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Hybridization of FDTD and Device
Behavioral-Modeling Techniques

Stefano Grivet-Talocia, Igor S. Stievano, and Flavio G. Canavero, Senior Member, IEEE

Abstract—We present a systematic methodology for the elec-
tromagnetic modeling of interconnected digital I/O ports. Digital
drivers and receivers are represented through behavioral models
based on radial basis functions expansions. Such a technique allows
a very accurate representation of nonlinear/dynamic effects as well
as switching behavior of real-world components by means of care-
fully identified discrete-time models. The inclusion of these models
into a finite-difference time-domain solver for full-wave analysis of
interconnected systems is presented. A rigorous stability analysis
shows that use of nonlinear/dynamic discrete-time models can be
easily integrated with standard full-wave solvers, even in the case
of unmatched sampling time. A set of numerical examples illus-
trates the feasibility of this method.

Index Terms—Behavioral models, digital I/O ports, finite-differ-
ence time-domain (FDTD) methods, nonlinear circuits, radial basis
functions, transient analysis.

I. INTRODUCTION

T HE high complexity of modern electronic systems requires
careful modeling strategies at early stages of the design

process. This is particularly important for the characterization
of interconnected structures loaded by digital drivers and re-
ceivers. Indeed, it is well known that electromagnetic compat-
ibility (EMC) and signal integrity (SI) are strongly affected by
the geometry of the interconnects and by the possibly complex
nonlinear/dynamic behavior of the electronic devices collocated
at their terminations. An accurate solver must combine a rig-
orous full-wave scheme together with precise models of dig-
ital ports. The strong nonlinearities and the dynamic behavior
are correctly represented by a detailed transistor-level circuit,
which is, however, too heavy to be considered for direct inclu-
sion within a full-wave modeling tool.

Two main approaches for the simulation of a loaded intercon-
nected structure can be devised. One possibility is to retain the
full complexity of the components using their transistor-level
model, attempting the derivation of simple macromodels for
the description of the signal propagation paths. This approach
is particularly suited when the signals propagate along trans-
mission lines with controlled geometry [e.g., parallel lands on
printed circuit boards (PCBs)] or multichip modules (MCMs),
since transmission-line models can be easily included within
a SPICE-like circuit simulation environment. Accuracy break-
down occurs in the presence of discontinuities and complex ge-
ometries like vias, bends, cut power/ground planes, etc. [16]. In

Manuscript received May 9, 2002; revised September 24, 2002.
The authors are with the Dipartimento di Elettronica, Politecnico di Torino,

10129, Turin, Italy (e-mail: grivet@polito.it).
Digital Object Identifier 10.1109/TEMC.2002.808035

these cases, the quasi-TEM mode no longer represents the elec-
tromagnetic fields and full-wave modeling is required. It should
be noted that also in this situation (reduced-order) macromod-
eling techniques based on equivalent multiport extraction from
some three-dimensional (3-D) field discretization can be de-
vised. The result is a global circuit description of components
and propagation paths. This is a very active research area, as
demonstrated by the large number of recent papers on the sub-
ject (see, e.g., [2], [3], [10] and references therein). We remark
that this modeling strategy is best suited for pure SI analysis
since only the port behavior of the structure at few selected lo-
cations is modeled.

This paper concentrates on a second complementary mod-
eling strategy, which is better suited for EMC analysis including
radiation and susceptibility from incident fields. A conventional
field solver is used to discretize the electromagnetic fields
within the computational domain. We concentrate herewith on
the well-known finite-difference time-domain (FDTD) scheme
[8], [22], [27] since it has become a standard in EMC modeling
due to its simplicity and accuracy. Suitable models for the
nonlinear/dynamic components loading the interconnects are
inserted as lumped elements within the computational mesh.
This procedure has been developed by several researchers
during the past ten years. Application examples include single
passive linear components (resistors, capacitors, inductors),
voltage sources, simple nonlinear components (see, e.g.,
[9], [13], [21], [24]). More recently, this procedure has been
extended to include linear multiports characterized by rational
transfer functions [12], [26], lumped ferrites [6], and many
other types of lumped components. For a review see [23] and
references therein.

In this paper, we propose a systematic procedure for the
behavioral description of nonlinear/dynamic effects of real-
world digital I/O ports based on radial basis functions (RBF)
expansions [18]–[20]. The device is modeled through a dis-
crete-time nonlinear dynamic parametric macromodel leading
to a virtually undistinguishable response under very different
loading conditions with respect to the transistor-level model.
The parameters are computed only once through a rigorous
identification procedure and are used for all subsequent
simulations.

