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Abstract A numerical code has been developed to determine the rotordynamic coefficients of
straight-through labyrinth gas seals in the case of a single volume model. Some considerations
are drawn concerning the position of the sonic section when the flow is choked. Furthermore the
influence of kinematic viscosity varying with pressure has been considered. The results are compared
with the experimental and theoretical ones available in the literature. The agreement between results
is fairly good.
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Nomenclature

Ai cavity transverse area Nt number of seal strips
a, b radial seal displacement components p pressure

due to elliptical whirl pr reservoir pressure
ar, as dimensionless length ps sump pressure
Bi cavity height R gas constant
C direct damping coefficient Rs seal radius
c cross–coupled damping coefficient Sr wet perimeter on rotor
Di hydraulic diameter Ss wet perimeter on stator
Hi radial clearance T absolute temperature
i i− th section ; i = 0 = inlet; t time

i = Nt = outlet Ui tangential velocity
K direct stiffness coefficient U0/(ωRs) inlet velocity ratio
k cross–coupled stiffness coefficient α cavity geometric coefficient
Li cavity length γ specific heats ratio
LT labyrinth seal total length ϑ angular displacement
M Mach number λ exponent in the kinematic
ṁ leakage mass flow rate viscosity-pressure relationship

per unit circumference µi flow coefficient
mr, nr coefficients for Blasius µg kinetic energy carryover coefficient

relation (rotor) ν kinematic viscosity
ms, ns coefficients for Blasius ρ fluid density

relation (stator) τr, τs shear stress on rotor, stator
Nc number of labyrinth cavities ω rotor angular speed

1 Introduction

Self–excited vibrations represent a serious problem in turbomachinery: they arise in the form of
shaft sub–synchronous precession, i.e. at angular speed lower than that of the shaft itself.
The forces that determine such motion have different origins; one of these is due to the labyrinth
seals that are commonly used to reduce fluid leakage from high pressure regions to low pressure
ones. Basically their working principle lies in accelerating and successively decelerating a com-
pressible flow, leading to dissipation of kinetic energy due to viscous friction. It is then evident
the importance of studying the dynamic characteristics of labyrinth seals: as a matter of fact they
can effectively influence the motor performances.
Labyrinth seals can possess different geometry; in the present paper, we will consider the simplest
geometries, known as straight-through labyrinth seal. In this case, the geometrical parameters of
the cavity (Ai, Bi, Hi and Li) are constant along the seal.
In this field the literature is vast. It is worth noting that Black (1) was the first to describe
an annular seal behavior through dynamic coefficients, in analogy with the studies on lubricated
bearings.
The analysis to determine such coefficients is based on the following models:
• single control volume
• multiple control volume.
The aim of the present work is to develop a numerical code to determine stiffness and damping
coefficients for a labyrinth seal when adopting a single control volume model.
Moreover the authors will prove that, in the case of sonic flow, the sonic condition can be placed
only in correspondence of the outlet section. Furthermore the work focuses on the influence of the
hypothesis of kinematic viscosity varying with pressure.
To the best of the author’s knowledge, these findings do not appear to have been reported previously
in literature.
Finally, in order to test the reliability of the code, the authors compare their results with the
experimental work of Benckert and Wachter (2) in the case of non rotating shaft and with numerical
results obtained by Scharrer (3).

2 Mathematical model

In the following section we summarize results already present in the literature, relative to the case
of a single control volume (4). With reference to Fig. 1, showing a generic cavity of a labyrinth
seal, the continuity equation for the control volume under analysis is given by:

∂

∂t
(ρiAi) +

∂

∂ϑ

(
ρiUiAi
Rs

)
+ ṁi+1 − ṁi = 0 (1)
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Figure 1: Cavity geometry

while the momentum equation is:

∂

∂t
(UiρiAi) +

∂

∂ϑ

(
ρiU

2
i Ai
Rs

)
+ Uiṁi+1 − Ui−1ṁi = −Ai

Rs

∂pi
∂ϑ

+ (τriari − τsiasi)Li (2)

where

ari =
Sri
Li

and asi =
Ssi
Li

.

