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Capillary networks are essential in vertebrates to supply tissues with nutrients. Experiments of in vitro
capillary formation show that endothelial cells randomly spread on a gel matrix autonomously organize to form
vascular networks with a characteristic length independent of the initial cell density. A mathematical model
based on free cell migration and on cell cross-talk mediated by soluble chemical factors has been recently
proposed and explains the main dynamical and geometrical properties of the networks. We extend this model
introducing the action of repulsive factors and we show that their activity results in a larger degree of
reorganization of cellular matter and in more robust control over the size of the growing vascular network.
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I. INTRODUCTION

Biological systems are characterized by large numbers of
functionally similar elements that interact selectively and
nonlinearly to produce a complex behavior. These systems
often show elaborate hierarchies of feedback regulation
�1,2�. Feedback mechanisms are often based on both attrac-
tive and repulsive signaling molecules.

The need for repulsive factors in cellular aggregation pro-
cesses has been known for a long time �3�. The presence of
these factors along with attractive ones produces instabilities
that drive the process of pattern formation with morphologi-
cal characteristics determined by the rates of the chemical
reactions and diffusion.

In vascularization dynamics, the role played by repulsive
factors is a subtle one. Recent research has shown that repul-
sive factors are required to endow the biological system with
the necessary degree of plasticity and robustness, allowing a
graded control of cellular migration rate and redirectioning
during migration �4�.

Cellular aggregation is central in blood vessel formation,
a process that has been thoroughly studied experimentally
for its fundamental relevance in many physiological and
pathological conditions �5�. Experimental assays of the pro-
cess have been devised which allow a high degree of repro-
ducibility and control of parameters. Biological insight ob-
tained this way has led to the formulation of a concise
mathematical model that explains the main dynamical and
geometrical properties of experimental vascular network for-
mation �6�. The good agreement of the model predictions
with observations provides evidence that experimental capil-
lary network formation �vasculogenesis� is driven by a cross-

talk mechanism, where cells release and respond to chemoat-
tractive soluble factors that stimulate motility �7�. Recent
experiments in mice have confirmed the proposed autocrine
cross-talk mechanism showing its essential role in in vivo
angiogenesis �8�. Since chemoattractive factors have a finite
lifetime, this introduces in the model a typical length scale
and suggests that Nature realizes this way a control on the
characteristic size of capillary networks. This is confirmed
by the experimental observation that the characteristic length
scale introduced with the initial conditions, which is a typical
cell-cell distance and is a function of the initial cell density,
is disrupted by a dynamical process that rearranges the struc-
tures on a constant length scale of the order of the diffusion
range of the soluble factors. Further, independent confirma-
tion is likely to come from experiments on mice �9� where
deletion of growth factors with smaller diffusivities results in
larger capillary network sizes. In particular, the experimental
results of Ref. �9� are strikingly reminiscent of the model
simulations of Ref. �7�.

Let us notice here that the existence of a control mecha-
nism on the size of capillary networks should come as no
surprise, since intercapillary distances ranging between 50
and 300 �m are required for optimal metabolic exchange
�10�. As a matter of fact, the capillary networks of the ver-
tebrates are all characterized by these characteristic dimen-
sions.

A natural extension of the model �6,7� consists of taking
into account the action of soluble repulsive factors, which
are known to play a biologically relevant role. Their inclu-
sion in the dynamical scheme should allow us to test quan-
titatively current ideas about their role and action. In this
paper, we study the effect of this extension through analytical
arguments and computer simulations and find that the action
of repulsive factors results in a larger degree of reorganiza-
tion of cellular matter and in more robust control over the
size of the growing vascular network.

The ability to reorganize vascular networks is of peculiar
relevance in living beings, e.g., during embryonic growth
�11� and in the healing of wounds �12�. Our numerical simu-
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lations show that starting from commonly realized experi-
mental conditions where cells are initially randomly dis-
persed on a flat surface, the dynamical system generated by
the diffusion of an attractive and a repulsive chemical factor
allows for a larger degree of reorganization of cellular matter
with respect to the situation where only an attractive factor is
present. This is due to the “screening” effect realized by the
repulsive factor in the cell proximity, which allows for a
more even distribution of the attractive signal in space and a
more efficient reorganization dynamics.