There are several advantages beyond accuracy in this
approach. The computational complexity required for the tran-
sient simulation of such a macromodel is much less than for the
transistor level circuit. In addition, due to the intrinsic nature of
the model representation, each device is represented by its own
set of parameters. This allows the macromodel implementation
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to be quite general, since the same computational code can be
used for very different devices simply feeding it with the proper
model parameters. It is also conceivable to setup libraries of
components that can be arbitrarily selected and included by the
user.

The RBF macromodels used in this paper are discrete-time
nonlinear models, consisting of a set of difference equations re-
lating present and past samples of port voltage and current with
fixed sampling time. The latter is usually defined in the model
identification stage and is one of the key parameters that char-
acterize the device. On the other hand, transient field solvers
like FDTD often require a proper time step determined by the
spatial mesh size through the Courant condition. Therefore, dis-
crete-time macromodels can in principle be included within a
FDTD mesh only if the model sampling time and the transient
time step are matched. For this reason, we present in this paper a
rigorous analysis of the resampling problem together with a sta-
bility analysis. This analysis allows us to conclude that the class
of presented RBF models preserve stability also after resam-
pling, and can therefore be used without additional constraints
for full-wave simulations.

The outline of this paper is as follows. Section II discusses the
inclusion of lumped device models within a 3-D FDTD mesh.
Also, an incident/scattered field formulation is presented, al-
lowing for electromagnetic susceptibility analysis of intercon-
nected digital ports. Section III introduces discrete-time RBF
models of digital I/O ports, while Section IV details the resam-
pling strategy for time step matching between RBF models and
FDTD. Section V details the FDTD implementation of the pro-
posed RBF macromodels. Section VI presents validations and
numerical results. The detailed theoretical analysis proving the
stability of the overall modeling strategy is postponed to Ap-
pendix A and B in order to smooth the flow of presentation.

II. FULL-WAVE FDTD AND LUMPED ELEMENTS

This section recalls the main steps required by the inclusion
of a lumped element within the FDTD computational domain.
We remark that this is a standard procedure, therefore we only
give an outline in order to set the notations that will be necessary
throughout the paper. The reader is referred to the vast literature
on the subject for further details.

We consider a locally uniform medium in the vicinity of the
lumped element, with permettivity, permeability , and con-
ductivity . The entire computational domain is discretized with
a FDTD mesh size , , along the three Cartesian co-
ordinates. Without loss of generality we consider the situation
illustrated in Fig. 1, with the lumped element collocated in the
{ } cell along the coordinate. It is well known that the
Maxwell-Ampere curl equation can be modified as

(1)

where is the current density associated with the lumped ele-
ment, which in turn can be expressed in terms of the current
as

(2)

Fig. 1. Collocation of the lumped element in the FDTD mesh.

The lumped voltage is expressed in terms of the electric field
through

(3)

Taking the -directed component from (1) and performing the
standard FDTD discretization, we get after rearranging the var-
ious terms

(4)
where superscript indicates the time iteration and

(5)

Note that a semi-implicit discretization of conduction current
and lumped current density has been used in order to get an
FDTD update equation that uses only the unknowns that are
available on the space–time FDTD grid. Equation (4) must be
coupled with the current-voltage characteristic of the lumped
element in order to be solved for both and . All other
quantities in (4) are known from previous iterations.

A. Incident Field Excitation

The update equation (4) can be easily modified to account
for the contribution of an external field impinging on the struc-
ture. Several approaches can be adopted, the most convenient
in present case being a scattered-field FDTD formulation [8].
Total fields are split in two separate contributions

(6)

The incident fields are distributed sources representing
the fields that would be present in free space. These fields obey
the free-space Maxwell equations, in particular

(7)

and must be knowna priori. The scattered fields are
produced by the interaction of the incident fields with the con-



GRIVET-TALOCIA et al.: HYBRIDIZATION OF FDTD AND DEVICE BEHAVIORAL MODELS 33

stitutive materials of the structure under investigation. Only the
scattered fields are discretized in the FDTD mesh. The resulting
form of Ampere–Maxwell curl equation may be obtained com-
bining (7) with (1)

(8)

Note that we have preserved the total electric field in order to
define properly the port voltage through (3). Equation (8) is
identical to (1) except for the presence of the distributed source
term related to the incident field. Therefore, following the same
discretization procedure used in the case of no incident field, we
get

(9)

Once this expression is coupled to the lumped element current-
voltage characteristic and solved, the scattered electric field can
be computed as

(10)

The above is needed for the subsequent evaluation of the scat-
tered fields in the adjacent cells.

