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Automatic Compensation System for
Impedance Measurement

Alessio Carullo, Marco Parvis, Senior Member, IEEE, Alberto Vallan, and Luca Callegaro

Abstract—This paper deals with the realization of the four-pair
terminal definition of impedance standards. A simple, though re-
liable, system is described that allows an automatic compensation
of the voltage at the low potential port of impedance standards to
be obtained. Such a system employs a commercial data acquisi-
tion board and a signal generator with adjustable-phase capability,
which acts as the phase reference for the generator that feeds the
impedance standard. A standard PC controls the whole system and
implements the demodulation and the control algorithms. Prelim-
inary tests have been performed in the frequency range of 50 Hz
to 20 kHz with different kinds of impedance standards (resistive,
inductive and capacitive), obtaining a residual voltage at the low
potential port of less than 5 V.

Index Terms—Compensation, impedance measurement, intelli-
gent systems, standard.

I. INTRODUCTION

I MPEDANCE measurement techniques which are employed
in metrology laboratories typically rely on manually-ad-

justed or auto-balancing bridge networks [1]–[4], vector-volt-
meter systems, or resonant circuits [5]. Other techniques have
been recently proposed that are based on the measurement of
rms voltages [6], [7] or which employ digital signal processors
and digital instruments [8]–[10].

Whatever the implemented technique is, suitably shielded
standards and current-equalized measuring circuits have to be
employed in order to minimize the effects of external magnetic
and electrical fields [11], thus ensuring a good repeatability
of the obtained results. A universally accepted way to realize
reliable impedance standards that do not interact with external
electrical systems, at least in the frequency range from dc to a few
megahertz, consists of defining the impedances as four-terminal
pair networks [12]. Fig. 1 shows the realization of a four-terminal
pair impedance, which is an electrical network with separate
current and potential coaxial connectors on both the high and low
sides. The figure also highlights the defining conditions, such as

• thecurrent that leavesthehighpotentialport hastobe
zero;

• thevoltage betweentheinnerandouterconductorsatthe
lowpotentialport hastobezero,aswellasthecurrentthat
leaves the same port;

• the current that leaves the center conductor of the low cur-
rent port has to be the same of the current that returns
through the outer conductor.
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Fig. 1. Realization of an impedance standard as a four-terminal pair network.

Fig. 2. Equivalent circuit at the low current portC .

In the defining conditions and hereafter, bold letters express
complex quantities. If these conditions are met, the four-ter-
minal pair impedance is defined as

(1)

where is the voltage measured at the port and is
the current that flows through the impedanceand the shield.
One should note that the impedance is the sum of the inner
impedance and of the shield impedance. When all the required
conditions are met, the external network connected to the port

does not affect the impedance .
When a four-terminal pair impedance is measured, it is im-

portant to give confidence about the compliance to the required
defining conditions. Among these, the condition is
the most critical to be met, as depends on the impedance

of the circuit connected to the port . Fig. 2 shows an
equivalent circuit, where , which also takes cable and con-
tact impedances into account, can be considered in series with
the impedance . In this case, the effect of on the measured
amplitude impedance is, in the worst case, . This
effect becomes significant if has an amplitude that is of the
same order of the amplitude uncertainty of, hence also con-
tact and cable impedances could affect an impedance standard
whose uncertainty is of some tens of milliohm. In order to re-
duce such an effect, a suitable technique has to be implemented
to minimize the voltage . In practice, active techniques are
employed which are based on the injection of a compensation
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Fig. 3. Principle scheme of the proposed compensation system.

signal into the circuit. Such a compensation signal can be gen-
erated by means of inductive voltage dividers or, more conve-
niently, by analogue or digital generators which are synchro-
nized to the generator that feeds the measuring circuit [13], [14].

When a partial compensation of is performed, the
effect of on decreases of the same order of the ratio

, where is the residual value of due
to the non ideal compensation.

