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Abstract

We propose and test a tool to evaluate and compare EMG signal decomposition algorithms. A model for the generation of
synthetic intra-muscular EMG signals, previously described, has been used to obtain reference decomposition results. In order to
evaluate the performance of decomposition algorithms it is necessary to define indexes which give a compact but complete indication
about the quality of the decomposition. The indexes given by traditional detection theory are in this paper adapted to the multi-
class EMG problem. Moreover, indexes related to model parameters are also introduced. It is possible in this way to compare the
sensitivity of an algorithm to different signal features. An example application of the technique is presented by comparing the
results obtained from a set of synthetic signals decomposed by expert operators having no information about the signal features
using two different algorithms. The technique seems to be appropriate for evaluating decomposition performance and constitutes a
useful tool for EMG signal researchers to identify the algorithm most appropriate for their needs.  2001 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

The study of the intra-muscular EMG signal is of great
interest both for clinicians and for basic researchers
because it allows the identification of single motor unit
action potentials (MUAPs) with the possibility of
investigating morphological abnormalities of the EMG
signal and recruitment strategies of the central nervous
system. The issue of decomposing an EMG signal into
the constituent MUAPs is fascinating because it allows
extraction of order from an apparently random signal,
opens up new areas of research and triggers new ques-
tions. The ability to monitor motor unit (MU) recruit-
ment, derecruitment and firing patterns leads in fact to
the understanding of motor control strategies, myoe-
lectric manifestations of fatigue, neuromuscular dis-
orders and a variety of open issues in ergonomics, geri-
atrics, sport and rehabilitation medicine [2,6,9,13,17,19].

Since the pioneering work done in the early 80s in
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this field by the group led by De Luca [14,15], many
techniques have been developed to implement EMG sig-
nal decomposition with various degrees of automation
[9–12,16,20,22]. Diagnostic applications and the com-
mercial success of these techniques have been lagging
behind despite the enthusiasm of researchers and the
number, quality and significance of scientific publi-
cations.

Decomposition algorithms are being developed and
published. A very important aspect in this field is the
evaluation of performance, a point not deeply investi-
gated in the past. In order to obtain a reference decompo-
sition result, different methods have been proposed [5]:

1. synthetic signals can be generated as a reference
(model approach);

2. real signals decomposed manually can be considered
as the reference;

3. recordings (by multiple electrode surfaces) from the
same MU at different locations can be decomposed
and the results compared; in this case the probability
of incorrectly decomposing the different signals and
yet having the same firing patterns is low, so when
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the decomposition results agree for all the channels
the operation is considered correct [5].

The first approach has important advantages with
respect to the others [8]. It provides a priori knowledge
of the exact positions and features of all the MUAPs in
the signal. Moreover, a complete model is the only way
to test the algorithms with signals having selected
characteristics in order to test the sensitivity to different
parameters. In any case it is necessary to introduce
indexes of performance computed from the comparison
between the result obtained with the algorithm under test
and the reference.

In the following we will describe a tool to evaluate
decomposition performance by having a reference
decomposition result obtained by simulated signals gen-
erated by a recently developed EMG model [8]. The
paper is organized as follows. In Section 2 the model
proposed in [8] is briefly described and a library of 18
signals is proposed to test algorithms. In Section 3 the
indexes of performance are introduced, and in Section
4, a comparison of the performance of two algorithms
is reported. In Section 5, conclusions are drawn.

2. Overview of the generation model and library of
test signals

A mathematical model, based on Associated Hermite
(AH) series expansions of real MUAPs, to generate syn-
thetic intra-muscular EMG signals has been developed
[8]. The model receives as input about 20 parameters.
They assume different importance for the various
decomposition steps and permit to characterize the fol-
lowing EMG signal features:

� the degree of shape similarity between a MUAP
detected from different detection surfaces (multi-
channel detection);

� the degree of shape similarity between MUAPs of dif-
ferent MUs;

� the shape changes of MUAPs belonging to the same
MU during time;

� the firing statistics;
� the recruitment and de-recruitment of individual

MUs;
� the degree of superposition of the MUAPs in the sig-

nal;
� the amount of additive noise.

In particular, the model parameters are grouped in
seven classes:

Group 1. Some algorithms have been designed to
work with only one channel, others with more than one.
A proper comparison must take into account the amount

of information added in the case of multiple channel rec-
ordings. This is obtained by two parameters:

1. Nc is the number of generated channels.
2. vc indicates the difference between the MUAP shapes

in the different channels; the MUAP shapes of the
other channels are created from the MUAP shapes of
the first channel and vc indicates how much the
MUAPs in the first channel have been modified to
create the others.