III. M ACROMODELS OFDIGITAL I/O PORTS

A. Parametric Macromodeling

This section gives a short description of the parametric
macromodels developed for digital I/O ports that will be
adopted in the forthcoming sections. A more complete presen-
tation can be found in [18], so we will outline only the main
concepts that are strictly necessary for readability.

Digital I/O ports provide an interface between the internal
structure of integrated circuits (IC) and the external intercon-
nects carrying signals. The proposed macromodeling approach
neglects the internal activity of the IC core, regarded as a
black-box, and concentrates only on the electrical charac-
teristics of the ports loading the interconnects. These can be
identified by output ports of drivers and input ports of receivers
and act as possibly complex nonlinear/dynamic time-varying
terminations for the interconnects. In the typical case of a
digital driver, this modeling strategy is justified since the
internal IC logic activity forces different bit patterns at the
output port. Such patterns can be assumed as knowna priori.
Conversely, once the bit pattern is fixed, the (analog) port
voltage and current transient waveforms are mostly an intrinsic
feature of the output stage of the driver. Only the latter needs
careful modeling and will be investigated in the following. The
same considerations apply for input ports of digital receivers.

The common way to build macromodels for digital I/O ports
is via the definition of simplified equivalent circuits. Such equiv-
alents allow physical insight and facilitate the implementation
of the models. An important example of the equivalent circuit
approach is provided by the widely adopted input–output buffer

information specification (IBIS) [4], that has given rise to a large
set of dedicated libraries for the electronic design automation
tools. However, such an approach has also some inherent limi-
tations. Mainly, the effects taken into account must be decided
a priori by choosing a specific topology for the equivalent cir-
cuits.

The alternative approach we propose amounts to looking for
parametric macromodels suitable for the description of the ex-
ternal port behavior of the device under modeling. The device
is represented by a mathematical model relating samples of port
voltage and current. The specific form of the model equations
is chosen with the aid of the well established theory of system
identification [7] and is detailed below. The model parameters
are computed with a standard procedure by fitting the predicted
macromodel response to some reference response obtained by
driving the port with suitable stimuli. The parametric approach
has interesting advantages, that makes it a useful complement
to the more traditional equivalent circuit approach. It automati-
cally takes into account any physical effects significantly influ-
encing voltages and currents of the I/O ports, yielding models
that perform at a very good accuracy level with relatively high
efficiency. In addition, the accuracy of the models turns out to
be weakly sensitive to the driven load. Finally, if needed, the
parametric approach allows the creation of behavioral models
from actually measured input-output transient waveforms [20].

B. RBF Macromodels

Let us consider the voltage and current waveforms and
of some digital I/O port under test. All the macromodels

considered in this paper are discrete-time models, therefore, we
sample the time axis with given sampling time. This sam-
pling time must be carefully determined on the basis of the dy-
namic features of the device. In particular,is not related to the
FDTD sampling time , which is constrained by the adopted
spatial discretization. In order to avoid confusion, we will use
a different time index for quantities that are sampled at
rate. All issues related to discrete-time resampling for time step
matching between RBF model and FDTD will be addressed in
Section IV.

Under the above assumptions, we will indicate the voltage
and current samples as

(11)

A general form of parametric macromodel for the device can be
expressed as [7]

(12)

where and are regressor vectors collecting the past
voltage and current samples

(13)

These vectors act as discrete-time internal states of the model,
with indicating its dynamic order. The function is a non-
linear mapping from to defining themodel represen-
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tation and is the vector of model parameters, defining the
model structure. Note that depends also on time , since
digital drivers must be modeled as time-varying components in
order to capture switching behavior.