A second function performed by repulsive factors is to
provide robustness and sharpness of the size control mecha-
nism. We show that both properties are strictly related to the
analytic properties of the integral kernel, which appears in
the solution of the equation for the diffusion of chemical
substances. This kernel can depress wavelengths that are,
respectively, larger and smaller than the chemical range, act-
ing as a band-pass filter in the spatial domain. Our analysis
shows that in order to have a sharper and more robust control
on the structure size, at least an attractive and a repulsive
signal must be present. We expect that this prediction can be
verified experimentally.

The paper is organized as follows. Section II summarizes
some background knowledge on the biology of vascular net-
work formation. In Sec. III, we introduce the model and
study the analytical properties of the integral kernel that ap-
pears in the solution of the relevant diffusion equations. Sec-
tion IV contains numerical results and analysis of the geom-
etry of vascular structures. In Sec. V, we conclude discussing
the possible relevance of our results for future studies. In the
Appendix, we present the algorithm used for image analysis.

II. EXPERIMENTAL VASCULOGENESIS

Experiments of in vitro vascularization are an ideal test
for theories of vascularization dynamics because the main
parameters are under control: for instance, it is possible to
perform experiments with a given cellular population, with
the same values of physical parameters and with the same
initial conditions, and one can track cell motion with great
precision through noninvasive means such as videomicros-
copy. Experiments can be repeated many times, so that sta-
tistical methods can be used to get quantitative information
on the system.

In the experiments, endothelial cells are randomly dis-
persed on Matrigel, a surface which favors cell motility and
has biochemical characteristics similar to living tissues, and
observed while they autonomously organize to form a two-
dimensional network and roll up to form vascular tubes
�13,14� �Fig. 1�. The whole process needs 12–14 h to com-
plete. An accurate statistics of individual cell trajectories has
been presented in Ref. �7�, showing that in the early stages of
network formation, cell motion has marked directional per-
sistence, pointing toward zones of a higher concentrations of
cells.

The capillarylike network is a collection of nodes con-
nected by chords. The mean chord length has the approxi-
mately constant value �0�200 �m over a range of values of
the density n̄ extending from 100 to 250 cells/mm2. Corre-

spondingly, the mean chord thickness grows to accommodate
an increasing number of cells. Eventually, one observes a
continuous carpet of cells interspersed with holes �7�. By
varying n̄, one observes a percolative phase transition �6,15�.

In Ref. �6�, evidence has been provided that a control on
the size of capillary networks is realized through the ex-
change among cells of attractive soluble factors. The model
does not make any assumption on the nature of these factors.
Our group �7� and others �8,16–19� have shown evidence
that during vascular network formation, both in vitro and in
vivo the autocrine attractive factors essential for pattern for-
mation may be represented by the VEGF-A �vascular endot-
helial growth factor�. VEGF-A has a finite average lifetime
��1 h, resulting in a finite interaction radius �rA

�200 �m� which turns out to be of the order of the charac-
teristic network size. However, the model proposed in Ref.
�6� is simplified. Along with attractive factors, endothelial
cells are known to secrete repulsive factors �4�. Attractive
factors themselves exist in several isoforms �20�, character-
ized by diffusivities that can vary by factors of order 1 �21�.
Taking into account these finer effects could lead to a proper

FIG. 1. �a� Cells are randomly deposed at time t=0 on a Matri-
gel surface of size L2=4 mm2. �b� End point of autonomous cell
aggregation in a capillary-like network, at time t=9 h.
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understanding of the experimental results of Ref. �9�. Fur-
thermore, it is known that isoforms of VEGF-A act in a
coordinated fashion to recruit and expand tumor vasculature
�22�.

III. THE MODEL

A. General framework

We propose here a generalization of the model of Ref. �6�
that takes into account the existence of several types of
soluble factors, characterized by different diffusivities and
chemical actions �attractive or repulsive�. The endothelial
cell population is described by a continuous distribution of
density n and Eulerian velocity v, and we assume the pres-
ence of F families of soluble molecules, whose concentra-
tions are denoted, respectively, by c1 , . . . ,cF.