Shear stresses are described by Blasius model, valid for turbulent flows in smooth pipes. It holds:

τsi =
1

2
ρi U

2
i ns

[
|Ui| Di

ν

]ms
sign (Ui) (3)

τri =
1

2
ρi (ωRs − Ui)2 nr

[
|ωRs − Ui| Di

ν

]mr
sign (ωRs − Ui) (4)

where Di = 2(Bi +Hi)Li/(Bi +Hi + Li)
For a subsonic flow, the flow rate ṁ, according to Neumann’s empirical formula (5), is given by:

ṁi = µgµiHi

√
p2
i−1 − p2

i

RT
(5)

where µi is the flow coefficient, while µg is the kinetic energy carryover coefficient, given by the
following empirical expressions:

µi =
π

π + 2− 5βi + 2β2
i

where βi =

(
pi−1

pi

) γ−1
γ

− 1

µg =

√
Nt

(1− α)Nt + α
where α = 1−

(
1 + 16, 6

Hi

Li

)−2

When the flow is choked (i.e. the outlet section is sonic, as proved in Section 3), the flow rate,
according to Fliegner’s (6), becomes:

ṁ
Nt

= 0, 51µgpNc
Hi√
RT

(6)

The following hypotheses hold:
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• the flow thermodynamic evolution follows the ideal gas law
• temperature is constant along the seal
• the axial component of velocity can be neglected when computing shear stresses.

It is now possible to determine the pressure and the speed in each cavity by substituting expressions
(3÷6) in eqs. (1) and (2).
The solution of the of the problem can be obtained by means of perturbation technique; let

pi = pi,0 + p
′

i Hi = Hi,0 +H
′

i = H0 +H
′

Ui = Ui,0 + U
′

i Ai = Ai,0 + LiH
′

i = A0 + LH
′

where subscript 0 represents static components (zeroth order), that are constant inside each cavity
but vary from cavity to cavity, while superscript ′ stands for variable components (first order),
that are due to a perturbation (displacement) of the rotor from its centered position.
The first order terms are functions both of angular displacement and of time, and are responsible
for the forces exerted on the rotor. With respect to zeroth order, it holds:

ṁi = ṁi+1 = ṁ0 (7)

ṁ0 (Ui,0 − Ui−1,0) − L
(
ari τri,0 − asi τsi,0

)
= 0 (8)

Given inlet and outlet pressures, by means of eq. (7) it is possible to compute the pressure
distribution along the seal and the flow rate ṁ0; this result is obtained adopting an iterative
technique and verifying whether the flow is choked or not in correspondence of the outlet section.
Finally, the tangential velocity distribution can be determined through eq. (8).
When considering the first order terms, we have:

G2i
∂H

′

∂t
+G1i

∂p
′

i

∂t
+G2i

Ui,0
Rs

∂H
′

∂ϑ
+G1i

Ui,0
Rs

∂p
′

i

∂ϑ
+G1i

pi,0
Rs

∂U
′

i

∂ϑ
+G3i p

′

i+

+G4i p
′

i−1 +G5i p
′

i+1 = 0

X1i
∂U

′

i

∂t
+X1i

Ui,0
Rs

∂U
′

i

∂ϑ
+
Ai,0
Rs

∂p
′

i

∂ϑ
+X2i U

′

i − ṁ0 U
′

i−1 +X3i p
′

i+

+X4i p
′

i−1 +X5iH
′

= 0

(9)

where coefficients G1i, G2i, G3i, G4i, G5i, and X1i, X2i, X3i, X4i, X5i are functions of zeroth order
variables. Their expressions are given in Appendix A.
Assuming the shaft perturbation to be an elliptical orbit of semi–axes a and b, it yields:

H
′

= − a

2
[cos (ϑ− ω t) + cos (ϑ+ ω t)]− b

2
[cos (ϑ− ω t)− cos (ϑ+ ω t)] (10)

