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Wiener-Hopf formulation for wedge problems

V. G. Daniele*

Abstract — This paper deals with the Wiener-Hopf technique
for solving arbitrary impenetrable wedge problems. A general
method for obtaining efficient solutions is presented.

1 INTRODUCTION

Fig. 1 illustrates the problem of the diffraction by a
plane wave at skew incidence on an impenetrable
wedge immersed in a medium with permettivity &
and permeability £/ .
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fig.1: geometry of the problem

The incident field is constituted by a plane wave
having the following longitudinal components:

E; — EOeJTo IDCOS((D—{DO}e—jaUZ (la)

H; — Hoejf(,pcosw—wo Vo™ /% = (1b)
where, by indicating with f and @, the zenithal and
azimuthal angle of the direction of the plane wave 71,
itiss k =w\Jpue ,a,=kcosff, tv,=ksinpf.
On the boundaries of the wedge @ =+® (a-face)
and @ =—@ (b-face), the tangential
related through the Leontovich conditions:

[Ez(p,cb)} _, [ H ,(p,®) } .

fields are
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where, by indicating with Z_ = 1/ﬁ the free space
&

impedance, the
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matrices Z,, =Z,| _,_, |depending on the
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wedge material.

The Wiener-Hopf formulation of the problem is
reported in [1]. It yields the following systems of
four equations:

GmMX.(m)=X_(m) 3)

where, introducing the following Laplace transform:

V..(1.0)= [ E.(p.p)e dp.
1..(n.0)=[ H.(p,p)e’" dp
V,.(n.0)= IO E, (p.p)e’" dp,

1, (n,0)= jo H,(p,p)e’" dp

we have:
VZ+ (77’0) Zolp+ (_ma CD)
V,.(1,0) ~Z,1..(-m,®)
X+ (77) = r ’ X = on ’
ZoIer (77:0) _(m) —ZOIPJr (—m,—CD)
Zolp+ (7750) Z012+ (_ma_q))

with m=m(n)=-ncos® +EsinD.
The kernel matrix G(77) is defined by:

G(n7) = D™ (m)S(1) (4)
where:
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E=\t2-n", n=n(n)=-nsin®—-&cos®
By using the mappings:

n=n() =, cos[ farccos[—L]]
7T T,

_ () n
m=m(n)=r, cos[—[arccos[—l] +®],
T 7,
equations (3) reduce to the matrix W-H system of
order four [1,2]:

G(mX, (1) =X_(7)
where: G (77) = G(17(77)), and the plus and

minus unknown functions are defined by:

X, (@) =X, (7)), X_(77)=X_(m(7)).

&)

2 SOLUTION OF W-H EQUATION (5)

2.1 Formal Solution

The genial technique ideated by Wiener and Hopf
in 1931 yields the following formal solutions of the
system (5):

X.0)=G )G ()

o

(6a)

X0 =G.00)G.(0.) - L,

(6b)

where G . (77) are the factorized matrices of G(7):
G(i7)=G_(7)G. (7). @)

d:7n, rcosﬁgo
and:7], = — —
4 0 q) 0
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2.2 Exact and approximate factorization of the
matrix kernel .

The matrix kernel of order four G(77)can be

factorized in closed form in many classes of wedge
problems [2]. They include all the ones that have been
solved with the Sommerfeld-Malyuzhinets method

[3]. However in the more general case G(77) does

not seem to be possible an explicit factorization.
Consequently an approximate factorization technique
appears to be necessary. We attempted and
experienced many approximate factorization
techniques [2],[4]. For wedge problems the best one is
that described in the following section. It is based to
the reduction of factorization problem to a Fredholm
equation. This method provides very accurate results
and it is simple to manage.

3 APPROXIMATE FACTORIZATION OF  G(77)

3.1 The Fredholm equation for the plus factorized
function G _(7)

It can be shown [4] that the plus factorized matrix

G . (17) can be evaluated by the equation:

G+(77) =z l— |Xl+(77)7X2+(77),X2+ (ﬁ)aX4+(77)|_1
n-n,
where 771; is an arbitrary point with negative
imaginary part and the four X, (77) are vanishing
vectors as 77 —> 00 and separately satisfy the same
Fredholm equation:
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3.2 Solution of the Fredholm equation (8) in the
w-plane

In order to make function—theoretic manipulations

easier we introduce the Ww— plane and the
w— plane defined through the equations:
_ _ (O
n=-t,cosw,n=-7,Cosw, w=—w  (9)

T
Note that we will use the following notations for
quantities F'(77) defined in different spectral domains:

F(17) = F(~t, cos w) = F(w) = F(i) =
= F(~1, cos ) = F(w)

In the W— plane the Fredholm equation (8) can be

rewritten in the form [4]:

HOB0)+=—— [ m(t,u)Y,w)du =
2 jo

R

— 1

7,(jsinhz—cosw,)

where ¢ (and u) variable is defined by i = _% + it
and where 77, =—7, COSW,

G(w) = G- +jn=H()

X 0= X, 7+ jw=Y,w.