Group 2. The second group is related to the difference
between energies and shapes of MUAPs belonging to
different MUs (classes) and plays a role in the segmen-
tation and classification phases:

1. M is the number of generated classes, that is the num-
ber of MUs.

2. �Emax is the maximum normalized energy difference
between the representative MUAPs of each class; the
representative MUAP of each class is defined as the
one generated by the set of AH coefficients obtained
by expanding a real MUAP, taken from a library (the
MUAPs in the train are created by varying the AH
coefficients of the representative MUAP).

3. r defines the difference in shape between the rep-
resentative MUAPs of each class; it is defined as the
ratio between the minimum Euclidean distance
between the representative MUAPs and the square
root of their mean energy.

Group 3. The third group is related to what we have
defined as intra-class variability, i.e. the phenomena
which make each MUAP in a motor unit action potential
train (MUAPT) different from the others in the same
train. The parameters in this group describe how much
the waveforms belonging to the same class can vary
along the MUAPT and tests the flexibility of the algor-
ithm in the classification step and its capability of track-
ing progressive changes of the waveforms.

1. vw1 is related to random shape variability which is a
global variation of the shape of the MUAP in a ran-
dom way during time.

2. vw2 is related to shape variability with a trend in time;
trend shape variability is the variability which occurs
at constant steps during time (the MUAP changes
shape gradually and is similar to the next and the pre-
vious in the same MUAPT but quite different from
one distant in time).

3. vs1 and vs2 assume the same meaning as vw1 and vw2

for the time scale (width of the waveform) variability.

Group 4. The fourth group is related to the regularity
of the firing patterns.
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1. N%d is the percentage of firings with respect to the
total which are double discharges. Double discharge
firings are firings 2–15 ms far from the previous firing
belonging to the same MU [1].

2. Ntd is the number of trains for which double discharge
firings occur.

3. N%b is the percentage of firings with respect to the
total which are inserted in the signal in a random way
(that is not according to any firing statistic).

4. {fi}M
i=1 are the mean firing frequencies for the M MUs.

5. J indicates the coefficient of variation (standard
deviation/mean) of the interpulse interval (the distri-
bution is gaussian).

Group 5. The fifth group describes the degree of
superposition and tests the ability of the algorithm to
correctly separate and classify superimposed waveforms.

1. N%s is the percentage of MUAPs with respect to the
grand total which are superimposed with others.

2. Ns,max is the maximum number of MUAPs which
occur in a superposition.

3. a%,max is the maximum degree of superposition
between MUAPs (100% corresponds to the alignment
of the medians of energy of all the waveforms
involved in the superposition).

Group 6. The sixth group describes non-stationary fir-
ing patterns. It is possible to select a particular set of
activation intervals for each MU and different fre-
quency modulations.

1. Type is the type of activation interval pattern selected
(simulating increasing–decreasing ramp force con-
tractions, random activation intervals etc.).

2. vf is the desired rate of change of the firing fre-
quencies, which are increased or decreased depending
on the type of activation intervals.

Group 7. The seventh group characterizes the additive
noise. Although the noise associated to EMG signals
may contain contributions caused by depolarizations
lying further away from the electrode position [3], we
have decided to use for the purposes of this paper a very
simple noise model. The noise is white gaussian filtered
noise with a band-pass filter with cut-off frequencies 50
and 5000 Hz. This was done for the sake of simplicity
to reduce the number of parameters in the representative
evaluation presented.

For technical details about the generation model the
reader is invited to refer to [8].

Fig. 1 shows an example of simulated firing patterns
of a signal generated by a particular set of parameters.
We have used the proposed model for generating a lim-
ited subset of signals to present an example of evaluation
of decomposition algorithms. With a limited number of

test signals the sensitivity of the decomposition algor-
ithms cannot be evaluated separately for all the para-
meters introduced in the model.

A set of 18 synthetic recordings has been generated
using a sampling frequency of 51,200 Hz and real
MUAPs extracted from wire EMG signals with a band-
width of approximately 100–2500 Hz. All the signals
have a duration of 10 s. The signal to noise ratio (SNR)
is 20 dB for all the signals except for signals 14, 15 and
18 with a SNR of 15 dB, for signals 9 and 17 with SNR
equal to 12 dB and for signals 10 and 16 with very low
SNR (5 dB). All the signals are one-channel recordings
with the exception of signals 14 and 18, which consist of
three channels. The number of MUs is between 6 and 11.

