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Role of nonpairwise interactions on phonon thermal transport

A. Sparavigna
Dipartimento di Fisica and Istituto Nazionale di Fisica della Materia (INFM), Politecnico di Torino, C.so Duca degli Abruzzi 24

10129 Torino, Italy
~Received 5 October 2002; revised manuscript received 13 January 2003; published 29 April 2003!

In this paper, the phonon system for a perfect silicon lattice is obtained by means of a model considering a
phenomenological potential that includes both two- and three-body contributions. Phonon dispersions are
discussed, and anharmonic contributions to the phonon Hamiltonian are evaluated. The model is compared
with a model involving a pairwise potential, previously used by the author in the calculation of silicon thermal
conductivity. The equation of motion is solved for both models, obtaining phonon dispersions practically
indistinguishable and in good agreement with the experimental data. The role of nonpairwise interactions in
phonon-phonon–scattering processes, relevant for the calculation of thermal conductivity, is then discussed.
The thermal conductivity obtained with the present model including two- and three-body interactions has a
good agreement with the experimental data, better than the one previously achieved with the model involving
a central potential.

DOI: 10.1103/PhysRevB.67.144305 PACS number~s!: 66.70.1f, 63.20.Mt
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I. INTRODUCTION

To obtain the phonon system of a lattice, the first step i
solve the equation of atomic motion, deriving the forces a
ing on the lattice sites from potential-energy~V! functions of
the particle coordinates. A model of the lattice is then nec
sary with the potentialV(r1 , . . . ,rN) depending on theN-
lattice site positions. For certain materials, the choice of
interatomic functionV required in dynamic simulations i
still an open problem that calls for a large fraction of t
activity done in the condensed-matter physics.

Fitting the potential on experimental data, with a para
etrization of the functions that appear in its analytical for
allows to design a phonon system suitable to discuss,
instance, mechanical and thermal properties of the mate
One of the more complex tasks is the determination of
phonon thermal conductivity in a perfect lattice or in a latti
with defects~pointwise or extended defects!. Assuming the
phonon distribution to obey the Boltzmann equation, the
viation from the equilibrium distribution caused by a therm
gradient can be obtained by means of several approach
solve the transport problem~see, for instance Ref. 1!.

The major problem that one faces in the calculation
thermal resistance is the determination of phonon-scatte
probabilities. Usually, the probability rates are conside
within a relaxation-time approximation,2–5 often assuming a
continuum hypothesis~such as Debye and Einstein mode
for acoustic- and optical-phonon branches6!: in this frame-
work, the interatomic potential turns out to be inessential
the development of calculations.

As proposed in Ref. 7, an iterative approach to the B
zmann equation allows us to handle a realistic atomic mo
considering in a rigorous way the three-phonon scatte
processes and the phonon scattering from lattice defects.
iterative approach was applied to rare-gas crystals an
diamondlike structures~C,Si and Ge!,8,9 where a pairwise
potential was introduced to obtain phonon dispersions
three-phonon–scattering probabilities.

A strong criticism to this iterative evaluation of therm
0163-1829/2003/67~14!/144305~7!/$20.00 67 1443
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conductivity is that a pairwise potential can be inaccurate
the determination of a phonon system and a phonon an
monicity. An approach to determine the thermal transp
with a many-body potential, notwithstanding the complex
of the problem, is presented here.

The comparison of the phonon frequencies, extracted
means of equation of the motion with two different potentia
~pairwise and many body!, shows that the dispersion rela
tions are practically indistinguishable and in good agreem
with experimental data. The phonon-phonon–scatter
probabilities with a nonpairwise interaction are then es
mated and the thermal conductivity for a silicon samp
evaluated.

It is then possible to give an answer to the problem of
role and accuracy of the pairwise potential in the model o
phonon system.

II. PHONON SYSTEM
IN THE SILICON PERFECT LATTICE

Assuming the lattice behavior to be controlled by an
teratomic potential depending on the coordinates of
atomic sites, the simplest analytical form that can be use
a sum of pairwise terms, with the energy of a pair depend
on their relative distance, that is,Vi j 5V(ur i j u), wherer i j is
the vector joining the two lattice points at thei and j sites.

Many-body forms have been proposed, for instance,
Keating potential, widely used to study elastic and sta
properties of covalent semiconductors and applied to the
vestigation of defect vibrational modes in diamondli
crystals.10,11 The Stillinger-Weber potential was the first a
tempt to construct a potential for silicon12 based on two-body
and three-body terms, and depending on the site dista
and anglesu between adjacent lattice bonds with a vertex
the lattice site. The structure of the potential favors the c
figuration where cosu521

3, that is, a structure with angles a
close as possible to that found in the diamondlike tetrahe
structure.

