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PASSIVE EFFECTS OF RARE-EARTH PERMANENT MAGNETS  
ON FLEXIBLE CONDUCTIVE STRUCTURES 

 
Elvio Bonisoli, Alessandro Vigliani 

Dipartimento di Meccanica, Politecnico di Torino 
 
 

ABSTRACT 
 
The paper presents a theoretical and experimental study of vibrating structures where 
paramagnetic or diamagnetic systems interact with rare-earth passive magnets. 
The theoretical model of the system is focused on the damping properties of permanent 
magnets and on their interactions with the dynamic behaviour of an Euler-Bernoulli beam. In 
particular, the magnetic model is based on the analogy of the equivalent currents method in a 
quasi-static open-circuit-type configuration and it is used to determine the influence of eddy 
currents on the dynamic behaviour of conducting material structures. The magnetic effects are 
characterised by a viscous-type damping and by a stiffening dynamic effect of the structure, 
called “phantom effect”. 
The authors present the experimental outcomes for uniform cantilever clamped-free beams of 
different kinds of paramagnetic or diamagnetic conducting materials. It appears that the 
system frequency response can be modified by the presence of a pair of concordant or 
discordant permanent magnets of high residual induction settled at the free end.  
Through the comparison between theoretical and experimental results, the paper demonstrates 
the validity of the model, that is able to describe both the above mentioned effect of dynamic 
stiffening of the structure and the considerable localised damping properties in paramagnetic 
or diamagnetic materials having low electric resistivity. 
 
 

1. INTRODUCTION 
 

The significantly enhanced properties of rare-earth permanent magnets, such as those 
sintered from Samarium-Cobalt or Neodymium-Iron-Boron, have permitted new interesting 
applications in mechanical field [1]. 
Both high coercive forces and hysteresis energy of these materials allow to obtain high non-
linear magneto-elastic forces, such as those experienced in magnetic bearings, suspensions 
and levitation [2], and remarkable viscous-type damping properties, which are used to achieve 
high energy dissipation in magnetic dampers and eddy current brakes [3]. 
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Furthermore rare-earth permanent magnets permit to increase the behaviour in reliability, 
thermal stability and proportionality as viscous damping elements, without mechanical 
friction [1]. They can also conveniently operate in vacuum; in particular, the considerable 
damping properties are here considered in mechanical couplings of dynamic systems in order 
to obtain localised dissipation of energy without mechanical contacts. 

A vibrating uniform cantilever clamped-free beam of paramagnetic (aluminium) or 
diamagnetic (copper or brass) materials with low electric resistivity is considered, immersed 
in a quasi-static, spatially non constant, magnetic field produced by magnets fixed to the 
ground. In those material magneto-elastic forces are quite negligible and, hence, magneto-
elastic buckling is not present [4, 5]. Experimental tests are conducted on this uniform 
cantilever clamped-free beam subject to the action of a pair of rare-earth permanent magnets, 
settled at the free end. 
Experimentally, coupled with the high damping effect, a dynamic stiffening of the vibrating 
structure can also be observed, due to the magnetic interactions and called by the authors 
“phantom effect” [6]. 

An open-circuit-type magnetic model is proposed, built upon the analogy of the equivalent 
current method and developed from Laplace’s inverse square law. It is suitable to describe 
both the observed dissipative and elastic magnetic effects and to consider the significant 
influence of boundary shape [7, 8]. Moreover, the authors propose a model suitable to 
correlate both effects to the eddy currents induced in the vibrating element. Thus, the dynamic 
stiffening effect, due to magneto-elastic repulsive force between permanent magnets and 
induced eddy currents, is modelled to be proportional to velocity. 
In an equivalent single degree of freedom system a complex viscous-type damping coefficient 
is introduced, evaluated by the tri-dimensional magnetic model through energetic 
considerations and Ampere’s force law [9]. 

Various concordant or discordant configurations of magnets are applied to an Euler-
Bernoulli beam in bending vibrations; numerical results are then compared with experimental 
evidence. Finally, experimental transfer functions are compared to the analytical ones and the 
validity of the model is discussed. 
 
