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Fast passivity enforcement for large and sparse macromodels 

S. Grivet-Talocia 
Dip. Elatmnica, Politecnico di Torino. C. Duca dcgli A b ~ a i  24,10129 TorinO. Ualy 
Ph +39 011 5644104, Fax +39 011 5644099 ( e m a i l g r i v e t e p o l i t o .  i t )  

Abstract: This papa presents a fast technique for testing and enfming passivity of linear " o d c l a  fharacteriDd by a Me 
and sparse stnrctun. An optimized algorithm is proposed for the mmputation of the imasinary eipmdues of the .rsocirtcd 
Hamiltodim matrix, which M iteratively permrbcd until passivity k eufm.4 Each iteration of the proposed scheme mqnim a 
small computational cost, that scales only liaearly with the sizC of the problem. 

1 Introduction 
T k  designers of high-sped elearonic systems mntirmously face the pmblem of innuing the integrity of the si& in their 

pmducls. Any pamitic efi" dee to unwanted electromagnetic coupl i .  nosstalk, dispersion, larses, ctc. mnst have DO dtmsa 
on the h c l i d  performance of the system In order to reach this gaal, an accurate ehanrtenrail ' 'on and modeliag pr!xdIE 
d be applied inthe earlydeJign stage to all* critical part? of thesystembaviog "e in&" on the m g d a  exampla of 
typical impmtant st"ss arc CMIUCIOIS, package  SIN^"^, signal and powu buses, via auays on primed circuiI Lmmds. a d  
dlscmmmiles. 
We Eansidcr b ~ n  oniy macmmcdeliag app-r based on mtiw shn~nue charaftclizstionr via m e a d  or simnlatcd 6- of 

portresponsesintimcorfreqoencydomain,trequeney~seanningparamdwsbcingthemostco"onsaaatio. Allavailable 
techniques for " m o d e l  gmnrtion (Vector Fitting [8] being one of the mod papular) share the commoll objstiw of genuating 
a r a t i d  approximation of the transfer metdx ofthe stnrctun. Most of these techniques Isad to stable approximations having poles 
withnegalivc 14 paa. HowSW, it is now widely rrmgniad that this is not d i m t ,  sincc a n y n r a a o d  shouldalsobe psh. 
In fact, stable but non-passive mcdels CBMO~ be reliably used for system-level analysis since thsy may l e 4  Io unstable behavior 
depending on the tumination networlrs. 

Several 1 e c h n 4 ~  for enfonxment of " m o d e l  passivity have been reocntly proposed Some of tbac schews m y  lead 
to ovptrcahnent and to rcdnecd a " C y  [l I]. Scmw &er may leave d passivity violations in the resulting " o d c l s  191. 
Finally, cmmx optimizati~ methods am c u u e d y  limited by problem size dus to the hge computational eart [2,3]. Here wc 
consider pnsivity ampemmian lchrma based on the eigmJtntdors of the H8miItonie.n rnstrix assodahd IO thc m a d 1  C6.71. 
We show that the puticlllar- ofthismatrixallows a Mcompubtion ofits e i g "  when thc m a d 1  is&"i 
by kuge and sparsc matrices. This is h&ed a sitoation which k typically cncnmtatd in pradia. me main "mu ' O f t h i r  
papa is a passivity check and mmpeusation algodUun rrqukinB a m b e r  of operations which scales only liocady with the size 
of the problem. Compared Io previous techniques. which need at least O(n') operations, thc pmposcd SCW I& to dgni6-t 
savings of CPU timc and storage Rqlrirsmcnts. 

2 Preliminaries 

. . .. 

