POLITECNICO DI TORINO

Repository ISTITUZIONALE

Fredholm Factorization for Wedge Problems

Original
Fredholm Factorization for Wedge Problems / Daniele, Vito; Lombardi, Guido. - STAMPA. - aps:(2006), pp. 2478-2481.
(Intervento presentato al convegno IEEE AP-S International Symposium and URSI National Radio Science Meeting
tenutosi a Albuquerque, NM (USA) nel july 9-14, 2006) [10.1109/APS.2006.1711100].

Availability:

This version is available at: $11583 / 1413221$ since

Publisher:
IEEE

Published
DOI:10.1109/APS.2006.1711100

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
(Article begins on next page)

Fredholm Factorization for Wedge Problems

Vito G. Daniele ${ }^{(1)}$, Guido Lombardi* ${ }^{(1)}$
(1) Dipartimento di Elettronica, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy). http://www.eln.polito.it/staff/daniele, e-mail: guido.lombardi@polito.it

Introduction

Recently the diffraction by arbitrary impenetrable wedges has been reduced to the factorization of matrices of order four [1]. This paper provides an efficient and general factorization technique that is based on the solution of a Fredholm integral equation of second kind.

Wiener- Hopf solution of the problem

Figure 1 illustrates the problem of the diffraction by a plane wave at skew incidence on an impenetrable wedge immersed in a medium with permittivity ε and permeability μ.

Figure 1: Geometry of the problem
The incident field is constituted by a plane wave having the following longitudinal components:

$$
\begin{equation*}
E_{z}^{i}=E_{o} e^{j \tau_{o} \rho \cos \left(\varphi-\varphi_{o}\right)} e^{-j \alpha_{o} z} \quad H_{z}^{i}=H_{o} e^{j \tau_{o} \rho \cos \left(\varphi-\varphi_{o}\right)} e^{-j \alpha_{o} z} \tag{1}
\end{equation*}
$$

where β and φ_{o} are the zenithal and azimuthal angle of the direction of the plane wave \hat{n}_{i} and $k=\omega \sqrt{\mu \varepsilon}, \alpha_{o}=k \cos \beta, \tau_{0}=k \sin \beta$.
The tangential fields are related on the boundaries of the wedge $\varphi=+\Phi$ (a-face) and $\varphi=-\Phi$ (b-face) through the Leontovich conditions:

$$
\left[\begin{array}{c}
E_{z}(\rho, \Phi) \tag{2}\\
E_{\rho}(\rho, \Phi)
\end{array}\right]=Z_{a}\left[\begin{array}{c}
H_{\rho}(\rho, \Phi) \\
-H_{z}(\rho, \Phi)
\end{array}\right],\left[\begin{array}{c}
E_{z}(\rho,-\Phi) \\
E_{\rho}(\rho,-\Phi)
\end{array}\right]=-Z_{b}\left[\begin{array}{c}
H_{\rho}(\rho,-\Phi) \\
-H_{z}(\rho,-\Phi)
\end{array}\right]
$$

where the matrices $Z_{a, b}=Z_{o}\left[\begin{array}{ll}z_{11}^{a, b} & z_{12}^{a, b} \\ z_{21}^{a, b} & z_{22}^{a, b}\end{array}\right]$ depends on the wedge material and
$Z_{o}=\sqrt{\mu / \varepsilon}$ is the free space impedance.
The Wiener-Hopf formulation [1,4] of this problem yields the solution:

$$
\begin{equation*}
\left.\bar{X}_{+}(\bar{\eta})=\bar{G}_{+}^{-1}(\bar{\eta})\right) \bar{G}_{+}\left(\bar{\eta}_{o}\right) \frac{\bar{T}_{o}}{\bar{\eta}-\bar{\eta}_{o}} \tag{3}
\end{equation*}
$$

where:

$$
\left.\begin{align*}
& V_{z+}(\eta, \varphi)=\int_{0}^{\infty} E_{z}(\rho, \varphi) e^{j \eta \rho} d \rho, \quad I_{z+}(\eta, \varphi)=\int_{0}^{\infty} H_{z}(\rho, \varphi) e^{j \eta \rho} d \rho \tag{4}\\
& V_{\rho_{+}}(\eta, \varphi)=\int_{0}^{\infty} E_{\rho}(\rho, \varphi) e^{j \eta \rho} d \rho, \quad I_{\rho+}(\eta, \varphi)=\int_{0}^{\infty} H_{\rho}(\rho, \varphi) e^{j \eta \rho} d \rho \tag{5}\\
& \bar{X}_{+}(\bar{\eta})=\left\lvert\, \begin{array}{lll}
V_{z+}(\eta, 0) & V_{\rho+}(\eta, 0) & Z_{o} I_{z+}(\eta, 0)
\end{array} \quad Z_{o} I_{\rho+}(\eta, 0)\right. \tag{6}
\end{align*}\right|^{t} .
$$

and $\eta=\eta(\bar{\eta})=-\tau_{o} \cos \left[\frac{\Phi}{\pi}\left[\arccos \left[-\frac{\bar{\eta}}{\tau_{o}}\right]\right]\right.$.
For the problem at hand the constants $\bar{T}_{o}, \bar{\eta}_{o}$ assume the following expressions:

$$
\bar{T}_{o}=\frac{\pi}{\Phi} \frac{\sin \frac{\pi}{\Phi} \varphi_{o}}{\sin \varphi_{o}}\left|\begin{array}{c}
j E_{o} \\
j \frac{\alpha_{o} \cos \varphi_{o} E_{o}+k Z_{o} \sin \varphi_{o} H_{o}}{\tau_{o}} \\
j Z_{o} H_{o} \\
j \frac{\alpha_{o} Z_{o} \cos \varphi_{o} H_{o}-k \sin \varphi_{o} E_{o}}{\tau_{o}}
\end{array}\right| \text { and } \bar{\eta}_{o}=-\tau_{o} \cos \frac{\pi}{\Phi} \varphi_{o}
$$

and the matrix $\bar{G}_{+}(\bar{\eta})$ is the plus factorized matrix of the matrix kernel

$$
\bar{G}(\bar{\eta})=\bar{G}_{-}(\bar{\eta}) \bar{G}_{+}(\bar{\eta}), \quad \bar{G}(\bar{\eta})=\left|\begin{array}{llll}
\frac{g_{11}}{d^{a}} & \frac{g_{12}}{d^{a}} & \frac{g_{13}}{d^{a}} & \frac{g_{14}}{d^{a}} \tag{7}\\
\frac{g_{21}}{d^{a}} & \frac{g_{22}}{d^{a}} & \frac{g_{23}}{d^{a}} & \frac{g_{24}}{d^{a}} \\
\frac{g_{31}}{d^{b}} & \frac{g_{32}}{d^{b}} & \frac{g_{33}}{d^{b}} & \frac{g_{34}}{d^{b}} \\
\frac{g_{41}}{d^{b}} & \frac{g_{42}}{d^{b}} & \frac{g_{43}}{d^{b}} & \frac{g_{44}}{d^{b}}
\end{array}\right|
$$

where:

$$
\begin{aligned}
& g_{11}=-k n z_{11}^{a} \alpha_{o} \eta-m \eta \alpha_{o}^{2}-k^{2} \eta \xi+k m z_{12}^{a} \alpha_{o} \xi-k z_{22}^{a} \xi \tau_{o}^{2}, g_{12}=-k n z_{12}^{a} \tau_{o}^{2}-m \alpha_{o} \tau_{o}^{2}, \\
& g_{13}=k n \alpha_{o} \eta-m \eta z_{12}^{a} \alpha_{o}^{2}-k^{2} n z_{12}^{a} \xi-k m \alpha_{o} \xi+z_{22}^{a} \eta \alpha_{o} \tau_{o}^{2}, \\
& g_{14}=k n \tau_{o}^{2}-z_{12}^{a} m \alpha_{o} \tau_{o}^{2}+z_{22}^{a} \tau_{o}^{4}, \\
& g_{21}=k(n \eta-m \xi) \alpha_{o} z_{11}^{a}+\left(\eta \alpha_{o}+k z_{21}^{a} \xi\right) \tau_{o}^{2}, g_{22}=k n z_{11}^{a} \tau_{o}^{2}+\tau_{o}^{4}, \\
& g_{23}=m z_{11}^{a} \alpha_{o}^{2} \eta+k^{2} n z_{11}^{a} \xi-z_{21}^{a} \alpha_{o} \eta \tau_{o}^{2}+k \xi \tau_{o}^{2}, g_{24}=m z_{11}^{a} \alpha_{o} \tau_{o}^{2}-z_{21}^{a} \tau_{o}^{4}, \\
& d^{a}=k^{2} n^{2} z_{11}^{a}+m^{2} z_{11}^{a} \alpha_{o}^{2}+k n\left(1+\Delta^{a}\right) \tau_{o}^{2}-m\left(z_{12}^{a}+z_{21}^{a}\right) \alpha_{o} \tau_{o}^{2}+z_{22}^{a} \tau_{o}^{4}, \Delta_{z}^{a}=z_{11}^{a} z_{22}^{a}-z_{12}^{a} z_{21}^{a}
\end{aligned}
$$

$d^{b}, \Delta_{z}^{b}, g_{31}, g_{32}, g_{33}, g_{34}, g_{41}, g_{42}, g_{43}, g_{44}$ assume respectively the same expression of $d^{a}, \Delta_{z}^{a}, g_{11}, g_{12},-g_{13},-g_{14}, g_{21}, g_{22},-g_{23},-g_{24}$ except for the substitution of the superscript \boldsymbol{a} with the superscript \boldsymbol{b}.
The functions ξ, m and n depends on $\bar{\eta}$ and are defined by:

$$
\left\{\begin{array}{l}
\xi=\xi(\bar{\eta})=-\tau_{o} \sin \left[\frac{\Phi}{\pi}\left[\arccos \left[-\frac{\bar{\eta}}{\tau_{o}}\right]\right]\right. \tag{8}\\
m=m(\bar{\eta})=\tau_{o} \cos \left[\frac{\Phi}{\pi}\left[\arccos \left[-\frac{\bar{\eta}}{\tau_{o}}\right]+\Phi\right]\right. \\
n=n(\bar{\eta})=\tau_{o} \sin \left[\frac{\Phi}{\pi}\left[\arccos \left[-\frac{\bar{\eta}}{\tau_{o}}\right]+\Phi\right]\right.
\end{array}\right.
$$

In several important cases the matrix $\bar{G}(\bar{\eta})$ can be factorized in closed form [2]. For instance, this property is verified for the whole class of problems that have been solved with the Malyuzhinets-Sommerfeld technique.