 

2. MAGNETIC FIELD OF A PERMANENT MAGNET 
 

A parallelepiped-rectangular shaped permanent magnet, sketched in Fig. 1, is considered. 
Based on the analogy of the equivalent current method, the magnet can be compared to a 
rectangular-coil solenoid; thus, referring to the Laplace’s inverse square law, the infinitesimal 
contribution to the magnetic induction Bd  in a point ),,( zyxP  is [4, 9]: 
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0µ = 4 π 10-7 H/m is the magnetic permeability of the vacuum and i is the current flowing 
through the coil; the vectorial product dd us× , in the side of positive z parallel to y axis, results 
 
 ( )

( ) ( ) ( ) ( )
kius

222222 czvyx

dvx

czvyx

dvcz
d d

−+−+
+

−+−+

−−
=× , (2) 

 



 
 

PASSIVE EFFECTS OF RARE-EARTH PERMANENT MAGNETS 

 2 

where a, b and c are the magnet sizes. 
 

 
Fig. 1.  Permanent magnet geometry 

 
For the electro-mechanical analysis presented in the following sections, the contribution along 
the x-axis of magnetisation needs to be considered. Integrating along the four sides of the 
rectangular coil, the infinitesimal contribute to the magnetic induction xdB  is 
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Let the residual magnetisation M be replaced with the linked currents n i per length unit of 

the equivalent solenoid; then, integrating along the length and assuming the relative 
permeability rµ  to be nearly unity, for the magnet sketched in Fig. 1, the value of the 
magnetic induction xB  can be expressed as: 
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The gradient of the x-component of the magnetic induction is 
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i.e., the value of the variation of xB  over x evaluated in P equals the difference of the 
gradients of the magnetic induction originated by the two equivalent coils corresponding to 
the faces of the magnet. 
It is worth noting that Eq. (6) predicts high variation of the distribution of the magnetic field 
in the surrounding space. Thus, in order to evaluate a characteristic value of the magnetic 
induction gradient, it is more rigorous to estimate a mean value on the surface linked with the 
magnetic flux and parallel to the face of the magnet, rather than to consider the axial value as 
an estimate for the whole surface. As shown in Fig. 2 and 3, both magnetic induction and its 
gradient are non-constant and present different distributions in any plane parallel to the 
terminal face of the magnet. With regard to the magnitude of the gradient, its maximum value 
shows the effect of demagnetisation, because of the presence of the magnetic poles. 
 
 

 
Fig. 2. and 3.  Distributions of the magnetic induction (up) and of the corresponding gradient modulus (down) 

 
 

The magnetic model is then used to evaluate the gradient of the magnetic induction 
generated on the symmetry plane x = 0 by two equal magnets disposed with opposite 
directions of magnetisation (Fig. 4). Because of the symmetry of the configuration, the 
magnetic induction on the considered plane is zero. 
Variations of the air gap Δ between the two magnets significantly modify the distribution of 
the gradient of magnetic induction: therefore the mean value on the whole surface crossed by 
the magnetic flux is estimated. 
Once the air gap is fixed, the constants for a model linearized in the neighbourhood of the 
origin can be obtained from Fig. 5. Through Taylor expansion, the mean gradient of the 
magnetic induction of the flux tube is given by 
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In the case a more realistic model is needed, a quadratic interpolation of the magnetic 

induction gradient can be chosen, by using both the mean and the axis values. 
Considering permanent magnets with similar base sizes (b ≅ c), the approximate distribution 
of the gradient takes the form: 
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Fig. 4.  Distributions of magnetic induction and of its gradient for two repulsive permanent magnets  

with an air gap Δ = 21 mm: magnetic induction on the axis axB ,  (–⋅) and mean value of the flux tube mxB ,  (--),  
magnetic induction gradient on the axis xdBd ax,  (⋅⋅) and mean value of the flux tube xdBd mx,  (–) 

 
 

 
Fig. 5.  Magnetic induction gradient on the axis (⋅⋅) and mean value of the flux tube (–) 

 
 