We consider a linear timc-immiaut n"ode1 characterid by a p x p rational transfer matrix with rtriay stable poles 

The StaIe-space realization in (I)  is assumed 10 bc in real Gilbert's form [IO]. Then x n ma& A is b lockdiagd  with b l a b  of 
size 1 for rcal pols and size 2 for mmpla poles The number of its nonvanishing entries is Lbw at most 2n We will cnnccnhate 
here on the realistic case p Q: n, i.e. the m b e r  of pons is assumed Io be much less lhan the number ofmsmmodcl states. Thc 
comsponding state matrices B and C are gacraUy hrll. However, for complex s l " s  with P large mrmbu p of porls and 
dynamic order, the poles-residues terms in ( I  ) ax onen computed separately far disjoint groups of hanrfcr mahix enha. This 
pmcedurc leads IO poles that are not corman IO all transfer ~ ~ C I ~ O N  of Ule m&L Cmwqucntly, tbc raidnu m a k i a s  h% M 

possibly sparse with m y  vanishing entries. This lads natmaUy Io staIe-space realizations with also B and C sparse. The limit 
case is w k n  all entries of H ( s )  are dealt with scparatcly during Ule ratioaal approximation 6tap. In thir case, the number of 
mnnnishing cntria in both B and C is at mDSt n. 

Passivity of the " m o d c l  is guaranteed when the "fer mahu B ( s )  is bounckd RBI (case of & w g  rcprcsmtations) 
or porilive real (in case of impedance, adminanee, and hybrid repreaentaIims). We m i d e r  in this WO& only thc scanehg e865, 
although the sam pmcedvrc LK applied with obvious m d k t i o n o  U) any other -tation [7]. Bounded realcalmss is gunran- 
t a d  ifall the singular ntloes of the scaUaing matrix, computed at any frequency B = jw ,  are bounded by one. A purely algebraic l e d  
for passivity which avoids testing all possible frequencies is pmvided by simple mmiitiom on the CigenspecInun ofthe Hamiltanian 
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matrix srsodared to the macromodcl. This matrix bar size 2n and for the scatwring case mds 

with R = (DTD - 7'1) and S = (DDT - 7'1). The m d b  in 171 show that the macromodcl is passive when there are no 
imaginary eigenvalues of Mq-l. In ttct. the scalar parameter y acts as a thrrsbold on the singular values of the scattaing mafix. 
The loeation of the purely imaginary eigenvalues of the Hamiltonian matrix pinpoint prrciscly the trequrncics at which at least 
one singular value of th seathring matrix ms-s the value 7. When this d t  is complnncotcd by a lint-orda pnhubation 
analysis [7l, it is posslile to u m ~ ~ I e  the complete JCt of fiequwey i n t d s  ( ~ , - ~ , w , )  whuc passivity violations ocm This 
analysis rcquircs knowledge of both imaginaty eigenvalues of 

The rich info" proviacd by the eigenspechmn of the Hamiltonian matrix can bc exploited to setup an itaatiw scheme 
leading to compensation of th detected passivity violations. 'The main derivation of such scheme is presented in [S. 1, so we 
mall the main step in Algorithm 1. We compute a c d o n  matrix A for the iterative modi6cation of state space mahix C. 
This ccmrotion is linearly related via a Erst-ordor pdurbation analysis to the perturbed location of the Hamiltonian imaginary 
cigwaluer. Therefors. the computation of A (step 5) is a c h i d  by wlving small linear undudctennioed least problems. 
'The paaienlar solution " i d n g  the impact on the macromodel accuracy is chosen (see [7l for details). We runark that all 
"putations mqnkd by step 1,3,4,7 of the algorithm am based on eigenvalue computations. 

Algorithm 1 Compute a passive " m o d e l  via pcaurbation of Hamiltonian eigenspectnun. 

and their associated eigenvectors. 

Re-: state-- mshioes A, B, C, D 
I: compute the set A of imagitlary eigenvalues of 
2: whlleA#0do 
3: 
4 
5: 
6: C + C + A  
'I: 
8 endwhile 

daermine the violation bandwidths (wc- I ,  w i )  
estimate "Ml singular value 7mu in each violation bandwidth 
paturb the imaginary eigenvalues and compute correction matrix A 

compute the set A of imaginary eigenvalues of M,=I 

3 Sparse passivity enforcement 
The computation of pnreiy imaginary eigcmalms of Hamiltonian makices plays a cmcial role in checking and enfming par 

s M l y  ofthe assodated macromodels. The simplest approach for this computation is to we a full eigenvalue wlver in order to 6nd 
the eamplek a g c n r p e c ~  of the Hamiltonian matrix, and to emact a posteriori the imagina~~ eigenvalues and the associated 
eigenvectors. When the matrix sizc is vuy hgc. however, the computational cost becomes excessive since the number of operations 
r e q u i d  by a 