In this paper, we mainly concentrate on model representations
defined by Gaussian RBF expansions [1], [5], [17]. Such rep-

resentations provide approximations of the mappingthrough
expansion into multivariate Gaussian functions of suitable
width centered at appropriate pointsin the regressor space
of dimension . A general form of such representation can
be expressed by

(14)

where the term collects all contributions due to past
voltage and current samples

(15)
and denotes the Euclidean norm. The model parameters are

(16)

The RBF representations can be applied to a wide range of
modeling problems, as they lead to general results on the ex-
istence on nonlinear parametric models [14], [15]. They are
numerically efficient (the evaluation of an expansion term re-
quires the evaluation of norms in the multidimensional regressor
space plus scalar functions) and the estimation of their parame-
ters is easier than for other representations [1], [5]. Besides, the
Gaussian RBF have local support. This feature further simplifies
the parameter estimation and leads to asymptotically vanishing
models. From a practical point of view, Gaussian RBF represen-
tations are well suited for digital I/O ports, as they can produce a
model meeting the accuracy and efficiency specification of real
simulation problems, at a low modeling cost. The following two
sections particularize the general form of RBF model to dig-
ital output ports (drivers) and input ports (receivers). A specific
example of RBF macromodeling applied to a real device is re-
ported in Section VI.A for illustration purposes.

C. Drivers

One of the main difficulties in macromodeling output ports
of drivers arises from the time-varying nature of the devices due
to switching. Our proposed strategy amounts to using two sep-
arate Gaussian RBF submodels accounting for both static and
dynamic effects of the port behavior at a fixed logic state, hence-
forth labeled for the HIGH and for the LOW state. These
two submodels are time invariant. A piecewise-linear combi-
nation through time-varying weight functions provides a
model for the evolution of the port logic state, acting as a switch

between submodels . The general RBF representation (14)
is then specialized as

(17)

A more detailed discussion on the systematic derivation of
model (17) together with guidelines for the estimation of its
parameters can be found in [18].

D. Receivers

Macromodeling of receivers input ports follows a similar ap-
proach to that used for drivers. However, receivers are not time-
varying components, therefore simpler models can be devised.
The proposed structure for a receiver model is

(18)

where is a linear parametric submodel accounting for the
mainly linear behavior of the port for voltage values within the
range of the power supply voltage, while and are
Gaussian RBF submodels taking into account both the nonlinear
static and dynamic effects of the up and the down protection cir-
cuits, respectively. Since receiver macromodels are somewhat
simpler than driver models, we will focus our attention on the
latter in the forthcoming sections.

IV. RESAMPLING

In Section III, we presented the general form of a discrete-
time parametric model [see (12)] that can be applied for an effec-
tive behavioral description of fast digital drivers and receivers.
One of the key parameters of such model is the sampling time
used in the identification stage. The model dynamic equations
strongly depend on this sampling time, since the internal states
{ } collect past samples of voltages and currents delayed
by multiples of . The numerical simulation of the model equa-
tions appears then to be constrained to use this sampling time.
However, if this model is to be combined with an FDTD code
as a lumped element, some problems might occur due to the
Courant condition, which limits the time step to a maximum
value depending on the spatial dimensions of the FDTD cells.
This section is devoted to a detailed analysis of the resampling
procedure to be applied to the parameteric model (12) in order
to match its sampling time to the one determined by the FDTD
mesh. We present herewith the proposed resampling procedure,
postponing the stability analysis to Appendix B.

Resampling can be viewed as a two-step process. First, the
discrete-time model is converted into a continuous-time model.
Then, a suitable time discretization scheme is applied to get a re-
sampled model. Conversion of (12) to continuous time requires
the derivation of a system of state equations with appropriate
dynamic order. Since past samples of both voltage and cur-
rent are involved in the discrete-time equations [see (13)], we
will use a global dynamic order 2also for the continuous-time
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model. The continuous state variables { } will be delayed
voltages and currents, defined componentwise as

(19)
Note that the following equivalences between continuous-time
and discrete-time states hold:

(20)

Subtracting now from (12) and
dividing by we get

(21)
The left-hand side is easily identified with a first-order forward
approximation of the time derivative of the port current at
time , i.e., of the first continuous state variable .
Replacing this finite-difference approximation with the time
derivative and passing to continuous time we get the
first continuous-state equation

(22)
The leading error term in this approximation is . The
same procedure can be applied to the other state variables. For
instance, we get for the second current state

(23)

and similarly for all the other current and voltage states. After a
straightforward algebraic manipulation we get the final contin-
uous-time model

(24)
where is the matrix

...
...

. . .
...

(25)

and . The first two rows represent the actual
state equations with dynamic order 2, and the third row rep-
resents the output equation relating the port current to the port
voltage and the internal states.