In the magnetic pattern shown in Fig. 4, through the expression of the magnetic force 
magnitude per unit volume dxdBMF xv /=  [4, 9], the repulsive force between the two 
permanent magnets may be estimated. 
For rare-earth materials the hysteresis loop is nearly square in shape so that the magnetisation 
M is likely to be constant for values of the demagnetising field lower than the coercive force 
intensity [7]. A consequence of the rigidity of the magnetisation is that the superposition of 
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flux produced by rare-earth permanent magnets is linear, and the magnetic material is 
effectively transparent, behaving like vacuum. 
Therefore, for a pair of similar magnets in attraction or repulsion, the magnetisation M of each 
magnet is not influenced by the magnetic field generated by the other one. In addition, for 
rare-earth magnets, the magnetisation M can be reasonably considered unidirectional and of 
constant magnitude throughout the volume of the magnet. 
Thus, assuming a relative permeability rµ  = 1, the repulsive magnetic force applied by the 
first magnet on the second one is given by: 
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where Δ is the air gap between the two magnets and mxB ,  is the mean magnetic induction 
evaluated on the terminal faces of the second magnet. 

For experimental comparison, the authors used permanent magnets on a sintered base of 
Samarium and Cobalt, having dimensions 2a = 11 mm, 2b = 35 mm, 2c = 30 mm and residual 
magnetic induction MBr 0µ= = 1.0 T. To test the validity of the magnetic model, the 
repulsive magnetic forces are experimentally measured by varying a static load on the upper 
magnet, free to move only vertically and, consequently, by varying the air gap Δ. The 
experimental results are compared with the model predictions (Eq. 9) in Fig. 6, which shows a 
very good agreement between the data. 
In order to further validate the magnetic model, the magnetic induction was directly measured 
on different planes parallel to the magnet face by means of a Hall effect transducer. As shown 
in Fig. 7, in general a good agreement between the magnetic model and the experimental 
results is observed, with less than 8% relative errors. In particular, it is worth noting that 
experimental values result from a mean of the 6 mm2 surface covered by the Hall transducer; 
thus, the boundary effects predicted by the model and shown in Fig. 2 and 3 are substantially 
verified, although affected by errors in proximity of high variable magnetic induction 
distributions. 

Therefore, in magnetostatic problems the analogy of the equivalent currents for the 
permanent magnets used in the model represent a valid and useful approach to predict the 
magnetic induction, its gradient and magneto-elastic forces, because it requires only the 
knowledge of the assigned geometry and the residual magnetic induction of the permanent 
magnets. 
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Fig. 6.  Experimental comparison of the magneto-elastic repulsive force:  

(–) analytical magneto-elastic force, (ο) experimental values 
 
 

 
Fig. 7.  Experimental comparison of the magnetic induction:  

analytical magnetic induction in plane x = 6 mm (–), x = 9 mm (–⋅), x = 12 mm (⋅⋅), (ο) experimental values 
 
 

3. MAGNETIC EFFECTS ON A SDOF DYNAMIC SYSTEM 
 

A single degree of freedom (sdof) system of mass m, stiffness k and damping coefficient 
vc  as shown in Fig. 8 is considered. A pair of equal permanent magnets, with opposite 

magnetisation, are located on both sides of the conducting mass, characterised by resistively r 
and having dimensions h, 2b, 2c, with an air gap Δ (Moon-Holmes pattern [10]). 
 
 

 
Fig. 8.  Single degree of freedom dynamic system 

 
 
The influence of the two magnets as damping elements is here analysed. The well-known 
equation of motion of the system is: 
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 ( ) 0=+++ xkxccxm mv  , (10) 
 
where mc  is the coefficient of the magnetic viscous damping produced by the Joule effect due 
to the flow of an induced current [3, 11]. 

The coefficient mc  can be obtained by expressing the dissipated power dP  as 
 

 2
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22 iR
R
fem

xcxFP mmd ====  , (11) 

 
where mF  is the viscous force, i is the induced current, R is the electrical resistance of the 
conducting mass and fem is the electromotive force evaluated through Faraday’s 
electromagnetic induction law 
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In Eq. (12) dxdBx /  represents the gradient of magnetic induction estimated using the previous 
magnetic model linearized in the neighbourhood of the undeformed configuration of the 
system (x = 0 mm). 
Eddy currents arise in opposition to the gradient of magnetic field inside the mass, which can 
be therefore considered as a coil where currents flow to generate a magnetic induction 
opposed to the gradient produced by the two magnets. 