We shall study in more detail the two-field model where
cA and cR represent, respectively, the concentrations of at-
tracting and repulsive factors. For the sake of simplicity, we
consider a linear response of cells to the concentration of
soluble factors. The model presented in Ref. �6� is then gen-
eralized to the following equations:

�n

�t
+ � · �nv� = 0, �1a�

�v

�t
+ v · �v = ��

k=1

F

�kck − f�n�v , �1b�

�ck

�t
= Dk�

2ck + �kn − �k
−1ck �k = 1, . . . ,F� , �1c�

where Dk, �k, �k �k=1, . . . ,F� are, respectively, the diffusion
coefficient, the rate of release, and the characteristic degra-
dation time of the kth soluble factor, and �k, which is as-
sumed to be positive for attractive factors and negative for
repulsive factors, measures the strength of the cell response

to the concentration gradient �ck. In the experiments, cells
are initially randomly distributed on Matrigel. We therefore
impose initial conditions in the form of a set of randomly
distributed bell-shaped bumps of unitary volume having
width of the order of the average cell radius, with null ve-
locities.

Regularity of solutions and approach to a stationary state
can be obtained by the addition on the right-hand side �r.h.s.�
of Eq. �1b� of ad hoc phenomenological terms �6,15,23�.
These terms are not really essential and just provide a clean
way of mimicking the biological system by freezing the evo-
lution when cells get close together. In this paper, we shall
make use of a density-dependent linear friction term −f�n�v,
where f�n� is zero for low densities and increases rapidly
above a threshold of a few times the heights of the initial
bumps �24�. The biological motivation for this term is that
cells establishing reciprocal contacts are observed to progres-
sively slow down migration, as if cell-cell contacts switched
off migration in favor of the establishment of stronger bind-
ing to the gel matrix �7�.

In the fast diffusion approximation, i.e., neglecting the
time derivative on the left-hand side �l.h.s.� of Eq. �1c�, it is
possible to solve for ck and to substitute in Eq. �1b�, obtain-
ing the simpler system

�n

�t
+ � · �nv� = 0, �2a�

�v

�t
+ v · �v = Ln − f�n�v , �2b�

where L=�k=1
F ��k�k /Dk� ·��rk

−2−�2�−1 and rk=�Dk�k is the
characteristic interaction range of the kth chemical factor
�25�.

The dynamical behavior of system �1� is as follows. Ini-
tially, nonzero velocities are built up by the chemoattractive
term due to the presence of random inhomogeneities in the
density distribution. Then, Burgers’ dynamics amplifies the

FIG. 2. Log-log graph of the module of the transfer function Lk �Bode plot� for �a� diffusion in a two-dimensional environment and �b�
in a three-dimensional one for various relative contributions of attractive and repulsive factors �. For simplicity, we let �A�A /DA=1 and
choose rA as length scale unit, while rR=rA /2.
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inhomogeneities and forms a capillarylike network. Density
inhomogeneities are translated in a landscape of concentra-
tion of soluble factors where details of scales �rk are aver-
aged out. Particles move toward the crests of the landscape,
which are separated by valleys of width �rk. Burgers’ dy-
namics sharpens the crests and empties the valleys in the
concentration landscape, eventually producing a network
structure characterized by a length scale of order rk. This is a
transient regime, chords are unstable, and eventually matter
will collapse into the nodes. The introduction of a pressure,
friction, or contact inhibition term on the r.h.s. of Eq. �1b�
prevents matter collapse into the nodes and provides a clean
way to mimic the biological system.

B. Reorganization and robust control

Let us study in more detail the two-field model, where cA
and cR are, respectively, the concentrations of attractive and
repulsive factor. In this case, the relevant parameters are the
diffusive lengths rA and rR and the ratio �
= 	�R 	�RDA /�A�ADR �26�. Repulsive factors are heavier
molecules ��2�105 a.m.u.� than attractive factors ��3
�104 a.m.u.� and have shorter diffusive length �4�: we there-
fore assume rA	rR. According to available data, the order of
magnitude of the diffusion coefficient and the characteristic
time of degradation of attractive chemical factors such as
VEGF-A 165 are DA�10−7 cm2 s−1 and �A�4000 s, giving
rA�200 �m �7,27�. Precise quantitative data are not avail-
able for repulsive factors.

Equation �1b� is a Burgers-like equation for v �28�,
coupled to the standard diffusion equations �1c�. In the ab-
sence of any coupling with soluble mediators, Eqs. �1a� and
�1b� are reminiscent of the adhesion model �29�. It is a well
known characteristic of that model, investigated both analyti-
cally and numerically, that small inhomogeneities in the ini-
tial conditions are amplified by the dynamics and eventually
lead to the formation of structures, which in two dimensions
are strikingly similar to those of capillary networks �30�. The
coupling with the two fields of soluble mediators introduces
in the model two characteristic lengths rA, rR, which are
likely to be observable in the geometry of the resulting net-
work, according to the scheme outlined in Ref. �6�. The cou-
pling is established �in the fast diffusion approximation�
through the source term Ln, where the Fourier transform of
L is

Lk = 
i
�A�A

DA
�
 k

rA
−2 + k2 − �

k

rR
−2 + k2� .