Consequently the pressure and velocity fluctuations are assumed to be in the format:

p
′

i = p+ c
i cos (ϑ+ ω t) + p+ s

i sin (ϑ+ ω t) + p− ci cos (ϑ− ω t) +

+ p− si sin (ϑ− ω t)

U
′

i = U + c
i cos (ϑ+ ω t) + U + s

i sin (ϑ+ ω t) + U − ci cos (ϑ− ω t) +

+U − si sin (ϑ− ω t)

(11)

Substituting eqs. (10) and (11) into (9) and grouping like terms of sines and cosines eliminates the
time and angular displacement dependency; it yields eight independent linear algebraic equations
per cavity, in the following unknowns: p+ c

i p+ s
i p− ci p− si U + c

i U + s
i U − ci U − si .

The resulting system for cavity i besides the above unknowns, depends on the same unknowns
expressed as functions of cavity i+ 1 and i− 1; hence it is a block-tridiagonal system that can be
easily solved.
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Being the system linear, the unknowns represented by the amplitudes of expressions (11) are
determined by superimposition of the known terms; in particular, for pressures it yields:

p+ s
i = aF + s

ai + b F + s
bi p− si = aF − sai + b F − sbi

p+ c
i = aF + c

ai + b F + c
bi p− ci = aF − cai + b F − cbi

where subscript a refers to the pressure component obtained when letting the conditions a = 1
and b = 0 in eq. (10), while subscript b refers to the pressure component obtained when letting
the conditions a = 0 and b = 1 in eq. (10).
By means of the technique proposed by Scharrer, the stiffness and damping coefficients can be
computed as follows:

K = π Rs

Nc∑
i=1

(
F + c
ai + F − cai

)
L k = π Rs

Nc∑
i=1

(
F + s
bi − F

− s
bi

)
L

C =
−πRs
ω

Nc∑
i=1

(
F + s
ai − F

− s
ai

)
L c =

πRs
ω

Nc∑
i=1

(
F + c
bi + F − cbi

)
L

3 Sonic conditions

The fluid motion inside the seal in axial direction can be assumed to behave as the “nearly uni-
dimensional” flow of a compressible fluid in a pipe of constant section AF . The term “nearly
unidimensional” we refer to the condition of physical and kinematic quantities varying only axi-
ally, being constant across the section.
With reference to the internal flow theory (7), it is possible to assume the Mach number relative
variation due to three terms; it yields:

dM2

M2
= − 2

1−M2

(
1 +

γ − 1

2
M2

)
dAF
AF

+
M2

1−M2
γ

(
1 +

γ − 1

2
M2

)
dF +

+
1 + γM2

1−M2
M2

(
1 +

γ − 1

2
M2

)
dT 0

T 0

(12)

where F is a function taking into account the friction and drag effects and T 0 is the total tem-
perature. Through the above equation it is possible to analyze the flow in the seal and to prove
that, if there is a sonic section, it can only be the outlet section of the seal itself. In the case
under examination, dAF is null, as well as dT 0 is null under the hypothesis of adiabatic flow.
Consequently it holds:

dM2 =

γM4

(
1 +

γ − 1

2
M2

)
1−M2

dF (13)

The numerator of eq. (13) is always positive along the axial direction; hence the sign of dM
depends on the value of M with respect to one. If we suppose that M < 1 at the inlet section,
eq. (13) gives a positive value for dM , hence M grows along axial direction. This growth can
not lead to M = 1 in a section inside the seal, because two different conditions could take place
immediately downstream this hypothetical section, but either of them is contradicted by eq. (13):

• M can not grow (i.e. dM > 0), for, from eq. (13), dM is negative if M > 1;
• M can not decrease (i.e. dM < 0), for, from eq. (13), dM is positive if M < 1.

