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Wiener-Hopf formulation for wedge problems   
 

V. G. Daniele*     G. Lombardi* 

 

Abstract − This paper deals with the Wiener-Hopf technique 
for solving arbitrary impenetrable wedge problems.  A general 
method for obtaining efficient solutions is  presented.  

1 INTRODUCTION 

   Fig. 1 illustrates the problem of the diffraction by a 
plane wave at  skew incidence on an impenetrable 
wedge immersed  in a medium with permettivity ε  
and permeability µ .  

                      fig.1: geometry of the problem 
 
The incident field  is constituted by a plane wave 
having the following longitudinal components: 
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where, by indicating with  β  and oϕ  the zenithal and 

azimuthal angle of the direction of the plane wave in̂ ,  

it is: εµω=k   , ,cosβα ko =    βτ sinko = .  
On the boundaries of the wedge Φ+=ϕ  (a-face)      
and Φ−=ϕ  (b-face), the tangential  fields are 
related through the Leontovich conditions: 
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where, by indicating with   
ε
µ

=oZ  the free space 

impedance,  the 

matrices 
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, depending on the 

wedge material.  
The Wiener-Hopf formulation of the problem is 

reported in [1]. It yields the  following systems of 
four equations: 

)()()( mXXG −+ =ηη                    (3) 
where, introducing the following Laplace transform: 
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 with  Φ+Φ−== sincos)( ξηηmm . 
The kernel matrix ( )G η  is defined by: 

)()()( 1 ηη SmDG −=                     (4) 
where: 
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with:  
22 ητξ −= o , Φ−Φ−== cossin)( ξηηnn  

By using the mappings: 
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equations (3) reduce to  the matrix W-H system of 
order four [1,2]: 
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where :    ))(()( ηηη GG = ,   and the plus and 
minus unknown functions are defined by: 

  ))(()( ηηη ++ = XX ,   ( ) ( ( ))X X mη η− −= . 

2 SOLUTION OF W-H EQUATION (5) 

2.1  Formal Solution 

  The genial technique ideated by Wiener and Hopf 
in 1931 yields the following formal solutions of the 
system (5):  

o

o
o

T
GGX

ηη
ηηη

−
= +

−
++ )())()( 1                   (6a) 

 

( ) ( )) ( ) o
o

o

TX G Gη η η
η η− − +=
−

                 (6b) 

where  ( )G η±  are the factorized matrices of  ( ) :G η  
 

( ) ( )) ( )G G Gη η η− += ,                         (7) 
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2.2  Exact and approximate factorization of the 
matrix kernel . 

   The matrix kernel of order four ( )G η can be 
factorized in closed form in many classes of wedge 
problems [2]. They include all the ones that have been 
solved with the Sommerfeld-Malyuzhinets  method 
[3].  However  in the more general case ( )G η  does 
not seem  to be possible an explicit factorization. 
Consequently an approximate factorization technique 
appears to be necessary. We attempted and 
experienced  many approximate factorization 
techniques [2],[4]. For wedge problems the best one is 
that described in the following section. It  is based to 
the reduction of factorization problem to a Fredholm 
equation. This method   provides very accurate results 
and it is simple to manage.    

3 APPROXIMATE FACTORIZATION OF   ( )G η  

3.1  The Fredholm equation for the plus factorized 
function ( )G η+

 

    It can be shown [4] that the plus factorized matrix 
( )G η+  can be evaluated by the equation: 
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where pη  is an arbitrary point with negative 

imaginary part and the four ( )iX η+  are vanishing 
vectors as η →∞  and separately satisfy the same 
Fredholm equation: 
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3.2  Solution of the Fredholm equation (8) in the  
w-plane  
 
In order to make function–theoretic manipulations 
easier we introduce the w plane−  and the 
w plane−  defined through the equations: 
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Note that we will use the following notations for 
quantities ( )F η defined in different spectral domains: 
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In the w plane− the Fredholm equation (8) can be 
rewritten in the form [4]:  
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where t (and u) variable is defined by 
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with the limit evaluated as tu = . 
The sampled form of the previous Fredholm equation 
is: 
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where  0, 1, 2,..., Ar
h

= ± ± ±  and h has to be chosen as 

small as possible and A  has to be chosen as large as 
possible.  

The solution of the previous equations in 12 +
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Since it is approximate, the representation (10) is valid 
only on the strip 0]Re[ ≤≤Φ− w  [4]. To obtain 

correct approximations of ˆ ( )iX w+  for every value of 
w must use  analytical continuations. To provide them 
we must take into account that in the w-plane, all the 
plus functions are even functions : 

)(ˆ)(ˆ wXwX −= ++                            (11) 
consequently the following  relationship holds[2,4]: 
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4 THE ELECTROMAGNETIC FIELD IN THE 
WEDGE PROBLEM 
 
4.1  Evaluation of the Sommerfeld functions 
 
The W-H solution (6a) provides the Laplace 
transforms of the electromagnetic fields: 

, , , ,, ( ,0) , ( ,0),z z z zV I V Iρ ρ ρ ρη η+ + + += only along 

the 0=ϕ  direction.   
Using equivalence theorems  or  functional equations 
[1,2] we can evaluate  , ,, ( , )z zV Iρ ρ η ϕ+ +  for every 

value of ϕ . However we wish maintain  the 
procedures used in the current literature [3] and 
alternatively  we introduce  the Sommerfeld functions 

)(wsE  and )(wsH  of the problem.    

 It can be shown [5] that )(wsE  and )(wsH are 
given by: 
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It yields the following representation of the 



longitudinal components valid for every value of ϕ  
[3]: 
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where γ  is the Sommerfeld contour . 
4.2 .  Far Field  evaluation  
 
Using the saddle point method on eqs.(15-16) yields 
the far field evaluation: 
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contribution, d
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s
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s
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waves.  
The contribution of the geometrical optical field arises 
from the residues  of the poles nw  that satisfy the 

equation: 0coscos =
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present in RESΠ  that is the region enclosed by the 
SDP in π±  and the Sommerfeld contour γ . After 
algebraic manipulations, it is remarkable to observe 
that always the evaluation of these residue do not   
require the explicit factorization (7). It is in accord 
with the fact that the geometrical optical field can be 
evaluated by solving the simple problems of reflection 
of a plane wave by flat indefinite impedance surfaces. 
The diffracted fields arise from the saddle points in  

π±=w  and have the form [3]: 
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Let us remember that a diffracted rays constitutes a 
generatrix of the Keller cone and it is defined by the 
angular  spherical coordinates β  andϕ  (fig.1). 
Taking into account that the incident field has angular 
spherical coordinates β  and oϕ , it is convenient to 

relate the transversal component dd EE ϕβ , of the 

diffracted ray to the transversal component 
ii

o
EE ϕβ , of the incident ray. 

By geometrical consideration we have [2]: 
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The previous equations cannot be used when the 
observation point approaches shadow boundaries of 
the incident and the reflected waves. In this case the 
poles are near the saddle points and  uniform 
diffracted  fields appears necessary [2,6].  
  By residue theorem, we obtain the following 
contribution of the surface waves:  
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these poles satisfy the equation [2] 
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