The continuous-time system can be easily synthesized
into a SPICE equivalent circuit for automatic analysis under
given loading conditions. Details of such implementation
can be found in [18]. During a transient simulation SPICE
will perform a time-domain discretization, using a high-order
method with variable time step. It is then expected that a SPICE
simulation will give results very close to the true solution of the
continuous-time model. The numerical results of [18] illustrate

that this solution is indeed almost undistinguishable from the
response of the transistor-level circuit describing the original
device. This means that the combination of RBF model identi-
fication and discrete-to-continuous time conversion constitute
a very stable and accurate algorithm.

We proceed now to the discretization of system (24) by using
the new (FDTD-related) sampling time . Henceforth, we will
indicate with

(26)

the resampling factor. Consistently with the first-order approx-
imation that led to the construction of the continuous-time
system from the original discrete-time model, we approximate
the time derivative with a first-order forward finite difference

(27)

Note that we are using a different indexfor the resampled time
axis. The resulting resampled model reads

(28)
where is the identity matrix. Note that, due to the em-
ployed forward difference approximation of the time derivative,
the resampled state equations (first two rows of (28)) are ex-
plicit, while the nonlinear output equation (third row) is implicit.
We will see in the Appendix that this feature allows us to pre-
serve stability in the various time conversion steps. Also, note
that the resampled system is identical to the original discrete
system (12) when , i.e., . In such case the state
equations reduce to simple forward shifts in time by astep.

V. FDTD IMPLEMENTATION OF LUMPED RBF MACROMODELS

This section combines the FDTD formulation with lumped
elements detailed in Section II with the resampled RBF models
discussed in Section IV. The result will be the complete FDTD
implementation of RBF macromodels for digital I/O ports.
Without loss of generality, we will focus our attention on the
RBF driver model discussed in Section III-C, and we will detail
the important issues related to the inclusion in the FDTD grid.
A similar procedure can be used for the simpler case of an RBF
receiver model.

We begin noting that two different sets of update equations
are needed. One set is related to the update of the discrete-time
states hidden in the device macromodel. This set of equations
is readily obtained by particularizing the first two rows of (28)
to the driver case, i.e., using two different dynamic RBF sub-
models for the two logic states of the device. The resulting up-
date equations remain fully explicit in their unknowns and are
consequently straightforward to implement. The second set of
update equations is obtained by merging (4) with the resam-
pled discrete-time driver characteristic. The latter is readily ob-
tained by considering the nonlinear output equation [(the third
row of (28)] and particularizing it to the driver case. The re-
sulting nonlinear system reads as shown in (29) at the bottom
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of the page which can be stated formally as ,
where the unknowns have been collected in the array

.
System (29) can be solved iteratively using, e.g., the

Newton–Raphson method [25]

(30)

where indicates the iteration count and is the Jacobian ma-
trix of . Iterations are stopped when some accuracy threshold
is reached. The initial guess for starting the iterations can
be conveniently taken as the solution at previous time step,
since it is expected that the time stepis small enough for pro-
ducing a smooth solution. A convenient feature of this method
is that the Jacobian matrix and its inverse can be computed an-
alytically using the RBF model expression. Specifically

(31)

where and

(32)

We remark that (29), due to the adopted RBF model representa-
tion, represents a very smooth multivariate function. Therefore,
very few iterations are required for reaching stringent accura-
cies. This will be demonstrated in the numerical examples of
Section VI.

VI. NUMERICAL RESULTS

This section presents a set of numerical examples showing the
high accuracy of the proposed modeling strategy for full-wave
analysis of interconnected digital I/O ports. The examples to
be discussed are intended to provide separate validations for all
the modeling steps as well as to illustrate the feasibility of the
proposed technique for realistic applications.

Fig. 2. Far-end voltage waveformv(t) on three ideal transmission lines driven
by a commercial digital driver. Solid lines: reference; dotted lines: macromodel.
Panel (a) refers to a line withZ = 50
, T = 0.6 ns; (b) Z = 100
,
T = 0.6 ns; (c) Z = 100
, T = 40 ps.

A. RBF Macromodeling

The first numerical test provides an example of RBF macro-
modeling for the the characterization of the output port of a
commercial device, namely a high-speed CMOS driver (power
supply: 0 V, 1.8 V) used in IBM mainframe prod-
ucts. The macromodel is derived from the transistor-level model
of the driver by applying the procedure discussed in [18]. The
RBF macromodel (17) turns out to have a dynamic order
with submodels and requiring a number of 12 and 10 basis
functions, respectively. The sampling time used in the identifi-
cation process is ps.

