samples of judgments and related values of the ordinal range for the example of the corking process.

Sample

number ‘‘Reject’’

‘‘Poor

quality’’

‘‘Medium

quality’’

‘‘Good

quality’’

‘‘Excellent

quality’’

Ordinal

range

1 0 0 0 2 28 R6

2 0 0 10 20 0 R7

3 0 0 10 15 5 R10

4 0 3 8 19 0 R11

5 0 0 0 0 30 R1
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ities concentrate on the central value of the scale as n

increases and t decreases. Figure 4 shows the effect of

n on the ordinal distribution of the OWA emulator of

arithmetic mean.
This process of probability concentration (with

increasing n and decreasing t) heavily depends on the

distribution of judgment population (universe).
Table 5 and Fig. 4 show a process of probability

concentration (with increasing n and decreasing t).

These results suggest the existence of a theorem

‘‘similar’’ to the central limit theorem for an ordinal

environment.
The ‘‘discovery’’ of an asymptotic ordinal distri-

bution for each location and dispersion measure,

independent of the distribution of the population

(universe) of judgments, would represent an important

step toward the development of techniques like

hypothesis testing or statistical process control tools

for an ordinal environment. Such a discovery would

overcome the use of the described procedure to

calculate the ordinal distribution of each location

and dispersion measures, which requires the knowledge

of the ordinal distribution of the population (universe)

of judgments. However, as matters stand, this require-

ment is still inevitable, because we do not have an
equivalent of the central limit theorem for an ordinal
environment yet. With regard to the OWA emulator of
arithmetic mean, an asymptotic ordinal distribution
seems very unlikely to exist. In Table 5 and Fig. 4, the
OWA ordinal distribution concentrates on the central
level of the scale when judgments are expressed
according to a uniform distribution (i.e., all levels of
the ordinal scale have the same probability to be
selected by evaluators).

As a counter example, Fig. 5 shows the ordinal
distribution of the OWA emulator of arithmetic mean
for a particular ordinal distribution of the population of
judgments on a scale with t¼ 9 levels. In this case, the
OWA ordinal distribution concentrates on two different
levels of the scale instead of only one. This seems to
suggest that an asymptotic ordinal distribution of OWA
emulator of arithmetic mean does not exist.

The Concept of Symmetry in an

Ordinal Environment

Denoting by t the number of levels of an ordinal
scale, we can say that the ordinal distribution is

(a) (b)

 

(c)

Figure 4. Ordinal distributions of OWA emulator of arithmetic mean for different values of sample size n. The initial ordinal

distribution of the population (universe) of judgments is assumed to be uniform (see Table 5) on a scale with t¼ 7 levels.
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symmetric if and only if the probability of level Si,

f(Si), equals the probability of level Sj, f(Sj); i.e.,

f(Si)¼ f(Sj), where iþ j¼ tþ 1, 8i, j¼ 1, 2, . . . , t.
Figure 6 shows two equivalent representations of

the same symmetric ordinal distribution on a scale

with an odd number of levels. Since each ordinal

distribution has infinite equivalent possible represen-

tations, the concept of symmetry cannot be defined

on the basis of the concept of shape. This is a direct

consequence of the most important feature of ordinal

(a) (b) n = 5

(c) n = 10 (d) n = 25

Figure 5. Graphical representation of ordinal distributions reported in Table 5. Ordinal distribution of population of

judgments (a) and ordinal distribution of the OWA emulator of arithmetic mean for different sample sizes (b), (c), (d), for a

scale with t¼ 9 levels.

(a) (b)

Figure 6. Two equivalent representations of the same symmetric ordinal distribution. The concept of distance is not defined.
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scales: the lack of the concept of distance between the
levels of the scale.

CONCLUSIONS

In this article, we pointed out some problems
that arise when dealing with evaluations or measure-
ments expressed on an ordinal scale. We analyzed the
properties of these scales and we extended the
concept of probability distribution to an ordinal
environment, by the introduction of the so-called
ordinal distribution. The main location and disper-
sion measures that can be used in an ordinal
environment are discussed, and a methodology to
calculate their ordinal distribution from an ordinal
distribution of population (universe) of judgments is
presented.

These studies on properties of location and
dispersion measures can lead to the development of
new tools able to manage processes monitored by
ordinal scales only.

Future research will aim at finding an asymptotic
(n!1) ordinal distribution for each location and
dispersion measure of interest, provided that it
actually does exist. A parallel theme of research will
be the analysis of statistical properties of location and
dispersion measures, such as correctness, consistency,
and efficiency.
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per Ingegneri. Bologna, Italy: Esculapio.
Yager, R. R. (1993). Non-numeric multi-criteria

multi-person decision making. Group Decision

and Negotiation 2:81–93.
Yager, R. R., Filev, D. P. (1994). Essentials of Fuzzy

Modeling and Control. New York, USA: J.

Wiley.

524 Franceschini, Galetto, and Varetto

Rettangolo

Rettangolo

Rettangolo



Rettangolo