It is easily seen that the action of this operator has the effect
of depressing the wavelengths of the density field which are
larger or smaller than rA. This means that Lk acts as a band-
pass filter in the spatial domain.

The Fourier transform Lk can be seen as the transfer func-
tion for the nonlinear feedback loop realized by the system
�2�. The properties of Lk at varying values of � are conve-
niently summarized in a Bode magnitude plot �Fig. 2�a��,
showing the asymptotic behavior of the filter for small and
large wave numbers. For �=0 �no repulsive factor� and k

rA

−1, 	Lk 	 �1/k. For �=1, one has a higher-order filter

characterized by the asymptotic behavior 	Lk 	 �1/k3, corre-
sponding to a sharper bandwidth and a higher selectivity. For
intermediate values ��1, one observes a crossover for k
�1/�1−� to the �=0 behavior.

The control properties of the transfer function Lk influ-
ence the geometry of the network structures formed by the
evolution of Eq. �1� from random initial conditions. Initially,
cells are seeded in random positions. This introduces in the
model the length scale ri.c.=L /�N, where L is the surface
size and N the cells number, which is the typical cell-cell
distance. This length scale competes with rA. For the physi-
ologically interesting values of N �N�100 for L=1 mm�,
one has ri.c.rA. Dynamical evolution, controlled by the ac-
tion of the operator L, can destroy this scale and rearrange
matter in a network of typical length scale rA.

The presence of a repulsive factor has the effect of screen-
ing high concentrations of activator in the cell proximity. In
Fig. 3, the vector field Ln is plotted for �=0 and 1. In the
second case �perfect balance of repulsive and attractive ac-

FIG. 3. Distribution of attractive and repulsive factors in the
neighborhood of a bump of cellular matter, in the presence of a
purely attractive factor cA �panel �a�� and of both attractive and
repulsive factors cA and cR �panel �b��. �a� Distribution of cA and
graph of the gradient field �cA. �b� Distribution of cA−cR and graph
of the gradient field ��cA−cR�.
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FIG. 4. Repulsive action results in larger reorganization of cellular matter, starting from the same initial conditions: �a� Final point of
dynamical evolution in the presence of a purely attractive factor �cR=0�. �b� Final point of dynamical evolution in the presence of both
attractive and repulsive factors ��=1�. Repulsive action results in a larger redistribution of cellular matter with respect to case �a�. �c� Graph
showing the concentration of attractive factor cA for �a�. Arrows indicate the gradient of cA. �d� Graph showing the difference cA−cR between
the concentration of attractive and repulsive factors for �b�. Arrows indicate the gradient of cA−cR. Simulations were performed using rA

=300 �m, rR=150 �m, and n̄=175 cells/mm2 on a square lattice of 256�256 nodes.
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tion in the proximity of the cell�, the effective attractive sig-
nal is more evenly distributed around the cell center. This
real-space scenario corresponds to a faster decreasing
asymptotic of the transfer function Lk, and is therefore ex-
pected to result in sharper control on the network dimen-
sions. Repulsive factors agree, therefore, with the realization
of a control on the structure dimensions by partially neutral-
izing autointeraction and depressing high wave numbers in

the spectrum of Lk �Fig. 2�. This effect is maximum when
�=1, i.e., when repulsive and attractive factors perfectly bal-
ance in the cell proximity.

In order to describe in detail planar experiments of in vitro
vasculogenesis, one should take into account the fact that
while cell movement is confined on a two-dimensional sur-
face �the Matrigel layer fixed to the bottom of a Petri dish�,
diffusion of soluble factors takes place on the overstanding
liquid medium, i.e., in a three-dimensional half-space �31�.
Denoting the Matrigel surface by z=0, the cell density by
n�x ,y ,z�=n�x ,y� ��z�, and considering periodic boundary
conditions, one obtains for the two-dimensional restriction of
Lk

Lk = 
i
��A�A

2DA
�
 k

�rA
−2 + k2

− �
k

�rR
−2 + k2� .