In order to assess the accuracy and efficiency of the estimated
macromodel, we used SPICE as the simulation engine and im-
plemented the estimated macromodel as a SPICE subcircuit.
The circuit interpretation and the SPICE implementation of (17)
is out of the scope of this paper and can be found in [18]. As a
validation test, Fig. 2 compares the responses of the driver when
it applies a 4-ns pulse (bit pattern “010”) to three ideal trans-
mission lines, with different characteristic impedance and time
delay values, terminated by a 1-pF capacitor. The accuracy of
the macromodel in reproducing the reference behavior of the
actual device for generic dynamic loads can be clearly appreci-
ated. We remark that transient simulation of the the estimated
macromodel results more than 20 times faster than for the orig-
inal transistor-level model.

(29)
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Fig. 3. Transmission-line structure used for validation. The sketch is not to
scale (see text for dimensions). The lumped terminations are indicated as thick
lines.

The input port of this device can also be used as a receiver, and
a RBF macromodel can be correspondingly derived. Therefore,
we will extensively use this device in the numerical examples
to be presented next. For brevity, we omit the validation curves
for such receiver model. Such curves, together with additional
details on the derivation, may be found in [18].

B. RBF-FDTD Validation

The present example is intended to validate the various steps
required by the mixed RBF-FDTD modeling procedure. These
steps are

1) derivation of the discrete-time macromodel from the spe-
cific device under consideration;

2) model resampling for time step matching;
3) FDTD implementation.
The structure that we chose for validation is a simple trans-

mission line depicted in Fig. 3. The computational domain is
180 24 23 cells, with mesh size

mm, and is terminated by absorbing boundary conditions.
The strips are implemented as zero-thickness conductors and are
four cells wide and 160 cells long. The separation between the
two strips is three cells. The effective characteristic impedance
of the resulting transmission line is 131 , while the line
delay is 0.4 ns. The line is terminated at the near end
by the lumped RBF macromodel for the driver detailed in Sec-
tion VI-A. The driver forces a bit pattern “010” at its output port,
with a bit time of 2 ns. The far end termination is varied in order
to illustrate load insensitivity of the proposed modeling strategy.

We consider first the case of a linear capacitive far end ter-
mination made of a shunt connection of a 1-pF capacitor and
a 500- resistor. The simulation results are depicted in Fig. 4,
where four different curves are plotted for near-end and far-end
voltage. The first curve is the result of a SPICE simulation using
the transistor-level model of the driver. This can be regarded as
the reference curve. The second curve is obtained always with
SPICE but using the RBF model of the driver. This can be re-
garded as a validation for step 1 above. The third curve is the re-
sult of a FDTD simulation of the [one-dimensional (1-D)] tele-
graphers equations using the RBF model. The implementation
of the model as a lumped termination of the 1-D FDTD mesh
is a standard procedure and is not further commented here. The
reader is referred to [11] for a detailed discussion. This curve is
intended to validate the FDTD implementation, the resampling
strategy, and the iterative nonlinear solver without the influence
of spurious numerical dispersion occurring in 3-D FDTD. Fi-
nally, the fourth curve shows the result of the full-wave simula-
tion. The latter was performed with the maximum allowed time

(a)

(b)

Fig. 4. Termination voltages with switching driver at near end and capacitive
load at far end. See text for additional details.

step ps. Since the sampling time used for identifica-
tion of the RBF model was ps, the resulting resampling
factor is . As expected, the four curves are almost
undistinguishable. Only the 3-D FDTD result has a marginal
deviation from the other curves due to numerical dispersion.
We remark that the number of Newton-Raphson iterations re-
quired to solve the RBF model (29) never exceeded a maximum
number of three, whereas the accuracy threshold was set to the
very stringent value of 10 . Note that the FDTD (linear) com-
putations were performed in single-precision arithmetic, while
double-precision was used for the nonlinear RBF computations.

The second example considers a fully dynamic/nonlinear ter-
mination at the far end, namely the RBF model of the receiver
discussed in Section VI-A. Fig. 5 shows near and far end volt-
ages, reporting only the response computed by SPICE using the
RBF model and the result of full-wave FDTD simulation. Again,
the two curves are almost undistinguishable apart from minimal
dispersion effects.

