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Abstract— Routing protocols based on the link-state paradigm
notoriously suffer from the problem of stale information in highly
dynamic traffic scenarios, leading to an overall loss in routing
efficiency. Solutions are not easy to come by, since an increase in
the frequency of link state advertisements is equally dangerous:
route flapping (i.e., periodic route changes that force traffic to
be routed through an alternately underloaded set of paths) is
one of the main drawbacks. In this paper we propose a novel,
yet simple link state mechanism that may deliberately advertise
false link state information with the purpose of stabilizing the
routing, while keeping a high network utilization.
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I. INTRODUCTION

In the early years of packet networks, a hot research topic
was the definition of efficient dynamic routing algorithms,
aiming at an optimal exploitation of links by adapting packet
routes to instantaneous traffic conditions. Dynamic routing
algorithms can in principle offer significant advantages with
respect to static routing, since they automatic react to con-
gestion situations, therefore offering better performance and
quality of service (QoS). However, the finding that dynamic
routing algorithms may lead to route flapping (i.e., a periodic
route changes which forces traffic to be routed through an
underloaded set of paths, causing a sudden overload of new
paths and underload of previous paths) and to the consequent
performance degradations, has limited their diffusion. As a
consequence, the dynamic features implemented today in
routing protocols are mostly limited to automatic reactions to
topology changes due to link failures or infrastructure updates.

In recent years, dynamic routing algorithms have again
attracted the attention of the networking community. Several
aspects have been investigated, such as: i) protocol conver-
gence [1], [2], ii) overhead impact [3], [4], iii) implementation
issues [5], [7], [8], iv) impact of update policies [3], and v)
performance issues [7], [8], [9], [10], [11], [12].

Despite all the effort spent by the research community, no
QoS routing has ever been deployed in the Internet. Several
reasons are behind this choice, like traffic unpredictability,
protocol complexity, and increased overhead. The last item is
particular critical, since each dynamic QoS routing relies on
the network status information which must be shared among
nodes. Therefore this increases both network load (in term of
signalling informations) and node power (in term of computa-
tional processing). Indeed, compared to static routing protocol,
which relies on static information, dynamic algorithms rely on
the knowledge of the current status of the network. The amount
of additional overhead depends clearly on how fast the network

QoS parameters adopted by the QoS routing algorithm change,
which in turns depends on the traffic fluctuations and user
behavior. In this paper we therefore investigate how update
policies affect the QoS routing algorithm performance, quan-
tifying the intuitive results that if route selection performed by
nodes is based on stale information, the QoS routing algorithm
may provide worse performance compared to traditional static
routing. To overcome this limitation, we propose a novel yet
very simple mechanism that is shown to improve performance
of QoS routing algorithms when the state information is slowly
updated.

Simulation results show that our proposal extends the benefit
of QoS routing algorithms even in case of rare link state
update, while effectively limits the route flapping.

II. PROBLEM OUTLINE

We extended ANCLES [13], a connection-level simulator
that was previously developed at the Politecnico di Torino.
Originally conceived for ATM networks, ANCLES gradually
evolved to a generic connection-level simulator, where traffic
sources request connections and the network performs all the
actions required to manage them. The reader interested in the
simulation tool is referred to [15].

A. Modeling data connections

The traffic the simulator models is of elastic nature [14]
(such as that generated by data connections). Specifically:

• connections are characterized by a given amount of data
to transfer;

• the amount of resources the connection can exploit at any
given time is the minimum between a target bit rate for
the connection, e.g., the access line speed, and what the
connection would be assigned under ideal max-min fair
resource sharing;

• the connection holding time depends on the resources it
receives throughout its “life” which determine the amount
of data already transmitted at any given time;

• if the resources usable by a connection fall below a given
threshold, the connection may be shut down prematurely,
mimicking the behavior of impatient users.

Each connection attempts to perform a bulk data transfer
whose size is randomly chosen from an exponential distribu-
tion with average 2.5 MBytes (20 Mbit). Traffic is uniformly
generated by all sources and evenly distributed among all
possible destinations. Results are collected over different load
situations.



The performance metrics we consider are:
• the average throughput of connections that complete the

data transfer;
• the fraction of connections that are shut down due to lack

of resources (starvation effect);
To model the starvation effect [14], a starvation threshold

Bt is set to 50 kb/s and used to identify starved connections:
if the current per-connection bit rate estimate on a bottleneck
link drops below Bt, then a connection on that bottleneck
is randomly picked and shut down. This is repeated until the
sending rate of starved connections raises above the threshold.
This allows us to define the starvation probability Ps as the
ratio between connections that are prematurely aborted and
the total number of connections that entered the network.