In this case, the difference between a purely attractive
signal and a combined repulsive-attractive action is striking:
as shown by the Bode plot for Lk �Fig. 2�b��, for �=0 �no
repulsion� Lk behaves as a high pass filter and does not exert
any control on high wave numbers �short wavelengths�. In-
stead, for �=1 one has a high-order bandpass filter charac-
terized by the asymptotic behavior 	Lk 	 �1/k2. For interme-
diate values ��1, one observes a crossover for k
�1/�1−� to the �=0 behavior.

This suggests that in dimensionally hybrid systems like
the ones relevant to experimental assays, a control over

FIG. 5. Repulsive action results in larger reorganization of cel-
lular matter. Main graph: time evolution of mean square displace-
ment of cellular matter. Inset: time evolution of mean square veloci-
ties of cells. Solid line: dynamics in the presence of an attractive
and a repulsive factor, as described in the text. Dashed line: dynam-
ics in the presence of the sole attractive factor.

FIG. 6. Efficiency of the dynamical reorganization process for
diffusion in a two-dimensional environment, observed on the de-
pendency of the average chord length �l on the interaction radius
rA, with varying relative contribution of attractive and repulsive
factors. In the absence of repulsive factors ��=0�, an approximate
linear dependence of �l on rA is observed. A larger reorganization
efficiency is observed in the presence of repulsive factors ���0�.
Maximal reorganization efficiency is obtained when the attractive
and repulsive factors exactly compensate near the cells ��=1�. The
results were obtained by 24 simulations of Eqs. �1� for each value
of rA letting rR=rA /2 and n̄=175 cells/mm2 using a square lattice
of 256�256 nodes. Dotted lines are intended as guides for the eye.

FIG. 7. Robustness of the dynamical reorganization process for
diffusion in a two-dimensional environment, observed on the de-
pendency of the average chord length �l on the initial cell density
n̄, with varying relative contribution of attractive and repulsive fac-
tors, for fixed interaction radii rA=200 �m, rR=100 �m. The aver-
age chord length �l is almost independent of the initial cell density
n̄ for each value of the relative contribution � of attractive and
repulsive factors, showing that control is robust and repulsive fac-
tors are not essential to confer robustness to the process of forma-
tion of a network geometry in a purely two-dimensional environ-
ment. The results were obtained by 24 simulations of Eqs. �1� for
each value of the density n̄ using a square lattice of 256�256
nodes.

Di TALIA et al. PHYSICAL REVIEW E 73, 041917 �2006�

041917-6



length scales of observed structures can be obtained only if
an attractive and a repulsive factor are present and ��1.

IV. NUMERICAL RESULTS AND GEOMETRY
OF THE NETWORK

In order to verify the validity of previous analytical argu-
ments, we performed extensive numerical simulations of
model �1� with two families of soluble molecules and values
of the ratio � varying between 0—no repulsive factors—and
1—perfect balance of attractive and repulsive factors in the
cell proximity �32�.

Simulations performed in the presence or absence of re-
pulsive action show the qualitative fact that repulsive dy-
namics results in a larger reorganization of cellular matter
�Fig. 4�. A quantitative measure of this effect is the mean
square displacement of cellular matter �Fig. 5�. A better re-
organization process requires that the distribution of cellular
matter is reorganized on larger structures and, therefore, that
cells travel over longer distances. Figure 5 shows that when
both repulsion and attraction are present, the mean square
displacement of cells is larger compared to the case in which
only an attracting factor is present. This results in larger net-
work structures and thicker chords �Fig. 4�.

The degree of dynamical reorganization of network struc-
tures by attractive and repulsive factors is shown by the de-

pendence of the network statistical geometry on the interac-
tion radii rA, rR. Efficient reorganization implies that
geometrical properties of the network such as the average
chord length are strictly regulated by the characteristic inter-
action radii rA, rR of the attractive and repulsive factors, and
not by the characteristic length determined by the initial con-
ditions. This length scale can in fact be destroyed by the
dynamical reorganization process, which reorganizes cellular
matter in a network of typical length rA. Correspondingly, a
robust control results in the statistical geometry not depend-
ing on the initial density n̄. Such a robust control was ob-
served in �7�, where it was shown that the mean chord length
is independent of the density n̄ over a range of values ex-
tending from 100 to 250 cells/mm2.