Signals 1 and 2 (with 7 and 8 MUs, respectively)
present regular statistics, no superpositions and constant
mean firing frequencies. The shape difference between
representative MUAPs is higher for signal 1 with respect
to signal 2. Signals 3, 4 and 5, 6 (with 10, 8, 10 and 7
MUs, respectively) have similar characteristics as signals
1 and 2 but double discharge and random firings (for 3
and 4) and intra-class variability (for 5 and 6) are
included. In the remaining signals (except for signal 11)
superpositions have been included and for signals 11–
18 re-derecruitment of MUs and variation with time in
MU mean firing frequencies are introduced. Signals 7
and 8 (with 7 and 6 MUs, respectively) have the same
characteristics (no irregular firings, no intra-class varia-
bility, constant firing frequencies and superpositions
included) but show different maximum degree of super-
position of MUAPs and different percentage of superim-
posed MUAPs (75% and 20% for signal 7 and 100%
and 40% for signal 8). Signals 9 and 10 (with 7 and 6
MUs, respectively) have similar features as 7 and 8 but
lower SNRs (12 and 5 dB, respectively). Signals 11 and
12 (both with 8 MUs) simulate an increasing followed
by a decreasing force contraction. Intra-class variability
is included and superpositions are present for signal 12.
Signals 13 and 14 (with 8 and 11 MUs, respectively)
have no intra-class variability but superpositions are
included; signal 13 presents random activation intervals
while signal 14 simulates an increasing force contrac-
tion. Signals 15–18 (with 8, 8, 10 and 6 MUs,
respectively) simulate ramp contractions, have low
SNRs, intraclass variability, superpositions and irregu-
lar firings.

The generated signals have a large variety of different
features. In case specific characteristics of an algorithm
need to be tested, appropriate sets of signals must be
generated. The proposed library of signals should not be
considered as a standard for EMG signal decomposition
evaluation but just as an example of a set of signals with
general characteristics. Note, for example, that all the
signals have been generated with a very simple noise
model and with the same sampling frequency.

The library of test signals has been distributed among
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Fig. 1. Example of a synthetic signal with firing patterns generated to simulate an increasing followed by a decreasing ramp contraction. Five
MUs with varying firing frequencies and double discharge firings have been simulated.

a number of laboratories which were asked to decom-
pose the signals without any information about their
characteristics except for the sampling frequency, dur-
ation and number of channels. A questionnaire, asking
for information related to the time needed for the
decomposition process and to the perceived quality of
the results, has also been completed by the persons who
decomposed the signals.

3. Indexes of performance

Indexes of performance are introduced to evaluate and
compare the algorithms. The definition of indexes to
compactly describe the quality of the decomposition pro-
cess can be partly derived from traditional detection
theory [7] adapted to the multi-class problem of EMG
signal decomposition. Moreover, the use of a reference
decomposition result (in this case given by synthetic
signals) introduces problems related to the definition of

event occurrences and correspondence between refer-
ence and detected classes. Since we will use as reference
signals generated by a model, in the following we will
refer to the model result rather than to the reference
result. It is nonetheless clear that the proposed indexes
of performance can be used with any suitable reference
assumed correct (for example, real signals decomposed
manually).

Any decomposition algorithm operates on the signal
in two basic steps: the segmentation and the classi-
fication phase. The segmentation phase consists of the
detection of the MUAPs in the signal and the classi-
fication phase consists of their assignment to clusters
(MUs). It is useful to characterize an algorithm’s per-
formance separately for these two steps. Note that the
decomposition process can be divided into more than
two steps (resolving superpositions is usually performed
separately, for example) but from the result point of view
the whole process can be separated into segmentation,
the capability of detecting an event, and classification,
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the ability to differentiate between different MU activi-
ties.

The first issue to address is the assignment of model
classes to detected classes. In particular, problems arise
when the number MA of detected MUs differs from the
generated number MI of MUs [4]; in this case it is not
trivial to determine the correspondence between detected
and model classes (MUs). The establishment of corre-
spondence between classes implies the definition of a
criterion to assign a detected occurrence to an effective
one, taking into account that the firing instant is defined
in a different way by different algorithms and by the
generation model. For example, the firing instant can be
defined as the time corresponding to the median of
energy, to the peak value, to the “beginning” or “end”
of the MUAP, to a zero crossing etc. So the difference
in the firing instant definition can be as high as 3–4 ms
(for example, in the case of the difference between the
beginning and the end of the waveform) and not negli-
gible. Therefore, it is expected to find a systematic dif-
ference (offset in the detection) together with a random
difference between the model and the detected times of
occurrence. The systematic error should not be taken
into account (it must be estimated and compensated for
in some way) while the random error should be limited
because it determines an error in instantaneous firing rate
estimation. If an error dto is present in the detection of
firing time, the error dfr in instantaneous firing rate esti-
mation is given by:

dfr�2f 2
rdto

with fr being the instantaneous firing rate.
If we consider 40 Hz as the upper limit of the firing

rate, in the case of dto=0.5 ms we obtain a relative error
in fr of 4% which has been considered acceptable.