Fredholm factorization of the matrix kernel $\bar{G}(\bar{\eta})$

By using the technique introduced in [3] the factorized matrix $\bar{G}_{+}(\bar{\eta})$ can be expressed by:

$$
\begin{equation*}
\bar{G}_{+}(\bar{\eta})=\frac{1}{\bar{\eta}-\bar{\eta}_{p}}\left|X_{1+}(\bar{\eta}), X_{2+}(\bar{\eta}), X_{3+}(\bar{\eta}), X_{4+}(\bar{\eta})\right|^{-1} \tag{10}
\end{equation*}
$$

where $\bar{\eta}_{p}$ is an arbitrary point with negative imaginary part and the functions $X_{i+}(\bar{\eta}),\{i=1,2,3,4\}$ satisfy the following Fredholm integral equation:

$$
\begin{equation*}
\bar{G}(\bar{\eta}) X_{i+}(\bar{\eta})+\frac{1}{2 \pi j} \cdot \int_{-\infty}^{\infty} \frac{[\bar{G}(x)-\bar{G}(\bar{\eta})] X_{i+}(x)}{x-\bar{\eta}} d x=\frac{R_{i}}{\bar{\eta}-\bar{\eta}_{p}}, \quad \operatorname{Im}\left[\bar{\eta}_{p}\right]<0 \tag{11}
\end{equation*}
$$

with the vector constant R_{i} given by the canonical basis for the 4D space.
Since $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|\frac{\bar{G}(x)-\bar{G}(\bar{\eta})}{x-\bar{\eta}}\right|^{2} d x d \bar{\eta}$ is bounded [3], (11) is a Fredholm equation of second kind where it is applicable the well-known in literature powerful solution technique.
We experienced [4] that the convergence of approximate solutions considerably increases when we solve the integral equation in the t plane defined by the mapping $\bar{\eta}=\bar{\eta}(t)=-\tau_{o} \cos \left(j t-\frac{\pi}{2}\right)$.

Numerical validation

To ascertain the correctness of our new methodology we have chosen a well known in literature test case to compare our solution with alternative method [5]: the bistatic far field amplitude evaluation for skew incidence on an impedance half plane. Figure 2 reports the GTD Diffraction Coefficient for Ez component
($D_{E}(\varphi)=s_{E}(\varphi-\pi)-s_{E}(\varphi+\pi)$, where $s_{E}(w)$ is the Sommerfeld function) for the test case with the following problem parameters: $k=1$, the incident field $\varphi_{0}=5 \pi / 6$, $\beta=\pi / 3, \mathrm{E}_{\mathrm{zo}}=1, \mathrm{Hzo}_{\mathrm{z}}=0$, the aperture angle $\Phi=\pi$, the integration parameters $\mathrm{A}=5$, $\mathrm{h}=1$ for the discretization of equation (11) after the transformation in the \boldsymbol{t} plane. Peaks of the GTD Diffraction Coefficients are for $\varphi=\varphi_{0}-\pi$ (incident field) and for $\varphi=2 \Phi-\varphi_{0}-\pi$ (reflected field).

Figure 2: Amplitude of the GTD Diffraction Coefficient (dB)
Several other applications of this technique to wedge problems have been reported in [6]. New examples and convergence tests concerning with new canonical wedge problems will be illustrated in the oral presentation of the paper.

References:

[1] V. Daniele, "The Wiener-Hopf technique for impenetrable wedges having arbitrary aperture angle," SIAM Journal of Applied Mathematics, vol.63, n.4, pp.1442-1460
[2] V. Daniele, "The Wiener-Hopf technique for wedge problems," Rapporto ELT-2004-2, Politecnico di Torino, Oct. 2004, http://www.eln.polito.it/staff/daniele
[3] V.Daniele, "An introduction to the Wiener-Hopf Technique for the solution of electromagnetic problems," Rapporto ELT-2004-1, Politecnico di Torino, Sept. 2004 http://www.eln.polito.it/staff/daniele
[4] V. G. Daniele, G. Lombardi , "The Wiener-Hopf technique for impenetrable wedge problems," Days on Diffraction 2005 International Conference, invited paper at the Plenary Session, pp.50-61, Saint Petersburg, June 28-July 1, 2005
[5] T.B.A. Senior, J.L. Volakis, Approximate boundary conditions in Electromagnetics, London: The Institution of Electrical Engineers, 1995.
[6] G. Lombardi, "Numerical validation of the Wiener-Hopf approach to wedge problems," International Conference on Electromagnetics in Advanced Applications (ICEAA05), Sept. 12-16, pp. 693-696, 2005.