We pmposs in this paps a fast technique for the Mmpnhtion of the few imaginary eigedues of interest. Thc nmber of 
rqnircdopedonssralcs onlyliecarlywiththe pmblemsizc,tbusalloaringpassivitycompenJationforvcry larpemauomcdcls. The 
key factor for such a fast algorithm is the Shumano-Morrison-Wmdbmy Lemma [SI. which applied to the Hamiltonian matrix (2) 
rrads 

cigcmolm d e s  as the third power of the problem size. 

arberroisagivcnpoint(rhiff)inthccomplaplanc,A*~ = (AfoI)-'andH.t, = D-CA*,B. SinccAisalmostdiagonal 
h e  to the adopted Gilbert atate-space rcalizati~, matdces A i .  can be computed analytically and prcscrve the almost diagonal 
ssmhuc. All ma- in (3) are therefore sparse, except for the inner matrix to be inverted, which howcw has only size 2p. 

Equation (3) can be llsed to construct at a reduced computational cost the Krylov subspace assaclaled t o w  given vector U ,  

K r d ( ( M v - u Z ) - L , ~ )  =span { u,(M,-ul ) - 'a  ,...,( M , - u ~ ) ) - ~ + ~ u }  (4) 

The well-known Amoldi algoriUun [I] can be used to c o " c t  an orthogonal hasis for this subspace. This basis is employed 
to build a Galakh projeclion of the Hamiltonian matm onto the d-dimensional Krylov subspace. The eigenvalues of the d x d 
obtained matrix are appmximations to the eigenvalues of M., closc to the ShiA U. We use here a m01c refined vcrsian of the Amoldi 
scheme, inclnding automatic restarts (selenions of starting wetor U in (4)) and deflation (in ordu to 6nd comnging eigenvalues 
mor0 quickly). 'The developed algorithm is a modification of the basic version in [I]. It turns out that the numba of operations 
needed to compute each vector in (4) is bounded by 8n + 2np + 4p2, whemas the cost of the orthogonalization process is about 
4nda opuations. Tkmforq the total number of required oprations is linear in the m k r  of manomodel states. 

The above procedun is embedded in an outer Imp aimed at the optimal scledon of multiple ahifts U* in the complex plane, 
leading to the computation of the imaginary eigenvalues of the Hamiltonian matrix. Since this eigenspst" is symmetric with 

248 



1 II 1 1488 1 12 1 2688 I 888 I 1488 I 144 I 

Table 1: Two test eases for illwhation of the proposed sparse Hamiltonian eigenvalue solver. For each of the two 
systems th6 number of states n, the number of ports p, and the number of nonvanishing entries #(.} of eacb state 
matrix is reported. 

Figure 1: Singular values of the scattering matrix for test cases I and Il plotted versus frequency. 

respect to the imagimy axis, we choose purely imaginary shifis A bisection pnnxss similar to the arrll-'kmam Complex Frcsuency 
Hopping (CFH) algorithm [4] is used rmM the entire bandwidth of inter4 is covered by thc wllvc~gcnce region (a c h k )  enwm 
passing the eigenvalues detecled by each shift (cater). This proced~!~~ leads to the determination ofall imagiaarY eigenvalues of the 
Hamiltonian matrix with any presuited aEcIwcy. We emphasize that the wmputational cost is weakly (linearly) dependent on the 
problem Sire. Since several types of iterations are employed (Amoldi iterations, ShiA iterations, and passivity wmpensation itera- 
tions), the actual computational cost is problun-dependent and is expected lo inorase when the passivity violations are significant 
The numerical results pramcd in n a t  section show that the proposed technique leads to large CPU time savings for the psrivity 
compensation when applied to stmfurrs of practical interest. 

4 Examples 
WE illusfrate the e5ciacy of the pmposed technique by applying it to two l q e  and s p I X  mamdds rePrexhg the 

sealkring port behavior of two high-speed pacleging struchues (wurtesy by Sigrity, Inc.). Table 1 SUmmadEes the dynamic order, 
the number of parts, and the -her of n o m  elements for each of the state space matrices. Note that the size ofthe Hamiltonian 
ma& for the two cases is 2n =I640 and 2976. respectively. 