To investigate how the interaction radii rA, rR of the at-
tractive and repulsive factors control the geometrical proper-
ties of the observed vascular structures, we have measured
the chord length distribution resulting from a large number
of random realizations of the initial conditions, varying rA
for fixed rA /rR �33,34� �the chord length distribution has
been measured by the algorithm described in the Appendix�.
To study the robustness of the geometrical control, we have
also studied how the average chord length varies changing
the average density n̄ for fixed rA, rR.

FIG. 8. Dynamical reorganization efficiency for diffusion in a
three-dimensional environment, observed on the dependency of the
average chord length �l on the interaction radius rA, for different
relative contributions of attractive and repulsive factors. In the ab-
sence of repulsive factor ��=0�, or when attractive and repulsive
factors do not compensate near the cells ��1�, measured points
lay on approximately flat lines, showing an absence of dynamical
reorganization. The final state just inherits the scale ri.c. determined
by the initial conditions. When attractive and repulsive factors com-
pensate near the cells ���1�, a clear dependence of �l on rA is
observed, indicating efficient dynamical reorganization of the net-
work. The results were obtained by 24 simulations of Eqs. �1� for
each value of rA letting rR=rA /2 and n̄=175 cells/mm2 using a
square lattice of 256�256 nodes. The three-dimensional diffusion
equation �1c� was solved using a cubic lattice of 256�256�64
nodes. Dotted lines are intended as guides for the eye.

FIG. 9. Robustness of dynamical reorganization for diffusion in
a three-dimensional environment, observed on the dependency of
the average chord length �l on the initial cell density n̄ for varying
relative contributions of attractive and repulsive factors, for fixed
interaction radii rA=200 �m, rR=100 �m. When attractive and re-
pulsive factors do not compensate in the cell proximity ��1�, the
average chord length clearly depends on the initial cell density,
showing the inefficiency of the control mechanism. A robust control
is realized instead when repulsive and attractive factors compensate
in the cell proximity ���1� since the average chord length is ap-
proximately independent of the initial cell density. Repulsive fac-
tors are therefore essential for robust control of the network geom-
etry when diffusion takes place in a three-dimensional environment.
As a reference, we plot the dependence ri.c.�1/�n̄ of the scale
length determined by the initial conditions on the initial density n̄.
The results were obtained by 24 simulations of Eqs. �1� for each
value of the density n̄ using a square lattice of 256�256 nodes. The
three-dimensional diffusion equation �1� was solved using a cubic
lattice of 256�256�64 nodes.
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For diffusion in a two-dimensional environment, results
are shown in Figs. 6 and 7. Figure 6 shows an approximate
linear dependence of the network geometry on the interac-
tion radius rA in the absence of repulsive factors ��=0�, as
reported in �7�. The presence of repulsive factors ���1�
results in larger structures and in more efficient control on
the length scale, i.e., in an approximately linear dependence
of the average chord length �l on rA with a slope that grows
with �. In the presence of repulsive factors, then, cellular
matter is more efficiently reorganized and the scale ri.c. in-
troduced by the initial conditions is dynamically substituted
by the interaction radius rA. Figure 7 shows that �l is almost
independent of n̄ for each �. This implies that for diffusion
in a two-dimensional environment, control is always robust
even without the action of repulsive factors.

We then simulated diffusion in three-dimensional half-
space with reflecting boundary conditions, coupled to two-
dimensional cell transport on the frontier of the half-space.
Results are shown in Figs. 8 and 9. Figure 8 shows that the
graphs of the average chord length �l as a function of the
interaction radius rA are flat when attractive and repulsive
factors do not balance perfectly in the cell proximity, �1,
indicating that the network geometry does not depend on the
interaction radius rA and that there is no dynamical reorga-
nization of the structures. In the case of perfect balance be-
tween attractive and repulsive factors in the cell proximity
���1�, a clear dependence of the average chord length �l
on rA is instead observed, showing the efficiency of dynami-
cal reorganization.

Figure 9 indicates that for diffusion in a three-dimensional
environment, robust reorganization of the network geometry

is realized only when attractive and repulsive factors balance
in the cells proximity. In this case ���1�, the structure size
is determined by rA and control on the typical length scale is
robust, since �l is almost independent of the initial cells
density.