II. COMPENSATIONTECHNIQUE

The principle scheme of the proposed compensation system
is shown in Fig. 3, where the effect of the voltage due to
the spurious impedance on the voltage is highlighted.
A programmable double-output generator provides two isofre-
quential signals: the exciting voltage , which feeds the un-
known impedance, and the compensation voltage, which
is injected into the measuring circuit. A sampling system ac-
quires the voltage and the voltage to be nullified. The
acquired samples are then employed to implement a control al-
gorithm, which is designed for computing amplitude and phase
of the voltage that minimize the voltage .

A. Compensation System Prototype

A prototype of the compensation system has been arranged
according to the basic scheme shown in Fig. 3. Such a com-
pensation system, whose architecture is shown in Fig. 4,
employs a commercial digital generator (Agilent Technologies
mod. 33 120A) to provide the compensation voltage . A
multifunction calibrator (MFC: Fluke mod. 5720A) feeds
the unknown impedance with a known current. The MFC is
locked to the compensation generator and both the generator
and the calibrator communicates with a PC through a standard
IEEE-488 interface.

The compensation signal is injected into the measuring
circuit by means of a feedthrough transformer, whose voltage
ratio has a nominal amplitude of 0.01 and a nominal phase
of 0 .

The voltage is amplified by means of a variable gain am-
plifier, which is made up of an instrumentation amplifier con-
nected in cascade to a programmable gain amplifier (PGA). The
instrumentation amplifier has a fixed gain, which is 100, and its
expected referred to input (RTI) noise is of about 1V . The
gain of the PGA can be set to the values 1, 10, 100, or 1000.

The output voltage of the variable gain amplifier and the
compensation voltage are acquired through a DAQ board
with a resolution of 12 bit and a sampling frequency of 50 kHz
if two signals are acquired. A program that runs on the PC where
the DAQ board is installed manages the acquisition process, sets
the digital generator, the multifunction calibrator, and the PGA
gain by means of the digital outputs of the DAQ board.

The acquired samples are processed in order to demodulate
with respect to , i.e., to provide the in-phase

and in-quadrature components of with respect
to , where the symbol represents the variable discrete
time. Amplitude and phase of the complex quantity are then
obtained by means of and . The phase of , which is
a setting parameter of the digital generator, is eventually added
to the phase of in order to express both and with
respect to the same fixed reference system. One should note
that an alternative solution could be the demodulation of
with respect to , but this technique would require the phase
between and to be known.

A simple integrative control is then implemented in order to
obtain the setting of the programmable generator that allows the
minimization of to be obtained. Such a control is based on

(2)

where is the complex gain of the device that amplifies the
voltage and is the iteration step.

Amplitude and phase of the quantity are estimated
during a preliminary phase, which requires the exciting current
to be turned off and the feedthrough transformer to be excited by
the compensation generator. In these conditions, the amplifier
output is acquired, so that the characterization of the chain
transformer-amplifier is obtained. As this characterization re-
quires a very short time, it can be performed at every measuring
frequency.

Fig. 5 shows the user interface of the acquisition and com-
pensation program, which has been developed in Visual Basic™
language. The preliminary-characterization phase is performed
by means of the FdT estimation section of the user interface,
which contains a text box, where the amplitude of the voltage

is typed, and a button, which turns the MFC off, sets the
compensation generator and starts the acquisition ofand

.
Once such a preliminary characterization has been per-

formed, the user sets current and frequency of the multifunction
calibrator by means of the test parameters section of the
program interface and starts the acquisition process. The
demodulation and control algorithm computes amplitude
and phase used to set , which are shown in the control
parameters section. The residual section of the user interface
gives the residual amplitude of the voltage (in V ) and
of its fundamental component (inV ), which are referred
to the input (RTI) of the variable gain amplifier. The graphical
area at the bottom of the user interface shows the waveforms
of the compensation signal (dark trace) and of the residual
voltage .
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Fig. 4. Block scheme of the experimental setup.

Fig. 5. User interface of the acquisition and compensation program.