Assuming a constant gradient of the magnetic induction on the whole surface, the 
electromotive force can be considered approximately proportional to the integrating domain, 
i.e. to the square of the distance from the x-axis. Furthermore, under the hypothesis that 
currents run into rectangular concentrical circuits, currents appear to undergo linear variation 
with the distance from the x-axis. 
Consequently, using permanent magnets with similar base size (b ≅ c), the electromotive force 
is: 
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with [ ]by ,0∈ , while the resistance of a ring of infinitesimal section h dy is 
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Therefore, the global current i flowing through the vibrating element is 
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Using Eq. (13) and knowing current i from (15), the global electrical resistance R is 
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Hence, the power dP  dissipated by Joule effect is proportional to the square of the velocity of 
vibrating element, i.e.: 
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finally, the magnetic viscous damping coefficient mc  can be expressed as: 
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The flow of relevant induced currents inside the conductor generates a variable magnetic 

field that produces a magneto-elastic force. This essentially dynamic phenomenon, called 
“phantom effect”, affects the response of the mass. If the mass is excited by a harmonic force 

tFF ωj
0 e=  with 0>ω , the equation of motion of the system (Eq. 10) becomes: 

 
 ( ) t

em Fxkxcccxm ωj
0 ej =+−++  , (19) 

 
where ec  is the coefficient corresponding to the phantom effect, and j is the imaginary 
operator, introduced because the associated elastic force xcF ee −=  is conservative and 
therefore, even though proportional to the velocity, it is in phase with the displacement of the 
mass. 
In fact, the induced eddy currents tend to bring the conducting element back to the 
undeformed configuration, which basically indicates that the system stiffness has increased. 

The term “phantom effect” is chosen to underline its hidden dynamic nature. In fact, the 
effect of eddy currents, corresponding to a conservative force, is not immediately visible 
because it does not affect the system damping properties; nevertheless, its importance cannot 
be neglected, like experiments reveal, especially in systems with high natural frequency. In 
fact, the effect of the magnetic force causes a shift towards the right of the system natural 
frequencies, proportional to the natural frequency, which contrasts the reduction of the natural 
frequencies caused by viscous damping. 
To the author’s knowledge this phenomenon, that has never described and modelled before, is 
particularly interesting: it appears to be analogous to the well known hysteretic structural 
damping, used to describe the dynamic dissipative behaviour of structural and viscoelastic 
materials [12, 13]. In the present work the authors used the same definition to represent a 
conservative term dependent on velocity. 

The coefficient ec  can be derived from the equation relating the elastic force eF  to the 
electromechanical interaction between currents and magnetic field. Analogously to Eq. (9), 
such a relation can be obtained by integrating the magnetic force magnitude per unit volume 
over the volume of the conductor: 
 
 ∫=−=
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x
ee dv
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Due to the symmetry gradient of magnetic induction, not all the circulating eddy currents into 
the element produce a concordant resultant elastic force eF ; thus it is necessary to introduce a 
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volume coefficient [ ]1,25.0∈χ , whose value may be estimated by means of experimental 
outcomes. 
The magneto-elastic force becomes 
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while for the magnetic stiffening coefficient ec  it holds: 
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It results that both mc  and ec  grow with the square of the variation of the mean magnetic 

induction through the element, they depend on the geometry of the element and they are 
inversely proportional to the resistivity r of the material. 
It is worth noting that both effects depend on the same cause, i.e. the induced currents, that do 
not appear in the dynamic equilibrium Eq. (19). Obviously, since their value depends on the 
velocity x , a mathematical solution would hold also if only one of two effects (the damping 
coefficient) was taken into account, but experimental evidence, i.e. the increase of the system 
stiffness, cannot be explained by a viscous term alone. 

Under the hypothesis of a constant distribution of the magnetic induction gradient, the two 
magnetic coefficient are related by the simple linear relation me cc χ= , while if the quadratic 
interpolation of Eq. (8) is used, values of mc  and ec  can be determined more precisely. Under 
this assumption, the electromotive force becomes: 
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with [ ]by ,0∈ . Hence current i, flowing through the vibrating element, can be expressed as 
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while the dissipated power produced by Joule effect is 
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The magnetic viscous damping coefficient mc  can now be evaluated; it yields: 
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Using Eqs. (8) and (24), the magneto-elastic force, proportional to velocity, becomes: 
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hence the magnetic stiffening coefficient ec  is: 
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Of course, if the hypothesis of a constant distribution of the magnetic induction gradient does 
not hold, the linear relation between mc  and ec  is lost. 

