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Fast passivity enforcement for large and sparse macromodels

S. Grivet-Talocia

Dip. Elettronica, Politecnico di Torino, C. Duca degli Abruzz 24, 10129 Torino, Italy
Ph. 439011 5644104, Fax +39 011 5644099 (e-mail grivet@polito.it)

Abstract: This paper presents a fast technique for testing and enforcing passivity of lirear macromodels characterized by a large
and sparse structure. An opiimized algorithm is proposed for the computation of the imaginary eigenvalues of the associated
Hamiltonian matrix, which are iteratively perturbed until passivity is enforced. Each iteration of the proposed scheme requires a-
small ceimputational cost, that scales only linearly with the size of the problem,

1 Introduction

The designers of high-speed electronic systems continuously face the problem of insuring the integrity of the signals in their
products. Any parasitic effect due to unwanted electromagnetic coupling, crosstalk, dispersion, losses, etc. must have no influence
on the functional performance of the system. In order to reach this goal, an accurate characterization and modeling procedure
must be applied in the early design stage to all the critical parts of the system having some influsnce on the signals. Exanples of
typical important structures are cannectors, package structures, signal and power buses, via amays on printed circuit boards, and
discontinuities.

We cansider here only macromodeling approaches based on native strocture characterizations via measured or simulated sets of
port responses in time or frequency domain, frequency-domain scattering parameters being the most common scenario. All available
techniques for macromode} gencration (Vector Fitting [8] being one of the most popular) share the common objective of generating
a rational approximation of the transfer matrix of the structure. Most of these techniques lead to stable approximations having poles
with ncgative real part. However, it is now widely recognized that this is not sufficient, since any macromodel should also be passive.
In fact, stable but non-passive models cannot be reliably used for system-level analysis since they may lead to unstable behavior
depending on the termination networks.

Several techniques for enforcement of macromodel passivity have been recently proposed. Some of these schemes may lead
to overtreatment and to reduced accuracy [11]. Some other may leave small passivity violations in the resulting macromodels {91
Finally, convex optimization methods are currently limited by problem size due to the large computational cost [2, 3). Here we
consider passivity compensation schemes based on the eigenstructure of the Hamiltonian matrix associated fo the macramodel [6, 7).
We show that the particular structure of this matrix allows a fast computation of its eigenvalues when the macromodel is characterized
by large and sparse matrices. This is indeed a sitmation which is typically encoumtered in practice. The majn contribution of this
paper is a passivity check and compensation algorithm requiring a number of operations which scales only linearly with the size
of the problem, Compared to previons techniques, which need at least O(n*) operations, the proposed scheme leads to significant
savings of CPU time and storage requirements.

2 Preliminaries
We consider a linear time-invariant macromodel characterized by a p X p rational transfer matrix with strictly stable poles
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The state-space realization in (1) is assumed to be in real Gilbert's form [10}. The n x n matrix A is block-diagonal with blocks of
size 1 for real poles and size 2 for complex poles. The number of its nonvanishing entries is thus at most 2n. We will concentrate
here on the realistic case p <€ n, i.c., the number of posts is assumed to be much less than the number of macromode! states. The
corresponding state matrices B and C are gencerally full. However, for complex structures with a large number p of ports and
dynamic order, the poles-residnes terms in (1) are often computed separately for disjoint groups of transfer matrix entries. This
procedure leads to poles that are not common to al! transfer functions of the model. Consequently, the residues matrices Ry are
possibly sparse with many vanishing entries. This leads naturally to state-space realizations with also B and C' sparse. The limit
case is when all entries of H(s) are dealt with separately during the rational approximation stage. In this case, the number of
nonvanishing entries in both B and C is at most n.

Passivity of the macromodel is guaranteed when the transfer matrix H (s) is bounded real {case of scattering representatians)
or positive real (in case of impedance, admittance, and kybrid representations). We consider in this work only the scattering case,
although the same procedure can be applied with obvious modifications to any other representation [7]. Bounded realness is guaran-
teed if all the singular values of the scattering matrix, computed at any frequency s = jw, are bounded by one. A purely algebraic test
for passivity which avoids testing all possible frequencies is provided by simple conditions on the eigenspectrum of the Hamiltonian
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matrix associated to the macromodel. This matrix has size 2n and for the scattering case reads

M. =( A-BRD'C —yBR'B” )

v = 7605—10 __AT +cTDR—lBT J ( )
with R = (D™D = 4*]) and § = (DDT — 4*I), The results in [7] show that the macromodel is passive when there are no
imaginary eigenvalues of M. In fact, the scalar parameter  acts as a threshold on the singular values of the scattering matrix.
The location of the purely imaginary eigenvalues of the Hamiltonian matrix pinpoint precisely the frequencies at which at least
one singular value of the scattering matrix assumes the value 4. When this result is complemented by a first-order perturbation
analysis [7], it is possible to compute the complete set of frequency intervals (wy—1,w;) where passivity violations occnr. This
analysis requires knowledge of both imaginary eigenvalues of M., and their associated eigenvectors.