So, after the estimation and compensation for the sys-
tematic error, a detection will be considered correct if
the estimated time of occurrence is within ±0.5 ms from
a real one. The problem is how to assign a detected class
to a model class. Note that the systematic error depends
on the class; in fact, for example, the time difference
between the end of a MUAP and the beginning depends
on the duration of the waveform. For this reason it is
not possible to estimate the systematic error before the
establishment of class correspondence. It is also worth
noting that the averaged template of each detected class
cannot be used to define a correspondence between
classes because it is influenced by classification errors
and its definition can change with the algorithm. More-
over, in the case of variation of MUAP shape along the
train, the definition of an averaged template over the
whole train is meaningless.

3.1. Association between model and detected classes

A class is characterized by the times of occurrence of
its MUAPs. The times of occurrence is the only infor-

mation used to establish the correspondence between
classes since the matching between averaged templates
would depend on the classification errors, as explained
previously. To determine the correspondence between a
model and a detected class, each model class is com-
pared with all the detected classes (given by the algor-
ithm under test) by computing the distances between the
model times of occurrence and the estimated ones. The
distances are computed in order to assign a detected
MUAP to the closest model MUAP, that is at each step
the distance between the nearest model and detected
occurrence is computed and the correspondence selec-
ted:

0�IA
k �min

i,a
{|ti�ta|} k�1, …, min{NI, NA} (1)

with ti the time of occurrence of the model MUAP i of
model class I, ta the time of occurrence of the detected
MUAP a of detected class A, NI the total number of
generated MUAPs of model class I and NA the total
number of detected MUAPs of detected class A. After
association, the associated MUAPs are excluded from
the computation of the next distances.

Note that the offset is not known a priori so at this step
it is assumed equal to zero and not taken into account in
Eq. (1). The estimation of the offset in the detection is
described below. It is possible to give a graphical rep-
resentation of the computed distances by plotting their
histograms, as shown in Fig. 2.

MA histograms (class bins of 1 ms) are in this way
associated to each model generated class. The offset is
estimated at this point from the vectors 0�IA. It is com-
puted as the mean of the distances in the bin correspond-
ing to the peak value of the histogram of 0�IA. The dis-
tances are then computed again subtracting the estimated
offset qIA, giving the definitive �IA:

�IA
k �min

i,a
{|ti�ta�qIA|} k�1, …, min{NI, NA} (2)

Note that for each model class I, MA offset values qIA

are estimated, corresponding to the offset values to be
applied in case of correspondence between model class
I and each of the MA detected classes.

Then for each vector of distances the number NAI of
occurrences within an interval of 1 ms centered at zero
(now that the offset has been compensated for) is com-
puted. These occurrences are assumed as true classified
positives (MUAPs correctly detected and classified) and
the number NAI corresponds to the number of true classi-
fied positives in the case of assuming a correspondence
between the model class I and the detected class A.

The model class I is associated to the detected class
A which corresponds to the maximum NAI (that is, each
model class is associated to the detected class resulting
in the maximum number of true classified positives).

It is possible that more than one model class is in this
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Fig. 2. Graphical representation of the computed time delays between model and detected occurrences. A model class is compared with three
detected classes. The offset is not yet compensated for and is estimated as the average of the time delays in the peak bin of the histograms.

way associated to the same detected class (merge of two
classes); in this case the correspondence resulting in the
greatest number of true classified positives is chosen.
The not selected model classes are associated to other
not associated detected classes with the same criterion
of maximizing the number of true classified positives. If
there are no other detected classes not yet associated,
the remaining model classes are not assigned and are
considered missed. A class is also considered missed if
it corresponds to a number of true classified positives
smaller than 20% of the total number of actual MUAPs
belonging to that model class.

The split of one model class into two or more detected
classes is treated by choosing the association with the
same criterion used in the case of merge of classes
(maximize the number of true classified positives). In
this way the model classes are associated to the detected
ones and in the case of a different number of model
and detected classes the assignment is made in order to
generate the maximum total number of true classified
positives.