[H(w)-H(®)]

m(t,u) =If[u==t,lim
(tu) =11 —sinhu +sinh ¢

[H(u)—H(1)]

—sinhu +sinh ¢

coshu,

coshu]

with the limit evaluated as © = 7.
The sampled form of the previous Fredholm equation

1S:
Alh

H(hr)Y, (h r)+L Z m(hr,hi)Y, (hs)=

J s=aln

R
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where ;= O,J_r],iQ,m,i% and % has to be chosen as

small as possible and A has to be chosen as large as
possible.

The solution of the previous equations in A4 1
h

unknowns y (h s),(s = 0,+1,42.... ié) yields the
ia > > > AR h

following approximate representation of the elements

X, =X,w)= X, (w)of the
G.(W=G.(@) :

factorized
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R
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Since it is approximate, the representation (10) is valid
only on the strip —® < Re[w] <0 [4]. To obtain
correct approximations of X .. (w) for every value of

w must use analytical continuations. To provide them
we must take into account that in the w-plane, all the
plus functions are even functions :

X, (w)=X, (-w) (1n
consequently the following relationship holds[2,4]:

X, (#w) =G (Fw)G(Ew—20) X, (xw—2D) (12)

4 THE ELECTROMAGNETIC FIELD IN THE
WEDGE PROBLEM

4.1 Evaluation of the Sommerfeld functions

The W-H
transforms of

solution (6a) provides the Laplace
the  electromagnetic  fields:

Vz,p+ > ]z,p+ (7,0) = Vz,p+ > Iz,p+ (77,0), only along
the ¢ = 0 direction.

Using equivalence theorems or functional equations
[1,2] we can evaluate V_ I . (17,9) for every
the

procedures used in the current literature [3] and
alternatively we introduce the Sommerfeld functions

s, (w) and 5, (W) of the problem:

value of ¢@. However we wish maintain

It can be shown [5] that s,(w) and s, (W) are
given by:

2
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sp(w) = é[—r{, sinwV_, (-7, cosw,0)+—=—1 (-7, cosw,0)+

_& 7, co8w I.(-7, cosw,0)] (13)
we
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It yields

V.. (-7, cosw,0)] (14)

the following representation of the



longitudinal components valid for every value of @

[3]:

E(p.0) = 5| | selw s plet/ = aw |(19)
27 j L

H.(p.p) = —— .U sH[w+w]e*"”°"~*[”’“dw}<16)
2w j Loy

where y is the Sommerfeld contour .
4.2 . Far Field evaluation

Using the saddle point method on eqs.(15-16) yields
the far field evaluation:

E (p.9)=Ef(p.0)+E (p,@)+E (p.p)

H_ (p.p)=H!(p,9)+H!(p.0)+H:(p,p)

where E¥,H¥ represent the geometrical optics
contribution, £ j JH j the diffracted fields and

E’,H’ the eventually contribution of the surface

waves.
The contribution of the geometrical optical field arises

from the residues of the poles w, that satisfy the
equation: cos(ﬁw j*COS(Ew ):0 and that are
o L

present in [T that is the region enclosed by the
SDP in =7 and the Sommerfeld contour y . After

algebraic manipulations, it is remarkable to observe
that always the evaluation of these residue do not
require the explicit factorization (7). It is in accord
with the fact that the geometrical optical field can be
evaluated by solving the simple problems of reflection
of a plane wave by flat indefinite impedance surfaces.
The diffracted fields arise from the saddle points in
w = = and have the form [3]:

e
El(p,p,z)=e""" W[SE((p_”)_SE((p-’— )]

o)
Tz-p[SH((p_ ”)—SH((DJF ”)]

o

—jaz

H!(p,p,z)=e

Let us remember that a diffracted rays constitutes a
generatrix of the Keller cone and it is defined by the

spherical coordinates £ and@ (fig.1).
Taking into account that the incident field has angular

angular

spherical coordinates £ and ¢, , it is convenient to

relate the transversal component E; ,EZ of the
diffracted the
E’ﬂ s E; of the incident ray.

ray to transversal component

By geometrical consideration we have [2]:

1

1 d d
Ed:— Eds E =T ZUHZ’
7 sing t ? sin
o 4 1 ‘
El=smpBE,, H;:Z—smﬂE;o

o
The previous equations cannot be used when the
observation point approaches shadow boundaries of
the incident and the reflected waves. In this case the
poles are near the saddle points and  uniform
diffracted fields appears necessary [2,6].
By residue theorem, we obtain the following
contribution of the surface waves:

EZS (’0’ P Z) = z ReS[SE (W + w)]w:m e*jf,, cosme eija“z

Hi(p,9,2) =) Res[s, (w+p)],., e/ " e/
where W, are the structural poles s, , (W+ @)

present in 1% Taking into account equation (12),

these poles satisfy the equation [2]
d,y[X(W, +9)-P]=0
where:
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