The Stillinger-Weber potential gives a fairly realistic d
©2003 The American Physical Society05-1
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scription of crystalline silicon. A modified form was tested
lattice-dynamics calculations in germanium.14 However, the
built-in tetrahedral bias of the potential creates problems
the evaluation of energies of nontetrahedral polytypes fo
under pressure.13 The family of potentials developed by Te
soff are based on bond orders, where the strength of a b
between two atoms depends on the local environment.15–18

The problem of the choice of the potential was not
relevant in the study of thermal conductivity, since the us
approach to the thermal transport determination was thro
the time-relaxation approximation. Now, we have at our d
posal a different approach, an iterative one,7 that takes into
account the true lattice, and works with phonon dispersi
and phonon-phonon interactions elaborated from a pote
function. Therefore, the problem of the type of potential us
in the thermal conductivity calculation becomes relevant.

Assuming a diamondlike lattice, let us denote by indei
the lattice site at one of the two positions of the basis i
generic cell. Assuming a central potentialV(r ), wherer is
the interatomic distance, and callinghi the displacement o
atom i from its average positionRi in the vibrating lattice,
one can expand in terms of the displacements the func
V(r )5V(ur i j u):

19

Vi j 5
dV

dR2
d~r i j •r i j !1

1

2

d2V

d~R2!2
@d~r i j •r i j !#

21 . . . , ~1!

where r i j 5Rj1hj2Ri2hi5Ri j 1hj2hi , R5uRi j u, and
d(r i j •r i j ) is the square of the distance variation due to
displacement field. In this way, one obtains the followi
expression for the second-order term of the potential ene
of interaction betweeni and j atoms:

Vi j
(2)5

1

2
$G@hj2hi #•@hj2hi #1B@Ri j •~hj2hj !#

2%, ~2!

where

G5
1

R

dV

dR
; B5

1

R

d

dRF 1

R

dV

dRG . ~3!

The coefficientsG and B depend on the equilibrium lattic
site distance. The force acting on sitei can be obtained by
the total potential energyV(2)5( jVi j

(2) of the reticular cen-
ters; consequently the equation of motion can be written
the form

M ḧi52¹hi
V(2)5(

j
$G~hj2hi !1BRi j •~hj2hi !Ri j %

~4!

whereM is the atomic mass.
An elementary excitation of the crystal in the harmon

approximation will be represented by a phonon with wa
vector q, polarization indexp, and polarization vectoreqp .
The phonon frequency will be indicated byvqp . The repre-
sentation here used for calculations can be found in Ref.
in Ref. 1.

The aim of the work reported in Ref. 9 was to solve t
phonon Boltzmann equation20 for a solid having the structure
14430
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and the vibrational~harmonic and anharmonic! properties of
the real lattice. The model of the solid with a discrete retic
lar lattice and a pair potential proposed in Ref. 9 gave go
phonon-dispersion relations and reliable information on
weight of the various scattering mechanisms contributing
thermal resistance; in particular, it was possible to evalu
the role of optical phonons in the scattering processes
function of temperature.

However, the choice of a pair potential to obtain the ph
non system can be open to criticism. It is then necessar
face the problem of the thermal conductivity estimation
the framework of a more general potential, including no
pairwise interactions.

Here, the subject of the paper is to develop an appro
able to manage the phonon system with nonpairwise inte
tions and to discuss its anharmonicity.

Let us now introduce the new phonon assembly, wh
the pairwise potential is replaced by a many-body potent
having in mind the well-known Stillinger-Weber and Terso
forms, that is, introducing in the potential energy a thre
body interaction, with an explicit dependence on angleu i jk
between bondsi-j and i-k with vertex i. The potential as-
sumes the following analytic form:

Vi j ~r i j !5@a f1~r i j !1bi j f 2~r i j !# f c~r i j !, ~5!

where

bi j 5 (
kÞ i , j

Z21

b~r i j ,r ik ,g~cosu i jk !! f c~r i j ! f c~r ik!, ~6!

with Z the site coordination number.f 1 and f 2 are suitable
functions depending on the site distances;f c is a cutoff func-
tion truncating the potential at a point between the near
neighbor~nn! and next-nearest-neighbor~nnn! distances for
the diamondlike lattice, as in the Stillinger-Weber and T
soff potentials. Developing the potential with respect to d
tancesr i j , r ik and angleu i jk , and retaining only the low-
order terms, one obtains

Vi j 5
]V

]~R2!
d~r i j •r i j !1

1

2

]2V

]~R2!2
@d~r i j •r i j !#

2

1(
k

]V

]g
d@g~u i jk !#1•••, ~7!

where derivatives are evaluated at lattice equilibrium po
tions. The functiong(u i jk) is taken with the same structur
appearing in the Stillinger-Weber potential:

g~u i jk !5~cosu i jk1 1
3 !2. ~8!