At the end of the assignment procedure for each model
class the information about the associated detected class
and the offset in the MUAP detections is available. Note
that for each model class a different offset value is poss-
ible.

3.2. Detection phase

The detection phase can be viewed as a traditional
two-class detection problem. True positives are in this
case defined as the detected occurrences corresponding
to actual occurrences (independent of the classification
step) and consist of the detected occurrences correctly
classified plus the occurrences detected but incorrectly
classified. The first group, which coincides with the true

positives of the classification phase, can be derived
directly from the class assignment procedure. The
second group is identified by comparing the not associa-
ted model times of occurrence with the not associated
detected times of occurrence. The comparison is made
by compensating for the estimated offset in the detec-
tion, that is from each model time of occurrence the off-
set of the model class to which it belongs is subtracted.

False negatives are in this phase defined as actual
occurrences not detected by the algorithm. The number
of false negatives (s)FN is the difference between the
total number of model MUAPs and the number of true
positives (s)TP.

Finally, false positives are detected occurrences not
corresponding to effective ones; their number (s)FP is the
difference between the total number of detected occur-
rences and (s)TP.

True negatives cannot be computed for the detection
phase.

(s)TP and (s)FN are also computed separately for the
superimposed MUAPs ((s)TPs, (s)FNs) and for the
MUAPs with irregular firing statistics (double discharge
MUAPs or MUAPs placed randomly in the signal)
((s)TPr, (s)FNr).

The significance of these definitions is reported in
Fig. 3(a).

The traditional sensitivity (s)Se and positive predictiv-
ity (s)P [7] for the detection phase can therefore be
defined as:

(s)Se�
(s)TP

(s)TP+(s)FN
for each not missed model class

(s)P�
(s)TP

(s)TP+(s)FP

(s)Se is computed (a) for each not missed model class,
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Fig. 3. Definition of true positives, false positives, true negatives and
false negatives for the detection (a) and for the classification (b) phase
(for class I).

(b) as the mean on all the not missed model classes, (c)
for the superimposed firings ((s)Ses) and (d) for the
irregular firings ((s)Ser).

3.3. Classification phase

True positives, false positives, true negatives and false
negatives have a different definition for the classification
phase with respect to that relative to the detection phase.

True positives for class I are the detected occurrences
correctly classified as belonging to class I and their num-

ber (c)TP is computed directly during the assignment pro-
cedure.

False positives for class I are detected occurrences
corresponding to actual occurrences but incorrectly
classified as belonging to class I. Their number (c)FP is
the difference between the number of correctly detected
occurrences classified in class I and (c)TP of class I.

True negatives are, for each not missed model class
I, the number of detected occurrences not belonging to
class I and not assigned by the algorithm to class I. Note
that the classification of an occurrence can be incorrect
and the occurrence be a true negative. For example, in
the case of four classes, if a MUAP belonging to class
3 is classified in class 4 it is a true negative for class 1
and 2.

False negatives for class I are correctly detected
occurrences of class I incorrectly classified to a class
different from I.

Fig. 3(b) summarizes the meaning of the definitions
introduced.

From (c)TP, (c)FP, (c)TN and (c)FN it is possible to
compute sensitivity, specificity and accuracy of the
algorithm for each class. They are defined as follows [7]:

(c)Se�
(c)TP

(c)TP+(c)FN
for each not missed model class

(c)Sp�
(c)TN

(c)TN+(c)FP
for each not missed model class

(c)Ac�
(c)TP+(c)TN

(c)TP+ (c)TN+(c)FP+(c)FN
for each not missed model class

These indexes are computed (a) for each not missed
model class, (b) as the mean on all the not missed model
classes, (c) for superimposed firings
((c)Ses, (c)Sps, (c)Acs) and (d) for irregular firings
((c)Ser, (c)Spr, (c)Acr).

The indexes introduced until now give an indication
about detection and classification phases. Nevertheless it
is important to underline that it is possible that some
detected MUAPs not assigned to any class are not
included in the final result of the decomposition. The
indexes related to the detection phase can thus indicate
different performance depending on the way in which
unclassified MUAPs are treated by the algorithm
(disregarded or assigned to special classes). In any case
the indexes proposed will give an indication of the
decomposition result obtained by the user, that is about
the information the user receives after the decompo-
sition process.

3.4. Global performance indexes

A few indexes are introduced to describe the perform-
ance of the estimation of global parameters in order to
give an indication of the algorithm’s performance when
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general features of the signal rather than exact firing pat-
terns are of interest.