Panels (a) and (c) in Fig. 1 rcpoa the frequency behavior of the singular values of the acanUing &x of the W O  I"cdeIs. 
The passivity violations in both eases are very small. As detailed in Sec. 2, the imagina~~ eigemalues of the associated Hamiltonian 
mahices carrespond to the k q n a c i e  of the intersection p 0 h s  of thesc curves with horhntal liaes al a gim level 7. In order 
to validate our proposed sparse eigenvalm solver, we selectd a significant range y E [0.9,1.02] and we performed a sweep M 
7 over this range+ For each fixed 7, we computed all the purely imaginary e igednes  of the Hamiltonian matrix using (i) the 
proposed spam technique; (ii) a full c i g d u e  solw without wmputation of the eigenvktors; and (Si) a full eigenvalue solver 
with wmpldation of the eigenvcetors. MATLAB d g  on a 1.8 GHz Pentium IV PC with a I GBpe of RAM was UKd for all 
numerical ~ ~ a n ~ p l ~ .  The n m b u  of imaginary eigenvalues far the selected range of y varies fivm 0 to 24 for the two cases. The 
relative d i f S m c  between the e igadues  computed by the s p m c  and full solver resulted in all case below IO-", Which Was the 
actnal threshold used to stop the Amoldi iteraions. The CPU t i c  re*d for all computations is reported io Fig. 2. The advantages 
ofthe proposed spar% technique are evident. We remark that, sincc the proposed algorithm is based on subspace iterations. also 
eigmveclon are w d  Therefox. the CPU time of the spme solver should he compared to the CPU timc required by the full 
solver " i n g  also the eigenveclon. For Case I, the average CPU times for the sparse, full. and full with cigcmectm solutions are 
46,131. and 434 seconds, respectively. For Case U, we ablained 53,965. and 261 1 seconds. As expected, the CPU h e  mWkd 
for the s p a  solver has a weak dcpendcnce on the actnal dimension of the Hamiltonian matria. Comrendy, the CPU time required 
for the full solution scales as the third power of ulis dimension, leading to l q e  execution times for large matrices. 
We report now the results of the entire passivity compensation scheme using the proposed sparse Hamiltonian eigcnsolw. Both 

Case I and I1 were analyzed and snccessfully corrected for passivity in 9 and 13 iterations. respectively. The resulting singular d u e s  
are plotled in panels @) and (a) of Fig. 1. The relative perhubation ofthe state matrix C that was required to reach passivity was 
IIAIIp/l/C/lp = 0.0013 for Case I and 0.0048 for Case I1 (subscript p denotes the Frohius  norm). These amounts correspond to 
the relalive amount of perturbation, mcanvcd in the energy norm, on the cumulative set of impulse responses. The small per"ation 
amouots obtained indicate a minimal impact on the accuracy of the mammcdels. Of WUTSC, these results were obtained without 
distinction both with the 111 and the sparse version of the passivity enfomment algorithm. However, the CPU time requind for the 
passivity wmpcnsation clearly shows the advantages of the proposed sparse techniqne. Case I required only 6.7 minutes compand 
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Figure 2: Comparison of sparse and full eigenvalue solvers for Case I (left) and Case II (right). The two panels report 
the CPU time that was required forth6 canputation of all purely imaginary eigcnpairs. 

to 84 mhutes needcd by the full i m p l ~ l a t i o n  Case II mlukcd only 17 minutes, compared to 18 hours ofthc full vusian. 

5 Conclusions 
We bave pleMntcd an algorithm for thc passivity check and cnforcswnt of large and sparse macromodcls Thc proposed 

tcchniquc is bawd on iteratin compmation ad pembation of purely imaginary eigcnvalocs of the Hamiltonian mavix arsociatcdto 
thc “ m o d e L  We perform this taf.k using an optimizsd computation of these eigunalues, which requires a number of operations 
that scales only linearly with thc problem sin. As a result. passivity can bc enforced for vcry large mauomodels rrprcsenling 
high-speed intsrmlmeEtr with a psu i ly  large numbu of poas over a bmad frrqucncy range. Thc numerical rrrults reponed in this 
papa show a significant incrcasC in cfficimcy with rc@t to previous passivity enfcuament schemes. 
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