The first and the second terms in Eq.~7! have been already
found in Eq.~2!, since they refer to distance variations a
are coming from the central part of the potential. The th
term in Eq.~7! now describes the role of an angular variati
when the lattice moves from the equilibrium position. T
variationd@g(u i jk)# is due to the displacement field of thre
adjacent lattice positionshi ,hj , and hk . As we shall see
5-2
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later, the third term gives harmonic and anharmonic con
butions to the potential interaction.

To handle the calculation in an easy way, the notation

hj2hi5di j ; hk2hi5dik ~9!

is used. Vectorsr i j ,r ik ,Ri j ,Rik ,hi ,hj ,hk are shown in Fig.
1. The angle with a vertex in sitei changes according to th
atomic position variations around the equilibrium positi
cosuijk521/3.

An obvious definition of cosine is

cosu i jk5
~Ri j 1di j !•~Rik1dik!

ur i j uur iku
. ~10!

If in this formula, the denominatorur i j uur iku is put equal to
R2, terms that are relevant to obtain a proper phonon dis
sion evaluation are lost.

The variation due to the angular changed@g(u ik j )# at the
harmonic order is then given by

R4d@g~u i jk !#

5~di j •Rik!21~dik•Ri j !
212~di j •Rik!~dik•Ri j !

12/3~di j •Ri j !~di j •Rik!12/3~di j •Ri j !~dik•Ri j !

12/3~dik•Rik!~di j •Rik!12/3~dik•Rik!~dik•Ri j !

11/9~di j •Ri j !
211/9~dik•Rik!2

12/9~di j •Ri j !~dik•Rik!. ~11!

In Eq. ~11! there are two terms of the form (Ri j •di j )
2

5@Ri j •(hj2hi)#2 already found in Eq.~2!, meaning a re-
distribution of energy among the various contributions. T
last three terms in Eq.~11! are the most relevant terms t
obtain transverse-acoustic modes in good agreement with

FIG. 1. Vectorsr i j ,r ik ,Ri j ,Rik join the actual positions and th
equilibrium positions of the lattice sites.hi ,hj ,hk represent the
lattice displacement field at thei , j , andk sites. Note the angle with
a vertex in the sitei: it is changing according to the atomic positio
variations. The equilibrium position is giving a value cosuijk

521/3.
14430
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experimental data, and are exactly the terms disappea
from the development of Eq.~10!, where in the denominato
it is considered thatur i j uur iku5R2.

The equation of motion becomes

M ḧi52¹hi
Vi5G(

j Þ i
~hj2hi !1B(

j Þ i
Ri j •~hj2hi !Ri j

1
J

2 (
j Þ i

(
kÞ i , j

F8

9
Ri j •~hj2hi !Ri j

1
8

9
Ri j •~hj2hi !Rik1

8

3
Rik•~hj2hi !Rik

1
8

3
Rik•~hj2hi !Ri j G ~12!

with a new coupling constant

J5
1

R4

]V

]g
. ~13!

If only nn lattice site interactions are included, only thr
coupling constantsG, B, andJ are involved in the equation
of motion.

Before solving the equation and investigating the role
the new terms appearing in Eq.~12!, let us remember that in
Eq. ~11! only harmonic contributions have been consider
Anharmonic terms also come from the angular variation
they are not shown in Eq.~11!: obviously, they must be
involved in the thermal conductivity calculations. Other a
harmonic contributions can come from the mixed variati
d@r i j •r i j #d@cosuijk11/3#2, but they are terms of the fourth
order, usually not considered in the evaluation of therm
transport.

The new harmonic contributions can be easily inserted
the framework of the calculation previously used in Ref.
The equation of motion is transformed into a linear homo
neous system of equations of the form

(
b51

6

aabeb1v̄2ea50, ~14!

where v̄ is the phonon reduced frequency andea are the
spatial components of the polarization vector related to
two atomic sites of the cell basis~three for each site of the
basis!. The coefficients of the Hermitian matrixaab for the
central potential are given in Table I of Ref. 9, here call
aab

old . These coefficients must be modified to include the c
tribution of the angular variations. The matrix coefficien
become

aab5aab
old1bab , ~15!

with

bab5j1Nab
1 1j2Mab

1 for a51,2,3 andb51,2,3;
5-3



he
th
ts
n

-

e

to
ra
a
ts

th

ters
o-
en
nnn
lar

em

the
a is
ed

ms
l-

e
f the

nd-
e
h

cti-
e

n
q.

d. If

ntal

y
m

rep-
ef. 9
es.
le I.