Two indexes to characterize the ability of the algor-
ithm to estimate the number of active MUs are intro-
duced. The first is the difference between the number of
model classes and the number of classes estimated by
the algorithm before the previously described assignment
procedure (�c1) and may be positive or negative. The
second is the difference between the number of model
classes and the number of detected classes associated to
model classes after the assignment procedure (�c2), so
it represents the number of missed classes and can
assume only positive values. For example, we may have
10 model classes and 12 detected classes resulting in
�c1=�2. Nine of the detected classes may be associated
to nine model classes corresponding to �c2=+1. Thus,
in this example, we have two extra detected classes
before assignment and one missed class and this may
indicate that a class has not been detected by the algor-
ithm while three classes have been split into two
classes each.

Other global indexes are related to mean firing rate
estimation and activation interval detection. The nor-
malized difference between the estimated mean firing
rate and the actual mean firing rate of each not missed
model class is �fi (defined only for constant firing rates).
Note that the mean firing rate is in this case simply com-
puted as the inverse of the mean interpulse interval tak-
ing into account all the detected firings; better esti-
mations can be obtained by more sophisticated
techniques, such as the one proposed in [21].

Finally, tp is defined as the percentage of time for
which the algorithm indicates correctly that the MU is
active with respect to the total activation time. tn is the
percentage of time for which the algorithm indicates cor-
rectly that the MU is not active with respect to the total
non-activation time (Fig. 4). MU i is considered not
active after the time of occurrence of a MUAP belonging

Fig. 4. Definition of tp (percentage of true positive detected activation) and tn (percentage of true negative detected activation) from the comparison
between the model activation intervals and the detected ones.

to it and not followed by another MUAP of MU i within
an interval of 200 ms (corresponding to an instantaneous
frequency of 5 Hz).

�c1, �c2, �fi, tp and tn give an indication of the qual-
ity of the global information obtained by the decompo-
sition process.

4. Example application for algorithms A and B

Two algorithms have been tested with the library of
18 test signals described above. The signals have been
decomposed with the two algorithms by expert operators
who had no information about the signal characteristics.
Each operator answered a questionnaire about the time
required for the decomposition process and about his/her
perceived complexity of the signals. The operators
agreed that most of the 18 signals looked like real ones.
Algorithm B has no manual parts while algorithm A per-
mits a manual decision in the case of ambiguous classi-
fications. Due to the manual editing, the time required
to decompose a signal with algorithm A is considerably
higher than that required by algorithm B. Moreover,
algorithm A operates with three-channel signals while
algorithm B can operate only with one-channel signals.
In the case of one-channel signals the same signal has
been used by algorithm A for all three channels, while
in the case of three-channel signals the first channel has
been used by algorithm B for the decomposition. Finally,
algorithm A operates only with a sampling frequency of
51,200 Hz (this is the reason why all the signals were
generated with that sampling frequency) while algorithm
B permits one to select the sampling frequency.

Fig. 5 shows an example of the result of the decompo-
sition process compared with the reference model.

The difference in the number of detected and model
classes was zero for algorithm A in 17 out of 18 cases;
one resulted in �c1=�c2=+1 (one missed class). Algor-
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Fig. 5. Comparison of the firing patterns generated by the model and those detected by algorithm B for 4 MUs of one of the signals of the test set.

ithm B gave a worse performance in the estimation of
the number of MUs, resulting in a non-zero difference
between the number of model and detected classes for
five out of 18 signals, with a maximum difference of
three.

Table 1 shows the comparison between sensitivity
(mean of the values obtained for each not missed model
class) and positive predictivity of the detection phase for
the two algorithms for all the test signals. Table 2 reports
the results for the classification phase (mean of the
values obtained for each not missed model class).

Algorithm A shows sensitivity and positive predictiv-
ity for the detection phase higher than 97% in all cases
and sensitivity, specificity and accuracy of the classi-
fication phase higher than 99% (except for signal 17 for
which the algorithm shows a sensitivity of about 96%).
This algorithm shows good robustness to irregular stat-
istics, superpositions and shape variability along the
train. Resolution of superpositions is performed by
algorithm A with no significant decrease in the perform-
ance (signals 7–10 compared to 1–6); moreover, the
algorithm shows a low sensitivity to additive noise at
very low SNR (signals 10 and 16). Algorithm B offers
sensitivity higher than about 84% and predictivity higher
than about 98% for the detection phase. Sensitivity,
specificity and accuracy for the classification phase are
higher than 94% for all signals except for signals 15 and