In standard experimental conditions �7,18� soluble factors
actually diffuse in 3D in the fluid medium, while cell move-
ment is confined to the 2D Matrigel surface, corresponding
to the dimensionally hybrid situation described by our simu-
lations. In these conditions, it has been experimentally
checked that the average chord length of observed networks
does not depend on the initial cell density �7,15�, i.e., on ri.c..
Comparison with the results of the simulations �Fig. 9�,
where dependence on rA is actually observed only when the
attractive action is balanced by repulsion on scales of the
order of the cell size, suggests that repulsive factors are ac-
tually playing a role in determining the size of patterns in
experimental vasculogenesis.

V. CONCLUSIONS

We presented a model for in vitro vascularization experi-
ments, which generalizes the model proposed in Ref. �6� in
order to take into account the presence of more families of
soluble chemotacting factors, and in particular the presence
of repulsive factors. The model allows us to discuss the ques-
tion of geometrical robustness in the process of vascular net-
work formation, which is physiologically relevant, since the
size of capillaries is strictly related to their functionality. Re-
cent experiments �4� have shown that the role of repulsive
factors is essential to ensure the necessary degree of plastic-
ity of vascular networks. They allow a graded control of
cellular migration rate and redirectioning during migration.

Our results show that the presence of repulsive factors
allows a better reorganization process and a better control on
the size of the resulting patterns. From a mathematical point
of view, the main geometrical properties of the observed net-
works are encoded in the integral operator which solves the
equation of diffusion for the chemical factors. In particular
geometries, for example in dimensionally hybrid situations
similar to the ones realized in in vitro experiments, reorgani-
zation of the initial configuration and robust control on the
final configuration size can be ensured only in the presence
of at least an attractive and a repulsive factor, whose actions
balance in the cell proximity.

We expect that this theoretical prediction will be the sub-
ject of future experimental studies, focusing on the question
of how control on the geometrical properties of vascular net-
works is realized and which role repulsive factors play in the
morphogenetic process.

Another area where our model could be tested is the study
of vascularization in living beings �9�. It is known that vari-
ous VEGF-A isoforms with different diffusion constants
�providing different length scales� exist. Removing the less
diffusible forms of VEGF-A by gene targeting leads to the
formation of vascular structures characterized by different
length scales �9�, as suggested by our model. This could be
another step to a more quantitative understanding of the mo-
lecular mechanisms of vascularization.

FIG. 10. �a� Two-level image obtained through numerical simu-
lation, for diffusion in a three-dimensional environment with rA

=100 �m, rR=50 �m, and �=1. �b� Skeleton obtained by applying
the proposed thinning procedure. �c� Representation as a formal
graph. �d� Formal graph after pruning step.
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Different theoretical models for in vitro vascularization
have been proposed �35–37�, focusing on cellular network
reorganization driven by cellular traction �38�. These models
were initially motivated by experiments performed with bo-
vine aortic endothelial cells �BAECs� �35,38�. Both our
model and this class of models are mathematical idealiza-
tions of reality, obtained in different physical/biological lim-
its. Our model is obtained in the limit in which mechanic
effects are negligible and cell motion is mainly directed,
while models of Refs. �35–37� are obtained in the limit in
which mechanic effects are dominant. Both classes of mod-
els reproduce well the vascular patterning and different ex-
perimental observations and therefore neither of them seems
currently complete. We believe, however, that the physical/
biological limits in which the models are obtained may be
realizable under different laboratory conditions. In the assays
described in Ref. �7�, directed, amoeboid cell motion is
clearly observed �39�, autocrine production of VEGF-A is
also directly observed, and stress-induced deformation of the
matrix substrate does not appear in the first hours of obser-
vation, but only toward the end of the vasculogenic process,
which, as is explicitly stated in Ref. �7�, is not described by
our model. Instead, in the assays described in Ref. �38� and
modeled in Ref. �35�, stress-induced deformations of the gel
matrix are observed from the very beginning. We argue that
the difference between the two experiments lies both in the
different cell density and in the use of different endothelial
cell �EC� populations in the two cases: human ECs from
umbilical vein �HUVEC� and adrenal cortex versus bovine
ECs from aorta �BAEC�. In any case, the predominance of
amoeboid directed motion in our models �HUVEC and hu-

man adrenal cortex ECs� and of motion along stress-induced
deformations �mesenchymal migration� in Vernon’s experi-
ments with BAEC is clear from the photographs of the ex-
periments. Ameboid and mesenchymal migration can be con-
sidered as different programs that an individual cell is able to
execute �for a distinction between amoeboid and mesenchy-
mal migration, see, for example, Ref. �40��. We would also
like to stress that network formation would be observed in
our model even without chemotaxis �29,30�. What chemot-
axis adds to the picture is a plausible means of controlling
the network characteristic scale. This mechanism could in
principle be quite sophisticated, as explained in the present
paper. Our group �7� and others �8,16–19� have shown the
presence and the possible function of autocrine VEGF-A in
ECs during vascular network formation both in vitro and in
vivo. We hope that our present work encourages a more com-
plete and direct analysis of the function and the dynamics of
chemoattractive and chemorepulsive molecules during in
vitro vasculogenesis.