A. SPARAVIGNA PHYSICAL REVIEW B 67, 144305 ~2003!
bab5j1Na8b8
2

1j2Ma8b8
2 for a54,5,6 andb54,5,6;

bab5j1Pab8
1

1j2Qab8
1 for a51,2,3 andb54,5,6;

bab5j1Pa8b
2

1j2Qa8b
2 for a54,5,6 andb51,2,3;

~16!

with a85a23;b85b23, and

Nab
6 5(

t

6S xta6
1

2D S xtb6
1

2D ,

Mab
6 5(

t

6 (
t8Þt

6S xta6
1

2D S xt8b6
1

2D ,

Pab
6 5(

t

6 (
t8Þt

6S xta6
1

2D S xtb6
1

2Dexp~ ixt8•q!,

Qab
6 5(

t

6 (
t8Þt

6S xta6
1

2D S xt8b6
1

2Dexp~ ixt•q!. ~17!

Herext are vectors identifying four lattice points around t
lattice site under consideration, shown in Fig. 2: where
sum is denoted by(1, the sites are those denoted by do
and for the(2 the sites to be considered are crosses. Fu
tionsN6 andP6 are mixing coordinates ofj andk sites. The
coefficients in Eq.~21! are

j15
8

3

J

B*
; j25

32

9

J

B*
; B* 5BS 11J

8

9D . ~18!

The parametersG,B, andJ can be used to fit the phonon
dispersion curves solving Eq.~14! with the experimental data
in Fig. 3, the phonon dispersions obtained by the pres
calculation~continuous lines! are shown in comparison with
those~dotted lines! already proposed in Ref. 9 and used
determine the thermal conductivity of Si with the cent
potential. The figure also reports the experimental d
~diamonds!.21,22 A good agreement is obtained for both se
of curves. The value of the parameters involved in
present calculation and in the previous one are shown

FIG. 2. Lattice sites around the lattice positioni on which the
sums(6 in Eq. ~17! are evaluated to obtain functionsN6 andP6

mixing coordinates ofi , j , andk sites. When the sum is denoted b
(1, the sites to consider are denoted by dots, and when the su
(2, the sites are crosses.
14430
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Table I. The calculation done here needs only two parame
instead of the four used for the model with the central p
tential. In fact, in the present work, the interaction betwe
nnn sites is assumed to be zero: it can be thought that the
interactions are included to a certain extent in the angu
variation, where three atoms are involved and two of th
are at the nnn site distance.

In Fig. 3, it is possible to see that the agreement of
present calculation with the experimental dispersion dat
good for optical branches. A little discrepancy is observ
for the longitudinal phonon dispersion at pointsX and L of
the Brilloiun zone.

It is interesting to compare the roles of the various ter
in equation of motion. As shown in Table I, in the new ca
culation, one of the old parametersG/B can be put equal to
zero, since its role is played by the new parameterJ. In the
case whereG/B and J were both equal to zero, th
transverse-acoustic modes disappear. The nnn terms o
model with a central potential, giving coefficientsB8 and
G8/B, are able to adjust the phonon dispersion at the bou
ary of the Brillouin zone, giving a better longitudinal mod
in X andL. In fact, if we consider the pairwise potential wit
only nn interactions, that is, with coefficientsB8 and G8/B
equal to zero, the longitudinal modes turn out to be pra
cally indistinguishable from the logitudinal modes of th
present model.

A last comment must be devoted to the role ofj1 andj2

used in theba,b coefficients. As previously mentioned, i
considering the angular variation, the denominator in E
~10! is assumed to be dependent on the displacement fiel
the denominator were put equal toR2, j1 turns to be equal to
zero. Inserting in the dynamical matrixj150 and, for in-
stance,j2532 J/9B* , the transverse acoustic~TA!-mode
has a frequency much lower than the observed experime

is

FIG. 3. Theoretical phonon-dispersion curves~continuous lines!
for silicon, in comparison with experimental data~Refs. 21 and 22!.
The phonon dispersions obtained by the present calculation are
resented by continuous lines, and those already proposed in R
and used to calculate the thermal conductivity of Si by dotted lin
The values of parameters used for calculations are shown in Tab
5-4
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value. In particular, the TA frequency at the pointX on the
Brillouin zone is strongly reduced, passing from 6
31012s21 to 1.531012s21.