Table 1
Mean sensitivity and predictivity for the segmentation phase obtained
with the two algorithms for the 18 signals

Signal no. (s)Se (s)P

Alg. A Alg. B Alg. A Alg. B

1 100.0 99.4 100.0 99.7
2 100.0 98.9 100.0 97.8
3 100.0 99.9 100.0 100.0
4 100.0 99.5 100.0 100.0
5 100.0 91.0 99.9 96.3
6 99.9 89.7 99.9 93.0
7 100.0 98.9 100.0 100.0
8 99.9 90.3 99.9 99.6
9 100.0 98.9 100.0 100.0
10 99.8 91.3 99.1 97.7
11 100.0 95.9 100.0 94.5
12 99.5 96.1 100.0 95.4
13 99.9 97.5 100.0 99.2
14 99.3 89.7 99.9 84.6
15 99.6 90.7 98.5 92.6
16 98.0 94.5 98.9 96.5
17 97.6 90.0 97.1 79.4
18 97.2 95.0 99.9 95.3
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Table 2
Mean sensitivity, specificity and accuracy for the classification phase obtained with the two algorithms for the 18 signals

Signal no. (c)Se (c)Sp (c)Ac

Alg. A Alg. B Alg. A Alg. B Alg. A Alg. B

1 100.0 99.7 100.0 99.9 100.0 99.9
2 100.0 100.0 100.0 100.0 100.0 100.0
3 100.0 99.9 100.0 99.9 100.0 99.9
4 99.9 99.8 99.9 99.9 99.9 99.9
5 99.6 99.4 99.9 99.9 99.9 99.6
6 100.0 99.7 100.0 99.9 100.0 99.8
7 100.0 99.8 100.0 99.9 100.0 99.9
8 100.0 97.5 100.0 99.4 100.0 99.1
9 100.0 99.6 100.0 99.9 100.0 99.9
10 99.9 98.1 99.9 99.6 99.9 99.4
11 99.6 97.9 99.9 99.6 99.9 99.2
12 99.8 96.3 99.9 99.6 99.9 99.2
13 99.9 98.4 99.9 99.7 99.9 99.5
14 99.5 94.2 99.9 99.3 99.9 98.7
15 98.0 88.0 99.7 98.3 99.5 97.0
16 99.2 94.7 99.9 99.2 99.8 98.6
17 96.6 84.9 99.5 98.1 99.2 96.7
18 100.0 98.2 100.0 99.6 100.0 99.4

17 (for which the sensitivity is 88% and 84.9%,
respectively).

Table 3 reports the same performance indexes
specifically for superimposed MUAPs. The results are
of course reported only for the signals which contain
superimposed MUAPs. Algorithm A shows sensitivity
for segmentation and sensitivity, specificity and accuracy
for classification higher than 93% in all the cases, show-
ing good performance in resolving superpositions in the
case of low SNR, intra-class variability and irregular fir-
ing patterns. Algorithm B shows worse performance,
especially for signals 12–18, indicating that the resol-

Table 3
Mean sensitivity for the segmentation phase and mean sensitivity, specificity and accuracy for the classification phase, computed only for the
superimposed MUAPs, obtained with the two algorithms for the signals with superimposed MUAPs

Signal no. (s)Se (c)Se (c)Sp (c)Ac

Alg. A Alg. B Alg. A Alg. B Alg. A Alg. B Alg. A Alg. B

7 100.0 94.4 100.0 98.7 100.0 99.9 100.0 99.8
8 100.0 94.4 100.0 93.3 100.0 98.5 100.0 97.6
9 100.0 95.2 100.0 98.4 100.0 99.8 100.0 99.7
10 96.7 92.9 100.0 94.9 100.0 98.9 100.0 98.3
12 97.5 86.6 98.9 91.7 99.8 98.6 99.7 97.6
13 100.0 85.5 100.0 87.7 100.0 98.4 100.0 97.1
14 98.4 79.8 98.8 86.3 99.9 98.4 99.8 97.2
15 96.8 82.3 95.5 83.3 99.4 97.6 98.9 95.7
16 93.9 86.7 98.7 86.3 99.8 98.0 99.6 96.5
17 94.0 82.9 93.1 75.6 99.0 97.1 98.2 94.8
18 93.9 87.8 100.0 95.0 100.0 98.8 100.0 98.1

ution of superpositions is affected by the presence of
re-derecruitment of MUs. Table 4 shows similar results
computed specifically for irregular firings. Again algor-
ithm A performs better than algorithm B. Anyway both
algorithms seem to be almost unaffected by the presence
of irregular firings.