Hence,depending on pressures upstream and downstream the labyrinth seal, only the following
two conditions can take place:

• the flow is subsonic along the whole seal;
• the flow becomes sonic at the outlet section of the seal and then, externally to the seal itself,

it suits to downstream pressure through a shock wave; it is the case of chocked flow.
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These results hold for adiabatic flows, while the analytical models derived by Iwatsubo, Childs and
Scharrer consider an isothermic flow, so that the leakage flow rate can be expresses as in eq. (5).
Hence it is interesting to investigate the consequences determined by the two different approaches.
Total temperature T 0 depends on static temperature T according to the following expression:

T 0 = T

(
1 +

γ − 1

2
M2

)
Hence, eq. (12), in the isothermic case, becomes:

(
1−M2

)
= γM4

(
1 +

γ − 1

2
M2

)
dF +

+ M2
(
1 + γM2

)(
1 +

γ − 1

2
M2

)
T

T 0

γ − 1

2
dM2

(14)

After a few simple passages, it yields:

−dM2

[
(γ − 1) γ

2
M4 +

γ + 11

2
M2 − 1

]
= γM4

(
1 +

γ − 1

2
M2

)
dF (15)

The roots of the left hand side of eq. (15) are:

M2
1 =

1

γ
M2

2 = − 2

γ − 1

so eq. (15) can be written as:

dM2 =

γM4

(
1 +

γ − 1

2
M2

)
dF(

1

γ
−M2

)(
M2 +

2

γ − 1

) (16)

It can be immediately seen that the limit value that the Mach number can reach at the outlet
section of the seal differs from unity, and is given by:

M = γ−
1
2

Therefore, in the isothermic case, the Mach number grows along the seal, however without reaching
the sonic condition: hence the flow is always subsonic.

4 Influence of pressure on kinematic viscosity

It si well known that kinematic viscosity is strongly influenced by pressure when pressure itself
undergoes significant variations. High pressure ratios (of order 20 or even 30) between inlet and
outlet may take place in turbomachinery. In these conditions the assumption that kinematic
viscosity is independent of pressure does not hold. Consequently, by means of a perturbative
technique, from eq. (3) it holds:

τsi = τsi,0 +

(
∂τsi
∂Ui

)
0

U
′

i +

(
∂τsi
∂Di

· ∂Di

∂Hi

)
0

H
′

i +

(
∂τsi
∂ρi

)
0

ρ
′

i (17)

In the most general case, the relationship between viscosity ν and pressure is ν/ν0 = (p/p0)
−λ

,
having supposed constant temperature along the seal.
Last term of the right hand side of eq. (17) becomes:(

∂τsi
∂ρi

)
0

ρ′i =

[
τsi
ρi

(1 +msλ)

]
0

p′i
RT

= τsi,0
1 +msλ

pi,0
p′i

Let τsi be
τsi = τsi,0 +Os(1)
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Figure 2: Comparison of results

(
k? =

Hik

RsLiNc (pr − ps)
, E? =

.5ρ0U
2
0

pr − ps

)

where

Os(1) = τsi,0

[
2 +ms

Ui,0
U ′i +

msDi

2 (B +H)
2H
′ +

1 +msλ

pi,0
p′i

]

Likewise, from eq. (4) we have:

τri = τri,0 +Or(1)

where:

Or(1) = τri,0

[
− 2 +mr

ωRs − Ui,0
U ′i +

mrDi

2 (B +H)
2H
′ +

1 +mrλ

pi,0
p′i

]

Hence the effect of viscosity varying with pressure affects only term X3i (see Appendix A). When
dependence of kinematic viscosity on pressure may be neglected (i.e. λ = 0), the above equations
coincide with expressions derived by Childs (4).