As shown in Fig. 9, for the considered permanent magnets and a 3 mm thick aluminium 
mass ( Alr  = 2.65 10-8 Ω m), if an air gap Δ = 21 mm is set and χ = 0.25 is assumed, a constant 
distribution of the magnetic induction gradient through Eqs. (18) and (22) gives mc  = 0.9458 
Ns/m and ec  = 0.2364 Ns/m, whereas from the quadratic interpolation of Eqs. (26) and (28) it 
yields mc  = 1.1659 Ns/m and ec  = 0.2315 Ns/m (cfr. Table 1). 
In the range of air gap 5-30 mm, the maximum relative error between the two distribution 
hypotheses is approximately ± 30% in determining mc  and ± 4% when estimating ec . 
Obviously the minimum relative error is reached when the mean magnetic induction gradient 
is equal to the axial value; experimental evidence proves that a more realistic solution can be 
achieved by means of Eqs. (26) and (28). 
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Fig. 9.  Experimental comparison of the damping coefficients: (–) mc  and (⋅⋅) ec  with constant distribution of 

the magnetic induction gradient, (–⋅) mc  and (--) ec  with quadratic interpolation of the magnetic induction 
gradient distribution, (ο) experimental values 

 
 

Eq. 19 can be written in non-dimensional form as 
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hence, for the dynamic system represented in Fig. 8, the well-known expression of the 
frequency response function results 
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The influence of the complex viscous damping coefficient of Eq. (29) can be evaluated by 
means of a geometrical representation in the Argand-Gauss plane involving rotating vectors: 
the damping force vector is no longer orthogonal to the stiffness force vector, so that the 
projection of the first on the second represents a stiffness increase, proportional to velocity. 
Though it has not been experimentally verified for magnetic configuration, this model allows 
to describe, without loss of generality, also a stiffening decrease proportional to velocity when 
ψ  > 0, corresponding to an inertial increase. Thus it is underlined the flexibility of the model. 

The behaviour of both modulus and phase of the frequency response function (Bode plots) 
depends on the parameters mζ  and ψ , as shown in Fig. 10 and 11 (for ψ  = – 0.75). Note that 
for increasing values of mζ , the resonance peaks (represented with • in Fig. 10) shift towards 
higher values of frequency, showing an opposite behaviour with respect to the case of real 
viscous damping models. Moreover, as mζ  approaches the limit value 
 

 
3 2

2

3 2lim,
2

1

1

1
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ψ

ψ
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−

+

+
=m , (32) 

 
the resonance peak vanishes and the modulus decreases monotonically, as in the case of real 
viscous damping models. As evinced in [6], this qualitative dynamic behaviour is similar in 
the range 022 <<− ψ . 
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Fig. 10. and 11.  Frequency response function modulus (up) and phase (down) with ψ  = – 0.75 

 
 

4. CASE STUDY: EULER-BERNOULLI BEAM WITH PERMANENT MAGNETS 
 
4.1 THEORETICAL MODEL 
 

The analytical model is then applied to an uniform cantilever clamped-free Euler-
Bernoulli beam in bending vibrations (thickness h, sizes l and w relative to x, y and z axes), 
whose dynamic behaviour is modified by the presence of a pair of concordant or discordant 
magnets settled at the free end. 
With regards to the full coupling magneto-mechanical problems [14], in this model the 
magnetic effects are taken into account through a lumped translational complex viscous 
damping element at the free end of the beam. In fact, according to the theoretical model, the 
magnetic effects result strictly localised on the magnetic flux tube which corresponds to the 
projection of the magnets surfaces on the beam. 