Estimation of the mean firing rate for the signals with
constant mean firing frequencies (signals 1–10) is perfor-
med by algorithm A with a maximum averaged (over all
of the not missed model classes) error �f=0.2% and by
algorithm B with �f=8.8%. Both algorithms show a very
low relative error for all the 10 test signals, meaning that
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Table 4
Mean sensitivity for the segmentation phase and mean sensitivity, specificity and accuracy for the classification phase, computed only for double
discharge and random firings, obtained with the two algorithms for the signals with irregular firings

Signal no. (s)Se (c)Se (c)Sp (c)Ac

Alg. A Alg. B Alg. A Alg. B Alg. A Alg. B Alg. A Alg. B

3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
4 100.0 99.4 100.0 100.0 100.0 100.0 100.0 100.0
14 98.6 92.6 100.0 94.9 100.0 99.0 100.0 98.3
15 97.9 77.1 97.9 89.3 99.4 97.8 99.0 96.1
16 100.0 96.6 97.3 95.4 99.6 99.3 99.3 98.8
17 98.1 91.1 98.6 81.3 99.7 97.8 99.5 96.2
18 100.0 97.6 100.0 99.1 100.0 99.9 100.0 99.7

if only mean firing rate is of interest the two algorithms
are equivalent and the faster one (algorithm B) should
be preferred.

Finally we present the results obtained in the esti-
mation of re-decruitment times. Fig. 6 shows the com-
parison of the two algorithms for activation interval esti-
mation. The indexes tp and tn averaged over all of the

Fig. 6. tp and tn (mean for all the not missed model classes) for the eight signals with re-derecruitment of MUs, for algorithms A and B.

not missed model classes are shown in the case of sig-
nals with re-derecruitment of MUs (signals 11–18).
tp is on average smaller than tn for both algorithms.

Algorithm A provides a good estimation of the recruit-
ment times with tp and tn higher than 97% in all the
cases, and demonstrates a very accurate estimation of
the time intervals of activity. Algorithm B gives worse
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performance resulting in tn higher than 96% and tp
higher than 84% in all cases, which is, however, still a
good estimation of the re-decruitment times.

Both algorithms have shown good performances
either for firing pattern estimation or for global indi-
cation about MU activity. Algorithm A works better
almost in any situation but it has to be noted that the
difference can be negligible for particular applications.
The time required for the decomposition and the degree
of interaction between the algorithm and the operator
(manual parts of the decomposition process) should also
be taken into account. On the basis of the field of appli-
cation and on an evaluation technique like the one pro-
posed, the user can decide which of the available algor-
ithms is the most suitable for his/her needs. Fast and
relatively accurate algorithms can be used for example
in clinical applications, while very accurate algorithms
are needed in particular research fields (in this case the
speed can be of minor importance).

5. Conclusions

At present, the most common method for evaluation
of EMG signal decomposition programs is the compari-
son with a reference manual decomposition of real sig-
nals. However, it has been shown that manual decompo-
sition is subjective to some extent, even if performed by
expert operators [18]. Furthermore, with real signals it
is not possible to deal with signals of preset complexity.
Moreover, the lack of a standard way to report the results
and to define the quality of the decomposition made dif-
ficult in the past to compare performance and to show
different capabilities of different algorithms in treating
specific signal features.

In this paper an objective evaluation method for EMG
signal decomposition algorithms has been presented. A
generation model, already described [8], has been used
to generate synthetic signals assumed as the reference
and a number of indexes of performance have been
defined. Some of these indexes are derived from tra-
ditional detection theory adapted to the EMG signal
decomposition problem and to the comparison with a
reference result; others are defined on the basis of the
characteristics of the proposed model. We have also pro-
posed a library of 18 test signals with different general
features created to evaluate the sensitivity of the algor-
ithms to different signal characteristics. Two decompo-
sition algorithms have been tested and compared with
the aim of showing a representative application of the
method.

The tool appeared appropriate for the evaluation of
the two algorithms as indicated by the questionnaire
completed by the operators and by the results obtained.
In particular, both operators indicated that the com-
plexity of the test signals was such that most of the sig-

nals could be considered as real ones. On the other hand,
the results obtained with the test signals show that the
complexity of the signals was appropriate to be able to
characterize the algorithms with respect to sensitivity to
different signal features.

The model and the programs to compute the indexes
of performance constitute a useful tool for developers of
decomposition algorithms to properly report their results.
Furthermore, it can be used by clinical EMG signal
researchers who want to increase their knowledge of and
experience with the EMG signal decomposition problem.
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