The final validation example illustrates the capability of mod-
eling the effects of an impinging wave. The structure is identical
to the above, with the switching driver at the near end and the
linear capacitive load at the far end. In addition, a plane wave
with Gaussian waveform is incident broadside on the structure,
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(a)

(b)

Fig. 5. Termination voltages with switching driver at near end and receiver at
far end.

i.e., from a direction { , } with -polarized elec-
tric field in standard spherical coordinates. The amplitude of the
Gaussian is 500 V/m, and the width is 0.35 ns. Fig. 6 reports
the results, showing the unperturbed driver voltage waveforms
(using SPICE with transistor-level model) and the field-per-
turbed waveforms obtained by FDTD.

C. EMI on a Loaded PCB Structure

We turn now to a more realistic application. The 55-cm
PCB structure depicted in Fig. 7 is considered. This configura-
tion is similar to the one analyzed in [3]. Three 400m-wide
coupled strips run parallel to each other on the top (alongco-
ordinate, length 4 cm) and bottom (alongcoordinate, length
4 cm) of the PCB signal layer. Three vias connect the orthog-
onal sections of the strips. Top and bottom glue layers cover the
signal layer, and the entire PCB is metallized on both sides. The
relative permettivity for all layers is , with a single
layer height of 400 m. The innermost strip is driven by the
RBF macromodel of the driver on one end and is terminated on
the other end by the RBF macromodel of the receiver. All the
other terminations consist of 50-resistors. The driver forces
a “010” bit sequence at its output port. In addition, an external

(a)

(b)

Fig. 6. Termination voltages with switching driver at near end, capacitive load
at far end, and incident field. Reference solution is computed without incident
field contribution.

Fig. 7. PCB structure for illustration of incident field coupling. The picture is
not to scale (see text for board dimensions).

wave pulse impinges on the structure from a direction { ,
} with a polarized electric field in standard spherical

coordinates. The amplitude of the pulse is 2 kV/m, with a band-
width of 9.2 GHz. Fig. 8 shows the termination voltages and
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(a)

(b)

Fig. 8. Termination voltages and currents for the PCB structure of Fig. 7 with
and without incident field contribution (NE, near end; FE, far end).

currents for the driven line with and without incident field. This
example illustrates that the proposed modeling strategy can be
employed for the complex task of predicting incident-field cou-
pling effects on interconnected networks loaded by real-world
components.

VII. CONCLUSION

A systematic procedure for the full-wave modeling of inter-
connected digital I/O ports has been presented. The proposed
modeling strategy is based on the implementation of nonlinear
dynamic macromodels of digital ports as lumped elements into
a full-wave FDTD solver. The port macromodels that have
been considered are discrete-time behavioral models based
on RBF expansions. Such models have a solid theoretical
foundation and are shown to provide efficient and extremely
accurate representations of the port behavior for digital drivers
and receivers. A rigorous stability analysis has been performed,
showing that time-step matching between port macromodel
and FDTD sampling times can be achieved through a simple
resampling strategy. This procedure does not spoil the accuracy
of the entire modeling task. A set of numerical examples has
demonstrated the feasibility of the proposed approach.

APPENDIX

STABILITY

Stability is a fundamental feature since it allows to damp the
unavoidable numerical errors occurring at each time iteration.
We split the stability analysis in two parts. First, the intrinsic sta-
bility of the RBF macromodels before resampling is addressed
in Section A. Second, the effects of resampling are investigated
in Section B. Since the initial RBF macromodels are stable and
since this stability is preserved by the resampling procedure,
we conclude that the proposed hybridization of discrete-time
models for digital I/O ports and FDTD results stable.

A. Stability of RBF Macromodels

This section discusses the intrinsic stability of the discrete-
time macromodels for digital drivers and receivers before
applying the resampling procedure. The general functional
form of such models is detailed in (12), with the internal dis-
crete-time states defined by (13). It should be noted that RBF
macromodels are constructed so that their transient response
is the same as for the actual device. Therefore, the stability
of a discrete-time macromodel is determined by the behavior
of the detailed transistor-level model for the device under
consideration. This model must always be stable by definition,
being the starting point of all subsequent approximation steps.

The stability of some macromodel can only be assessed under
given loading conditions. Therefore, we will consider a resistive
load having fixed conductance . The discrete-time system
under consideration becomes

(33)

This is an implicit discrete-time dynamical system that can be
solved for port voltage and current at each time iteration, e.g.,
by Newton–Raphson algorithm. The stability analysis can be
conveniently carried out if we are able to restate this system in
explicit form, i.e.