The rich information provided by the eigenspectrum of the Hamiltonian matrix can be exploited to setup an iterative scheme
leading to compensation of the detected passivity violations. The main derivation of such scheme is presented in {6, 7], so we
recall the main steps in Algorithm 1. We compute a correction matrix A for the iterative modification of state space matrix C.
This correction is lincarly related via a fixst-order perturbation analysis to the perturbed location of the Hamiltonian iroaginary
cigenvalues. Therefore, the computation of A (step 5) is achieved by solving small linear underdstermined least squares problems.
The particular solution minimizing the impact on the macromode] accuracy is chosen (see [7] for details). We remark that alt
camputations required by steps 1, 3, 4, 7 of the algorithm are based on eigenvalue compntations.

Algorithm 1 Compute a passive macromodel via perturbation of Hamiltonian eigenspectrum.
Require; state-space matrices A, B, C, D )
1: compute the set A of imaginary eigenvalues of M..=;
2: while A £ 0 do
determine the violation bandwidths (w1, w;)
estimate maximum singular value ,,,a, in each violation bandwidth
perturb the imaginary eigenvalues and compute cotrection matrix A
C~C+A
compute the set A of imaginary eigenvalues of M=y
end while

o koW

3 Sparse passivity enforcement‘

The computation of purely imaginary eigenvalues of Hamiltonian matrices plays a cmcial role in checking and enforcing pas-
sivity of the associated macromodels. The simplest approach for this computation is to use a full eigenvalue solver in order to find
the complete eigenspectrum of the Hamiltonian matrix, and to extract a posterior the imaginary eigenvalues and the associated
eigenvectors. When the matrix size is very large, however, the computational cost becomes excessive since the number of operations
required by a full eigensolver scales as the third power of the problem size.

We propose in this paper a fast technique for the computation of the few imaginary eigenvalues of interest. The number of
required operations scales only linearly with the problem size, thus allowing passivity compensation for very large macromodels. The
key factor for such a fast algorithm is the Shermann-Morrison-Woodbury Lemma [5), which applied to the Hamiltonian matrix (2)
reads

ORI IO B e | | e - B S | e

where o is a given point (shift) in the complex plane, A1, = (A+oI)"'and Hyi, = D — C A4, B. Since A is almost diagonal

due to the adopted Gilbert state-space realization, matrices A+, can be computed analytically and preserve the almost diagonal

structure. All matrices in (3) are therefore sparse, except for the inner matrix to be inverted, which however has only size 2p.
Equation (3) can be used to construct at a reduced computational cost the Krylov subspace associated to any given vector v,

Kr® (My — 02)™",v) = span {v, (My = 0T) »,...., (M ~ 0T)" %0} )

The well-known Amoldi algorithm [}] can be wvsed to construct an orthogonal basis for this subspace. This basis is employed
to build a Galerkin projection of the Hamiltonian matrix onto the d-dimensional Krylov snbspace. The eigenvalues of the d x d
obtained matrix are approximations to the eigenvalues of M., close to the shift 0. We use here a more refined version of the Amoldi
scheme, including automatic restarts (selections of starting vector v in (4)) and deflation (in order to find converging eigenvalues
more quickly). The developed algorithm is a modification of the basic version in [1]. it turns out that the munber of operations
needed to compute each vector in (4) is bounded by 8n + 2np + 4p°, whereas the cost of the orthogonalization process is about
4nd® operations. Therefare, the total number of required operations is linear in the mumber of macromode] states.

The above procedure is embedded in an outer loop aimed at the optimal selection of multiple shifts o), in the complex plane,
leading to the computation of the imaginary eigenvalues of the Hamiltonian matrix. Since this eigenspectrum is symmetric with
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System | n | p | #{A} | #{B} | #{C} | #{D}
1 820 | 10 | 1400 | 530 ] 820 100
I | 1488 | 12| 2688 | 888 | 1488 | 144

Table 1: Two test cases for illustration of the proposed sparse Hamiltonian eigenvalue solver. For each of the two
systems the number of states n, the number of ports p, and the number of nonvanishing entries #{-} of each state
matrix is reported.
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Figure 1: Singular values of the scattering matrix for test cases I and I plotted versus frequency.

tespect to the imaginaty axis, we choose purely imaginary shifts. A bisection process similar to the well-known Complex Frequency
Hopping (CFH) algorithm [4] is used unti] the entire bandwidth of interest is covered by the convergence region (a circle) encom-
passing the eigenvalues detected by each shift (center). This procedurs leads to the determination of all imaginary eigénvalues of the
Hamiltonian matrix with any prescribed accuracy. We emphasize that the computational cost is weakly (linearly) dependent on the
problem size, Since several types of iterations are employed (Amoldi iterations, shift iterations, and passivity compensation itera-
tions), the actual computational cost is problem-dependent and is expected to increase when the passivity vielations are significant.
The numerical results presented in next section show that the proposed technique leads to large CPU fime savings for the passivity
compensation when applied to structures of practical interest.