Finally, we observe that cell-centered models �41,42� de-
rived from the model of Ref. �6� have recently confirmed the
main results of Refs. �6,7�. These models compared with
continuous models have the advantage that different physi-
cochemical properties can be assigned to each cell and their
effects on the vascular pattern can be easily studied. These
individual cell models should be easily extended to repro-
duce the structure of the generalized model presented in this
paper.
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APPENDIX: IMAGE ANALYSIS

In this appendix, we present an unsupervised analysis sys-
tem enabling fully automated processing of two-level images
obtained through numerical simulations. The overall method-
ology can be broken up into several consecutive steps that
lead to the generation of a graph-based representation of the
blood vessel network, which allows us to evaluate effectively
and accurately network-related parameters.

A skeletonization procedure is first applied on simulation
images �see Fig. 10�a� and 11�a�, which are representatives
of simulations performed with rA=100 and 400 �m, respec-
tively� in order to extract a thinned image conveying essen-
tial structural information, thus simplifying the measurement
task. Skeletonization is defined as the act of identifying those
pixels belonging to an object that are essential for commu-
nicating the object’s shape, preserving its topological prop-
erties �43�. The skeletonization step has been deployed using
a thinning-based approach. The majority of thinning algo-
rithms are based on a repeated stripping away of layers of
pixels until no more layers can be removed. There is a set of
rules defining which pixels may be removed, and frequently
some sort of template-matching scheme is used to implement
these rules. In this work, we selected the well-established
Zhang-Suen implementation �44�, which is capable of pro-
ducing a sufficiently accurate skeleton. Nevertheless, there
exists some problems with thinning algorithms that show up
as artifacts in the skeleton. The first of these is called
necking, in which a narrow point at the intersection of two
lines is stretched into a small line segment. Also, tails can be
created where none exist because of excess thinning where
two lines meet at an acute angle. Finally, hairs or linefuzzes
�the creation of extra line segments joining a real skeleton

segment� frequently appear. To minimize these thinning arti-
facts, we adopted the preprocessing and the postprocessing
stages proposed by Stentiford and Holt �45,46�. Figures
10�b� and 11�b� show the skeleton images resulting from the
application of the aforementioned skeletonization procedure
to the simulation images in Figs. 10�a� and 11�a�, respec-
tively.

A formal graph-based description of the vessel network is
then extracted from the skeletonized image by using a novel
image-based implementation of the breadth-first search algo-
rithm �47�. In this way, an adjacency list containing all the
vertices, together with pixels belonging to the edges leaving
and entering each vertex, is generated. The availability of
such a representation constitutes the basis for accurate net-
work’s parameters measurement. Figures 10�c� and 11�c�
show the graphical representation of the formal graphs ex-
tracted from the skeleton images in Figs. 10�b� and 11�b�,
respectively. Most of the artifacts produced by the thinning
step are removed by introducing preprocessing and postpro-
cessing steps in the skeletonization procedure. Nevertheless,
several line fuzzes that do not actually represent any struc-
tural feature in the considered simulation image are still
present in the skeleton �see Figs. 12�a� and 12�b��. A pruning
operation is therefore performed on the skeleton image in
order to remove these artifacts �Fig. 12�c�� and a refined
image based on information collected during graph extrac-
tion is reconstructed �Fig. 12�d��. Figures 10�d� and 11�d�
show the graphical representation of the formal graphs in
Figs. 10�c� and 11�c� after pruning, respectively. Finally, a
minimum closed-circuits discovery procedure is applied on
the graph in order to identify those edges depicting a closed
structure within the image. The adjacency list maintaining
the ordered list of skeleton pixels constituting each edge of
the undirected graph representing the vessel network to-
gether with the closed-circuits list have then been used to
measure capillary chords length.
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