5 Numerical results and conclusions

A computational code was developed to determine the dynamic coefficients of labyrinth seals. We
considered a single control volume model and tested the code comparing our results, identified by
the acronym MVV, with those obtained by other researchers. All the seal under examination are
teeth on stator (T.O.S.) seals.
Firstly we compare our results with those published by Benckert e Wachter (2): they appear to
be in good agreement, as it can be seen in Fig. 2. This figure shows also the results published by
Childs and Scharrer (4) and by Williams and Flack (8).
Figures 3 ÷ 6 show the comparison between our results and those from Scharrer (3) for all the
dynamic coefficients.
The effects of variable kinematic viscosity ν are depicted in figures 7 ÷ 10, where we plot the
dynamic coefficients versus ω both in the case of ν = const and of ν = f(p). These plots show
that direct stiffness and cross–coupled damping coefficients are not affected by viscosity variations;
moreover, for low pressure ratios, changes of viscosity have negligible influence also on cross–
coupled stiffness and direct damping coefficients. With growing pressure ratio, kinematic viscosity
undergoes relevant variations and hence it influences significantly the dynamic coefficients with
growing shaft velocity ω.
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Finally, it is worth noting that the coefficients n and m used to compute the shear stresses hold
for smooth pipes; as a matter of fact, real surfaces are rough, hence these coefficients should be
suitably adjusted. We verified that their numerical values play a fundamental role in evaluating the
dynamic coefficients: in fact, even a slight change causes strong variations of dynamic coefficient.
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Appendix A

Definition of the first order continuity and momentum equation coefficients:

G1i =
Ai,0
RT

G2i =
pi,0 Li
RT

G3i = ṁ0

{
pi,0

p2
i−1,0 − p2

i,0

+
pi,0

p2
i,0 − p2

i+1,0

+ µi,0
5− 4βi,0

π
· γ − 1

γ
· 1

pi,0

(
pi−1

pi

) γ−1
γ

0

+

+µi+1,0
5− 4βi+1,0

π
· γ − 1

γ
· 1

pi+1,0

(
pi
pi+1

)− 1
γ

0

}

G4i = − ṁ0

[
pi−1,0

p2
i−1,0 − p2

i,0

+ µi,0
5− 4βi,0

π
· γ − 1

γ
· 1

pi,0

(
pi−1

pi

)− 1
γ

0

]

G5i = − ṁ0

[
pi+1,0

p2
i,0 − p2

i+1,0

+ µi+1,0
5− 4βi+1,0

π
· γ − 1

γ
· 1

pi+1,0

(
pi
pi+1

) γ−1
γ

0

]

X1i =
pi,0Ai,0
RT

X2i = ṁ0 +
2 +ms

Ui,0
Li asi τsi,0 +

2 +mr

ωRs − Ui,0
Li ari τri,0

X3i = − ṁ0 (Ui,0 − Ui−1,0)

[
pi,0

p2
i−1,0 − p2

i,0

+ µi,0
5− 4βi,0

π
· γ − 1

γ
· 1

pi,0

(
pi−1

pi

) γ−1
γ

0

]
+

+
1 +msλ

pi,0
Li asi τsi,0 −

1 +mrλ

pi,0
Li ari τri,0

X4i = ṁ0 (Ui,0 − Ui−1,0)

[
pi−1,0

p2
i−1,0 − p2

i,0

+ µi,0
5− 4βi,0

π
· γ − 1

γ
· 1

pi,0

(
pi−1

pi

)− 1
γ

0

]

X5i =
ṁ0

H0
(Ui,0 − Ui−1,0) +

msD

2 (B +H)
2 Li asi τsi,0 −

mrD

2 (B +H)
2 Li ari τri,0
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Figure 3: Direct stiffness coefficient versus inlet tangential velocity

Figure 4: Cross–coupled stiffness coefficient versus inlet tangential velocity
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Figure 5: Direct damping coefficient versus inlet tangential velocity

Figure 6: Cross-coupled damping coefficient versus inlet tangential velocity
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Figure 7: Direct stiffness coefficient versus rotor angular speed

Figure 8: Cross-coupled stiffness coefficient versus rotor angular speed
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Figure 9: Direct damping coefficient versus rotor angular speed

Figure 10: Cross-coupled damping coefficient versus rotor angular speed
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