(34)

where the global state vector collects the current and voltage
states

(35)

The parameters set is omitted for the sake of clarity. Note that
the nonlinear multivariate function depends also on the time
iteration in order to account for the time-varying nature of
digital drivers. Also, since is assumed in this paper to be an
RBF expansion using exponentials as elementary blocks,is
continuously differentiable an arbitrary number of times. Con-
sequently, is continuously differentiable provided that system
(33) has a unique solution. This result is important for the forth-
coming discussion.

Stability guarantees that the unavoidable numerical errors
occurring at each time iteration are not amplified by the dy-
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Fig. 9. Eigenspectrum (magnitude) of linearized system around the
equilibirum point at HIGH (top panel) and LOW (bottom panel) logic states,
for various load conditions.

namics of the model. We consider then, the following perturbed
problem:

(36)

where the term denotes the numerical approximation
error at iteration . Assuming that the perturbed system
above is solved exactly at iteration, we can define the evolu-
tion of the approximation error as

(37)
Due to the differentiability of we can expand to first order
this expression

(38)

where is the Jacobian matrix of . Stability is guaranteed
when all the eigenvalues of satisfy

(39)

We use this criterion to test for stability the RBF macromodels
used in this paper.

The first test shows that the nonswitching driver fixed either
in the HIGH or LOW logic state is always stable regardless of
the load conditions. If the driver is in a fixed state the connection
with a resistive load leads to a single equilibrium (steady-state)
point depending on the load

(40)

since both and do not depend on the time iteration. The
Jacobian matrix and its eigenspectrum can then be computed
at this steady-state point in order to characterize its stability.
Fig. 9 reports the magnitude of all eigenvalues for the driver
under consideration in both logic states, plotted as functions of
the load resistance. Steady states are stable since all eigenvalues
satisfy criterion (39).

The next test illustrates the time-dependent eigenspectrum for
the switching driver. A bit pattern “010” is forced at the output

(a)

(b)

Fig. 10. Switching voltage waveform (50-
 load resistance) for “010” bit
pattern (left panel) and corresponding eigenspectrum (magnitude) of linearized
system.

of the driver through appropriate time-dependent weight func-
tions. A 50- resistive load is connected to the driver and a dis-
crete-time simulation is run. At each time iteration the Jacobian
matrix and its eigenvalues are computed. The result is shown
in Fig. 10. The left panel reports the discrete-time voltage wave-
form at the driver output. The right panel depicts the magnitude
of all eigenvalues at each time iteration. Also, in the dynamic
case, we see that no eigenvalue exceeds one, therefore all numer-
ical errors get damped as the simulation proceeds. We remark
that the same qualitative results are obtained with any load re-
sistance connected to the driver.

B. Resampling and Stability

This section investigates the time stability of the resampled
macromodels derived in Section IV. We show in the following
that the time conversion steps leading to the resampled model
preserve stability. Therefore, if the original macromodel is
stable, the resampled one will also be stable.

Stability of resampling is best illustrated by the behavior of a
standard test problem, namely

(41)
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Fig. 11. Stability of the time conversion applied to the linear test problem. The three panels show the eigenvalues of the discrete, continuous, and resampled test
problem.

The results presented in Appendix A show that the above test
problem is appropriate since all the eigenvalues associated to the
original RBF model before resampling have magnitude less than
one, i.e., the criterion in (39) is unconditionally satisfied. If we
now apply the proposed discrete-to-continuous time conversion
procedure we get

(42)

where a first-order forward approximation of the time derivative
has been used. The relationship between discrete and continuous
state variables is with first-order accuracy. Due
to the stability constraint on the original system (41) we con-
clude that the eigenvalueof the continuous system has nega-
tive real part, allowing us to prove stability. Applying now the
continuous-to-discrete time approximation with samplimg time

, and using again a first-order forward difference approxima-
tion, we get the resampled system

(43)

Fig. 11 depicts the region of the complex plane with possible
values of , i.e., a circle centered at with radius . Sta-
bility is guaranteed when , i.e., when the resampling
factor satisfies

(44)

This is quite natural since the overall resampling process can be
interpreted as the application of a linear interpolation scheme.
If the resampling factor becomes larger than one this scheme
becomes an extrapolation, which is always to be avoided. Also,
due to the usual size of the interconnect structures where the
devices under investigation can be found, the required cell size
for FDTD must be very small in order to describe the geometry
with sufficient accuracy. Therefore, the resulting time stepis
generally much smaller than the time scale of typical driver/re-
ceiver responses. We conclude that the requirement of (44) is
not restrictive in any case of practical interest.
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