4 Examples

We illustrate the efficiency of the proposed technique by epplying it to two large and sparse macromodels representing the
scatfering port behavior of two high-speed packaging structures (courtesy by Sigrity, Inc.). Table 1 summarizes the dynamic order,
the number of ports, and the namber of nonzero elements for each of the state space matrices. Note that the size of the Hamiltonian
matrix for the two cases is 2n =1640 and 2976, respectively.

Panels (a) and (c) in Fig. 1 repost the frequency behavior of the singular values of the scattering matrix of the two macromodels.
The passivity violations in both cases are very small. As detailed in Sec. 2, the imaginary eigenvajues of the associated Hamiltonian
matrices carrespond to the frequencies of the intersection points of these curves with horizontal lines at a given level . In order
to validate our proposed sparse eigenvalue solver, we selected a significant range v € [0.9, 1.02] and we performed a sweep on
« over this range. For each fixed 4, we computed all the purely imaginary eigenvalues of the Hamiltonian matrix using (i) the
proposed sparse technique; (i) a full eigenvalue solver without computation of the eigenvectors; and (iii) a fizll eigenvalue solver
with computation of the eigenvectors. MATLAB running on a 1.8 GHz Pentium [V PC with a 1 GByle of RAM was used for all
numerical examples. The nember of imaginary eigenvalues for the selected range of -y varies from 0 to 24 for the two cases. The
relative difference between the cigenvalues computed by the sparse and full solver resulted in all cases below 107 %, which was the
actual threshold used to stop the Amoldi iterations. The CPU time required for all computations is reported in Fig. 2. The advantages
of the proposed sparse technique are evident. We remark that, since the proposed algoritho is based on subspace ierations, also
eigenvectors are returmed. Therefore, the CPU time of the sparse solver should be compared to the CPU time required by the full
solver returning also the eigenvectors. For Case I, the average CPU times for the sparse, full, and full with eigenvectors solutions are
46, 131, and 434 seconds, respectively. For Case II, we obtained 53, 965, and 2611 seconds. As expected, the CPU time required
for the sparse solver has a weak dependence on the actual dimension of the Hamiltonian mateix. Conversely, the CPU time required
for the full solation scales as the third power of this dimension, lezding to large execution times for large matrices.

We report now the results of the entire passivity compensation scheme using the proposed sparse Hamiltonian eigensolver. Both
Case [ and 1I were analyzed and successfully corrected for passivity in 9 and 13 iterations, respectively. The resulting singular values
are plotted in panels () and (d) of Fig. 1. The relative perturbation of the state matrix C that was required to reach passivity was
{|A[lp/IC}|r = 0.0013 for Case I and 0.0048 for Case II (subscript  denotes the Frobenius norm). These amounts correspond to
the relative amount of perturbation, measured in the energy norm, on the cummlative set of impulse responses. The small perturbation
amounts obtained indicate a minimal impact on the accuracy of the macromodels. Of course, these results were obtained without
distinction both with the full and the sparse version of the passivity enforcement algorithm. However, the CPU time required for the
passivity compensation clearly shows the advantages of the proposed sparse techaique. Case I required only 6.7 minutes compared
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Figure 2: Comparison of sparse and full eigenvalue solvers for Case I (left) and Case II {right). The two panels report
the CPU time that was required for the computation of all purely imaginary cigenpairs.

to 84 minutes needed by the full implementation. Case I required only 17 minutes, compared to 18 hours of the full version.

5 Conclusions

We have presented an algorithm for the passivity check and enforcement of large and sparse macromodels. The proposed
technique is based on iterative computation and perturbation of pusrely imaginary eigenvalues of the Hamiltonian matrix associated to
the macromodel. We perfarm this task using an optimized computation of these eigenvalues, which requires a number of operations
that scales only linearly with the problem size. As a result, passivity can be enforced for very large macromodels representing
high-speed interconnects with a possibly large number of ports over a broad frequency range. The numerical results reported in this
paper show a significant increase in efficiency with respect to previous passivity enforcement schemes.
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