B. Routing Algorithms

As regards routing algorithms implemented in the simulator,
beside the static, hop-count based algorithms, that are unable
to cope with the variation of available bandwidth in the
network, ANCLES implements several dynamic, traffic-driven
routing algorithms, like those proposed in [9], [10], [16].
Considering the available bandwidth in each link in the path
lookup procedure, these algorithms can offer a better choice
for the routing of connections with QoS requirements. Here,
we briefly describe the two algorithms used in the simple
performance evaluation carried out in this work:

• Shortest-Path (SP): for each source-destination pair, the
algorithm determines the path with the minimum hop
count and routes flows over that path. If two or more
“shortest” paths exist, the algorithm would choose one at
random and, once and for all, would route all flows over
it. This is the routing algorithm commonly used in the
current Internet.

• Minimum-Distance (MD): for each source-destination
pair, the path P is chosen which minimizes the quantity:
D(P ) =

∑
l∈P

1

bl

where bl is the max-min fair band-
width that is available to a new connection over link l
belonging to path P [10].

The choice of the MD algorithm was made because it
was found to provide good performance among traffic-driven
routing algorithms [16]. Indeed, the focus of the paper is
on the effect of the information distribution on QoS routing
algorithm performance, and not on the QoS routing algorithms
themselves.

For consistent routing to be preserved, we assume that
the forwarding procedure is integrated so as to signal the
routing decision taken at upstream nodes. This solution can
be implemented, for example, using the route-pinning prop-
erty of MPLS. Thus, connections routed on path stick to it
even though future connections between the same source-
destination pair are routed over a different set of links.

C. Modeling the propagation of LSAs

In our event-based simulation, each node generates an LSA
if one of the following two event occurs:

• triggered update: there is a sizable change in the state of
one or more links;

• periodic update: a timeout expires
The first event is triggered whenever a node detects that the

relative value of the difference between the stored value of
utilization of a link and its actual value is larger than a quantity,
referred to as lsa threshold. To limit the amount of triggered
update per unit of time, each node periodically checks the state
of its links to verify if the lsa threshold has been exceeded
(and, thus, imposing a minimum interval between two LSA
generations).

The second event is a user-defined timeout, referred to as
periodicUpdate.

In our simulations, the lsa threshold was set to 90%, while
we experimented with different periodicUpdate values.

Once an LSA is generated, it is flooded across the network.
First, the originating node starts queueing an LSA message
in all its link queues, therefore reaching all its neighboring
nodes. Then, upon the reception of each LSA message, each
node double-checks if that LSA has been previously received.
If this is true, no further action is required. Otherwise, the node
queues a copy of the LSA message in all queues corresponding
to a link directed to neighboring nodes, except for the link it
has received the LSA message from.

The procedure provides for the LSA to reach all nodes,
and for it (or the copies that were generated) to be discarded
when all nodes have been reached. On top of this, a maximum
lifetime is assigned to each LSA, so as to avoid that it is
indefinitely delayed at one or more node queues, thus carrying
stale information.

The propagation time of an LSA between two nodes is
modeled by the following expression:

proptime =
link length

2/3 · C
+

Sp · Q

link speed
+ ct (1)

where: C is the speed of light, Sp is the average packet
size in bits, Q is the number of packets queueing ahead of
the considered LSA in the queue, ct accounts for the time
spent in handling the packet headers (all other quantities are
self-explaining).

It can be noted that the propagation time includes a “queue-
ing delay” in the second term. Indeed, we have chosen to
model each node as a simple M/M/1/k queue, to account
for the backlog of packets in the case of heavy-loaded links.
Even if this is known not to be a good model for today’s packet
networks, the simplicity of the model, and the availability of
a closed analytical solution to the performance indexes yields
a limited, efficient complexity of the simulation.

Further, we have to account for the probability that an LSA
is lost: to this end, we have included a loss probability in the
simulator, associated to each node crossed by an LSA, and
computed as:

ρ =
(1 − ρ)ρk+1

1 − ρk+2
(2)



where ρ is the link utilization and k is the buffer (queue)
size. The previous expression is derived from standard queue-
ing theory, and is the loss probability of an M/M/1/k queue.