The partial differential equation of motion for an uniform Euler-Bernoulli beam with 
distributed viscous damping in bending vibrations is [15] 
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where Aρ  is the mass per length unit, ρ  is the material density, A is the cross-section area, 
vC  is the viscous damping proportional coefficient per length unit, EI is the bending stiffness, 

E is Young’s modulus of elasticity, I is the area moment of inertia, u is the bending 
displacement, y is the spatial variable and f is the external force density. The boundary 
conditions that must be satisfied at y = 0 (clamped end) and y = l (free end) are: 
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where the linear differential operator L in the equilibrium equations depend on the lumped 
complex viscous damping element at y = l. 
In absence of external forces, through the separation of variables ( ) ( ) ( )tqytyu φ=,  the 
boundary-value problem of Eqs. (33) and (34) becomes a differential eigenvalue problem; 
hence the eigenfunctions ( )yφ  can be written as function of eigenvalues s in the form 
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where 21 ,ββ  are proportionality coefficients; thus, the boundary conditions of Eq. (34) 
become 
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hence the shear equilibrium condition depends on eigenvalues s. 
The boundary conditions of Eq. (36) lead to the characteristic equation 
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which can be solved numerically by using a secant method in the Argand-Gauss plane for the 
eigenvalues s. It is worth noting that if the external lumped translational damping element is 
removed, the damping results proportional; otherwise it becomes non-proportional, and 
consequently the eigenfunctions, or modal shapes, become complex: in general their phase is 
not constant with respect to the spatial variable y. In Fig. 12 and 13 the real and imaginary 
part of the first three complex eigenfunctions are shown in case of the experimental 3 mm 
thick aluminium beam, with an air gap Δ  = 21 mm. 
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Fig. 12. and 13.  Real (up) and imaginary (down) part of the first three complex eigenfunctions  

of the clamped-free beam with a lumped complex viscous damping element in y = l 
 
 

If the beam is loaded at section fyy =  with an external harmonic force 
( ) ( ) t

fyyftyf ωδ j
0 e, −= , where δ  is the Dirac distribution, then the transfer function 

(receptance), evaluated in oyy = , can be written as 
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where nM , nC  and nK  are three complex modal parameters defined as 
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corresponding dimensionally to a modal mass, a modal damping and a modal stiffness, 
respectively. 
If the eigenfunctions are normalised with respect to nM , then the transfer function can be 
written in the form [15] 
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where nΓ  and nZ  are complex parameters corresponding dimensionally to a modal natural 
frequency and a modal damping factor, respectively. Note that if the damping is proportional, 
i.e. the external lumped damping element is removed, nn ω=Γ  is the modal natural frequency 
and nn ζ=Ζ  is the modal damping factor. 
 
 
4.2 EXPERIMENTAL RESULTS AND CONCLUSIONS 
 

In order to verify the theoretical model, a uniform cantilever clamped-free beam is 
considered (size l = 300 mm, w = 30 mm, thickness h = 2 or 3 mm), capable of satisfying the 
hypothesis of the Euler-Bernoulli beam (Fig. 14); a modal damping factor nζ  = 0.001 is 
assumed to take into account the low structural damping of the beam. 
Three kinds of materials have been tested: beams of aluminium (paramagnetic), copper and 
brass (diamagnetic), coupled with the two previously considered magnets, placed at the free-
end of the beam in concordant or discordant configuration; the air gap Δ  varies between 15 
and 50 mm. In order not to modify the magneto-static field, the beam constraints and the 
structure holding the magnets are in aluminium. 
Let the origin of the reference frame be set at the clamped end. Then, transfer functions due to 
a force acting at fy  = 45 mm have been experimentally determined in oy  = 215 mm, with 
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random or impulsive excitations in the frequency range 0-255 Hz; the resolution is 0.25 Hz 
and the mean value of 20 measures is considered. 
 
 
 
 
 
 
 
 

 
Fig. 14.  Experimental set up 

 
 

Experimental outcomes provide a complete validation of the theoretical magnetic and 
dynamic models: in fact, they are suitable to describe both the damping and the dynamic 
stiffening effects. 
In order to identify the parameters of the analytical model, an accurate fitting procedure on 
the experimental transfer functions has been performed, by means of a least square 
methodology (Fig. 15). 
 