III. EXPERIMENTAL RESULTS

The effectiveness of the proposed compensation system has
been tested by measuring the amplitude of different four-ter-
minal pair impedances, whose values are known with an un-
certainty that is less than the expected uncertainty. The system
of Fig. 4 has been used, which allows a simple volt-ammeter
method to be implemented, while a spectrum analyzer (SA)
measures the residual value of in order to validate the values
measured by the acquisition program. A picture of the arranged
bench is shown in Fig. 6.

The DAQ board capabilities allow 16 000 samples of each
voltage signal and to be acquired at a maximum sam-
pling frequency of 50 kHz. The test frequency spans from few
hertz to a maximum value of 20 kHz, where almost 6000 signal
periods are acquired. As the test frequency decreases, the sam-

Fig. 6. Experimental bench.

pling frequency is reduced in order to acquire at least 10 periods
of the signals and .

As an example, the results obtained by feeding an ohmic-in-
ductive impedance with a current of 10 mA at 1 kHz

are discussed. When the automatic compensation
system is disabled, the amplitude of the voltageis of about 3
mV . This means that the spurious impedancehas an am-
plitude of about 0.3 and its effect on the unknown impedance
is, in the worst case, of 0.6%. By enabling the compensation
system, the amplitude of decreases to a value of less than
5 V in a time interval of less than 5 s, thus reducing the
effect of on down to 10 ppm (part per million) in the
worst case.

The measurements of the voltage carried out by means of
the spectrum analyzer are in good agreement with the ones ob-
tained by the acquisition program. Furthermore, the spectrum
analyzer shows that the spectrum of the residual signalis
mainly distributed at high frequencies, as it also appears in the
graphical area of the user interface shown in Fig. 5. Hence the
residual signal is mainly due to the wide-band electronic noise
of the system: in the previous example, the residual fundamental
component of has an amplitude of about 300 nVac-
cording to the spectrum-analyzer. If a narrow-band measuring
technique is employed, as that described in [10], only the funda-
mental component of affects the measurement uncertainty
of a four-terminal pair impedance, hence the effect of on

is made negligible.
The results that refer to the amplitude of three standard im-

pedances measured at 1 kHz by means of the simple volt-am-
meter method are shown in Fig. 7. The estimated uncertainty,
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Fig. 7. Measured amplitude of three standard impedances.

which is mainly due to the uncertainty contributions of the MFC
and of the digital voltmeter, shows the compatibility between
reference and measured values. A reduction of the measurement
uncertainty will be obtained by implementing a narrow-band
measuring technique based on a comparison method [10], which
allows amplitude and phase of the unknown impedance to be es-
timated.

IV. CONCLUSION

The system the authors have described in this paper imple-
ments a control strategy that reduces the voltageat the low
potential port of a four-terminal pair impedance by injecting into
the circuit a compensation signal. A value of close to zero is
required in order to minimize the effect of spurious impedances,
for example due to cables, contacts or external networks, on the
measurement of impedance standards defined as four-terminal
pair networks.

The prototype the authors have arranged does not require the
use of dedicated devices, as its basic elements are a general-pur-
pose data acquisition board and a commercial digital generator.
The system also embeds a variable gain amplifier, which has
been arranged with standard components, and a feedthrough
transformer that allows the compensation signal to be injected
into the measuring circuit. A program that runs on the PC where
the DAQ board is installed manages the acquisition process and
implements the control algorithm.

Experimental tests have shown the effectiveness of the pro-
posed compensation system and have highlighted its limits, i.e.,
the maximum testing frequency, which is of 20 kHz, and the
minimum residual value of the voltage . The frequency lim-
itation is strictly related to the maximum sampling frequency of
the employed DAQ board, hence the use of another board with
enhanced sampling capabilities would allow one to easily ex-
tend such a limitation. The residual value of is instead due
to the wide-band noise of the voltage amplifier. The authors are
now arranging a low-noise prototype of variable gain amplifier
in order to further reduce such a residual voltage.
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