III. PERFORMANCE EVALUATION

To compare the performances of the system, we consid-
ered a network scenario with a randomly generated 24-node
topology with an average connectivity degree of 3. We also
experimented with other random topologies, deriving similar
results. The link lengths are also randomly generated, with
a uniform distribution between 100 and 700 km so as to
mimic a possible long distance backbone. Users generate
connections that are upper-bounded at the source by a rate
of 1 Mb/s. Therefore, given an average data size of 20
Mbit in an uncongested network, the mean duration of each
connection is 20 s: this time can be used as a reference for
other time intervals used in the system. Note that being the
simulator time reference external parameter, all values selected
in this scenario may be scaled without affecting the simulation
results.

In this scenario we measured the average per-connection
performances of the Shortest Path (labeled ‘SP’ in the fig-
ures) and Minimum Distance (labeled ‘MD’) algorithms for
different values of offered load and LSA transmission timers.
Offered load is normalized against the total access network
capacity.

Besides the periodicUpdate timer, another time interval has
been considered in our experiments, i.e. the periodicPolling
timer, representing the time interval with which a node checks
the state of its links to verify if the lsa threshold has been
exceeded (and, thus, the minimum interval between two LSA
generations).

The values of the timers are shown near the MD with the
notation update/polling time, so ‘MD - 10/1.5 s’ means an
MD implementation with a periodicUpdate every 10 s and a
periodicPolling interval of 1.5 s. We also considered a simpler
implementation of the MD algorithm (labeled ’MD - ideal’),
that assumes that each node has a precise indication of the
link load at each time: thus, all nodes instantaneously have the
same, correct snapshot of the state of the network. The Shortest
Path algorithm, depending only on topological metrics, is not
affected by the LSA generation frequency, so only one curve
is necessary.

Figure 1 presents the average per-connection throughput,
as a function of the normalized offered load, while the same
results, normalized with respect to the SP case, are shown in
Figure 2. These results provide a way of gauging the gains
of the different strategies used for the MD algorithm over the
“standard” Shortest Path. As expected, the ideal case performs
best; however, by allowing as many as 40 seconds and 15
seconds of Periodic Update time and Periodic polling time,
respectively, the performance remains quite close to the ideal
case, and thus fully acceptable.

Normalizing the time reference with the average connection
duration, we intuitively observe that if the LSA generation fre-
quency is comparable with the traffic variation frequency, the
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Fig. 1. Average per-connection throughput

performance of QoS routing are excellent. However, as LSA
become rare with respect to the traffic variations, performance
degrades quickly.

Figure 3 depicts the average per-connection starvation prob-
ability. In this case, the update policy does not affect the
performance of the MD algorithm: all its versions, regardless
of the update times provide almost the same performance, and
all present a starvation effect only at loads much higher than
those for which the SP algorithm is starved.

Even if these results are quite positive in the comparison
between the MD and the SP algorithms, the MD algorithm
performance depends strongly on the values of the update
timers: large timer values make the nodes work with stale
information, so the routing decisions taken are not optimal
and can reduce the per-connection user throughput below the
equivalent SP levels.

Figure 4 shows an example of the number of active connec-
tions over a sample link for a 1000 s interval, in a scenario
where the load was fixed at 3.7 and the timers set at 200 s
(update) and 65 s (polling). The time evolution of the number
of connections shows slow variations with high variance (with
respect to the reported average number of connection over the
same link). This shows that the stale bandwidth information
due to distant LSAs tends to trigger period of link overloading,
followed by periods of under-utilization, that will trigger
future overloads when the corresponding LSAs are received.
Apparently, LSAs advertising almost empty links tend to
induce route flapping if the information they carry is too old.

IV. THE DIE PROTOCOL: DECEPTIVE INFORMATION
EXCHANGE

From the results presented in the previous section, we can
foresee at least two solutions to the performance decrease
experience by the QoS algorithm in presence of inaccurate
information:

1) increase the frequency of updates when a link is con-
gested;
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Fig. 3. Average per-connection starvation probability

2) disseminate “doctored” LSA information with the pur-
pose of decreasing congestion on overloaded links.

The first solution, though viable, would entail periodical
LSA floods that increase the network and node overhead and
might even worsen the problem. Moreover, being it related to
traffic variations, it may be difficult to set the advertisement
frequency. The second solution, which we are pursuing in
this paper, is based on a simple line of reasoning. If a link
is congested, it is sensible to inform all nodes, so that new
connections are routed away from that link. If a link is
uncongested, advertising its state might trigger a gold rush
to that link by a great number of incoming connections;
furthermore, if the link update period is larger than the arrival
rate of new connections, the link might be easily overloaded
in a short time.