 

 
Fig. 15.  LMS identification of the magnetic parameters 
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As shown in Fig. 16, significant differences in the damping property are evinced in 
concordant and discordant configurations. 
In fact, by varying the air gap between the two magnets in concordant setup, the damping 
effect results very low. In accordance with experimental results, the magnetic model predicts 
a null distribution in the flux tube of the magnetic induction gradient in the undeformed 
configuration of the beam. 
In discordant setup, the damping effect depends on the chosen air gap and it is very strong in 
materials with low electric resistivity, like aluminium (Fig. 18 and 20) and copper (Fig. 21), 
while it is relatively lower in brass (Fig. 17), characterised by a higher resistivity. The 
theoretical model perfectly predicts this behaviour. 
Moreover, experimental data underline the dynamic effect of stiffening (depending on the 
acting force frequency) responsible for the shift of the resonance frequencies to higher values, 
as shown in Fig. 18, 20 and 21 for aluminium and copper beams, in complete accordance with 
the model predictions. 
It is worth noting that, if the magnetic damping effect can not be tuned, the increase of 
stiffness in dynamic tests is difficult to appreciate. In particular the comparison between the 
beam without magnets and with a small air gap between the magnets demonstrates the 
effective dynamic stiffening. 
 
 
 
 
 

 
 Fig. 16.  Experimental magnetic effects Fig. 17.  Analytical-experimental transfer function  
 on a copper beam  modulus for a brass beam 
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 Fig. 18.  Analytical-experimental transfer  Fig. 19.  Analytical-experimental transfer 
 functions modulus for an aluminum beam functions phase for an aluminum beam 
 
 
 
 
 
 

 
 Fig. 20.  Analytical-experimental transfer function  Fig. 21.  Analytical-experimental transfer function  
 modulus for an aluminum beam modulus for a copper beam 
 
 

The experimental values of mc  and ec  are in good accordance with those predicted 
through the theoretical magnetic model. Moreover, as shown in Table 1, the reliability of the 
complex viscous damping model (both in modulus and in phase) can be successfully validated 
by using a mean value of the magnetic induction gradient between the constant distribution of 
Eqs. (18) and (22) and the parabolic distribution of Eqs. (26) and (28). 
According to the theoretical magnetic model, it is also possible to observe that coefficients mc  
and ec  linearly depend on the thickness of the beam (Fig. 18 and 20). 
Finally, it results that the ratio mc / ec  is approximately constant (cfr. Fig 9) with respect to the 
air gap Δ  under the hypothesis of a constant magnetic induction gradient distribution (Table 
1). 
 
 

Air gap 
Δ  

[mm] 

Analytical model  [Ns/m] Experimental 
[Ns/m] Constant Parabolic 

mc  ec  mc  ec  mc  ec  
27 0.4984 0.1246 0.6639 0.1210 0.68 0.13 
24 0.6810 0.1702 0.8786 0.1659 0.83 0.17 
21 0.9458 0.2364 1.1659 0.2315 1.09 0.24 
18 1.3412 0.3353 1.5548 0.3304 1.48 0.35 
15 1.9551 0.4888 2.0930 0.4855 1.95 0.49 

 
Table 1.  Analytical-experimental parameters for a 3 mm thick aluminum beam 

 
 

For a complete analysis of the experimental evinced stiffening magnetic effects, in 
analogy with the recent research of Zheng et al. [16], a different boundary condition problem 
has been investigated, by neglecting the phantom effect, i.e. ec  = 0, and modifying the 
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momentum boundary condition at the free end in order to take into account a viscous 
rotational damping term. Therefore the boundary condition of Eq. 35 may be replaced with 
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This choice, as shown in Fig. 22, is not able to justify the dynamic stiffening effect 
experimentally observed, whereas the phantom effect model is able to. 

Experimental validation, hence, proves the reliability of the complex viscous damping 
model in describing both high damping and dynamic stiffening effects, due to eddy currents 
flowing into paramagnetic or diamagnetic materials with low electric resistivity. 
 
 

 
Fig. 22.  Comparison in boundary conditions: (–) real viscous damping shear term, (--) real viscous damping 

shear and momentum terms, (–⋅) complex viscous damping shear term, (⋅⋅) experimental transfer function 
 
 
This paper is dedicated to the memory of Prof. Bruno A. D. Piombo, who unexpectedly died 
on November 2002, 26th, remembering his example and his participation to the university 
research. 
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