A. Protocol description

We propose a modification to the LSA distribution mech-
anism, called DIE (Deceptive Information Exchange). In the

 0

 5

 10

 15

 20

 25

 30

 35

 90000  90200  90400  90600  90800  91000

Time [s]

Call opening/closing
LSA generation

Average

Fig. 4. Sample of number of connections on a generic link over time, using
standard advertisement
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Fig. 5. Sample of number of connections on a generic link over time, using
the DIE protocol

following, we describe the implementation related to the MD
algorithm. It can be generalized to similar traffic-driven routing
algorithms by replacing the proper link-state metric.

According to DIE, the link state information of a generic
link l that a router must advertise is altered by a threshold
mechanism. In the case of the MD algorithm in our scenario,
being bl = link speed/cl, where link speed is fixed for
all links and cl is the number of connections on link l, the
link-state metric was simply chosen as cl. If the number of
connections crossing a link is higher than a threshold, Tl, the
LSA carries correct information on the link load; if it is lower
or equal to the threshold, the LSA carries a deceptive link
load, higher than the actual one.

The threshold Tl is computed by each node as running
average of cl for every link l, following the expression:

Tl[n] = α · Tl[n − 1] + (1 − α) · cl[n]

where n is an index that associates the threshold calculation
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to the issuing time of the n-th LSA by a router, while cl[n]
indicates the actual number of connections on link l at the
same time. α is chosen between 0 and 1.

We can now redefine our algorithm by stating that, if cl[n] >
Tl[n] when the n-th LSA for link l must be transmitted, such
LSA will carry the correct load information L; otherwise, a
deceptive load information L′ will be carried, determined as

L′ = (1 − β)cl[n] + βTl[n]

depending on the value of β ∈ [0, 1], L′ advertises the actual
cl, or its average value Tl, as determined from recent samples.

B. Performance evaluation of the DIE protocol

Figure 5 shows the number of active connections for the
same link and in the same scenario of Figure 4 with the
difference that the DIE algorithm has been implemented, with
α = 0.99 and β = 0.9. Comparing Figures 4 and 5, it can be
noticed that the average number of connections is lower when
the DIE algorithm is used, indicating a larger bandwidth share,
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and its variability was reduced. Notice also how the number
of connections advertised at the LSA generation time (black
dots) is now different from the current number of connections
when the LSA is generated in an underutilization phase.

In Figure 6 we compare the performance of the DIE
algorithm with the unmodified LSA distribution plotting the
relative gain η = thrDIE−throld

throld

, being throld the throughput
in the unmodified version of the algorithm. The plots show an
increase in the gain at the rarefaction of the LSAs, especially
for medium/high load. At higher load, as usual, the network
status is such that no algorithm can perform much better than
SP [11]. The curves in the plot are for very high timer values,
especially if compared with the average connection duration
20 s, showing that the algorithm is performing well even in
high (and unrealistic) undersampling scenarios.

The gain introduced by the DIE algorithm can be also
seen in Figure 7, where the average per-connection throughput
is compared among the algorithms in a scenario where the
network load is 3.7, α = 0.99 and β = 0.9 in the DIE
algorithm, and periodicUpdate and periodicPolling are the
same. The plot shows the throughput vs. the timer durations
and demonstrates how the DIE algorithm yields consistently



better performances than its unmodified version, providing a
throughput higher than SP up to timer values 45 times larger
than the average connections duration time (20 s).

The final step in our analysis of the DIE algorithm perfor-
mances is to consider its sensitivity to the α and β parameters.
In a scenario with 3.7 network load, update 200 s, polling
25 s, we studied the effects of varying α and β separately.
The upper plot in Figure 8 shows that, for β = 0.9 there is
no significant effect in changing α in the [0.9, 0.99] range,
indicating that the average filtering factor is not so important
in the DIE performances. A similar behavior was observed
also for other β values.

Since α seems to be not so relevant, we chose to set it to
0.99 and then to study the effect of the β variation in the
[0.1, 0.95] range. As shown in the lower plot of Figure 8,
the effect of beta is much more evident, since the lower the β
value, the lower the deception effect, pushing the performance
below the unmodified algorithm. In any case, the performance
gain is positive for a wide range of β values, reducing the
necessity of a perfectly matched β value.
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V. CONCLUSIONS

The paper has presented a novel solution to address the
problem of routing with stale link-state information, without
increasing the frequency of link state advertisement. The basic
idea behind the proposed protocol is that nodes are allowed to
deliberately deceive other nodes in the network by advertising
load information that may be higher the the actual values.
Simulation results show that the performance of the proposed
algorithm are very promising even in the case of far-and-
between link state updates.
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