III. ANHARMONICITY AND THERMAL CONDUCTIVITY

The third-order contribution to the interaction energy b
tween the two reticular centers ati and j sites, coming from
a pairwise potential was previously given in Ref. 9, and it

Vi j
(3)5

1

6
A@Ri j •~hj2hi !#

31
1

2
B @Ri j •~hj2hi !#

3@~hj2hi !•~hj2hi !#, ~19!

where

A5
1

R

d

dRF 1

R

d

dRS 1

R

dV

dRD G . ~20!

In the evaluation of the angular variation, to obtain t
phonon-dispersion relations, the development was stoppe
Eq. ~10! to the harmonic contributions: anharmonic terms
of course present and give further contributions toVi j

(3) ,
modifying the scattering matrix of the three-phonon p
cesses. The terms of the third order, coming from the de
opment of Eq.~10!, have the same structure as those of
Eq. ~19!, but contain vectorsRik and (hk2hi) too. The full
list of all the terms is given in the Appendix. Among the
contributions, Eqs.~A1! and ~A7! are of the same form a
those of appearing in Eq.~19!, and are going to renormaliz
the A andB coefficients.

No other contributions at the third-order can come from
further development of the interaction energy.

A lot of new third-order terms then appear: let us estim
their weight in the thermal transport of the material.

In the numerical analysis, it is useful to introduce t
adimensional anharmonic parametere528R2A/3B, de-
scribing the ratio betweenA andB. Using the experimenta
data of the Gru¨neisen constant, as done in Ref. 9 an estim
of the parametere is possible, obtaining a value;26 in
silicon.

All the new terms of the third order, Eqs.~A1!–~A12!, are
multiplied by the factorJ that is evaluated from the phonon
dispersion experimental data. Introducing the adimensio
ratio n5J/B, we have a new anharmonic parametern that
is completely known: its value is very low (;0.04). Due to
this fact, and assuming that in terms~A1!–~A6! the role

TABLE I. Values of the coefficients describing the interactio
between nearest neighbors and next-nearest neigh
(B,G/B,G8/B,B8) for the model with a pairwise potential and va
ues of the coefficients for the nearest-neighbor interaction in
model with two- and three-body interactions (B,J/B). The values
of B andB8 are given in units of 1020g cm22 s22.

B B8 G/B G8/B J/B

~two body! 2.2 4.531022 0.06 20.0075 0.00
~two body and three body! 2.4 0.0 0.00 0.0 0.04
14430
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played by the displacement field is almost the same, the
of these six terms is introduced in Eq.~19! estimating a new
contribution of the form

~2/914/312!@Ri j •~hj2hi !#@~hj2hi !•~hj2hi !#.
~21!

The same for terms~A7!–~A12!, giving

~5/9111/3110!@Ri j •~hj2hi !#
3. ~22!

Instead of Eq.~19!, the following equation is used to evalu
ate the phonon-scattering probability:

Vi j
(3)52

1

6 S 3eB

8R2
1

128

9

Z

2

nB

R2 D @Ri j •~hj2hi !#
3

1
1

2 S B1
32

9

Z

2
nBD

3@Ri j •~hj2hi !#@~hj2hi !•~hj2hi !#. ~23!

A factor 1/2 is inserted to avoid summing two times the sa
contribution. For n5J/B50.04, the first coefficient
changes by 12% and the second by 30%: the variations
small enough to justify the use of Eqs.~21! and ~22!. It is
then easy to insert them in the iterative numerical proced
for the calculation of thermal conductivityk, the phonon
system here obtained with the two- and three-body inter
tions, and the anharmonicity described in Eq.~23!.

For the evaluation ofk proposed in the present pape
only three parameters are necessary: two of them (n,B) are
evaluated from the phonon-dispersion data, that is indep
dent of the value of thermal conductivity, and the third is t
anharmonic parametere. The low number of parameters i
due to the fact that only nn site interactions are conside
whereas in the previous calculation,9 four harmonic and two
anharmonic parameterse,e8 were being used, with nnn site
involved, too. Under the approximation given in this sectio
the thermal conductivity for silicon is here evaluated in
temperature range between 6 K and 250 K. In Fig. 4, the
results of the present calculation with the anharmonic
given by Eq.~23! are shown. The upper continuous cur
represents the thermal conductivity evaluated for an isoto
cally pure silicon crystal, whereas the lower curve shows
behavior of a sample with the natural isotopic compositio
The value ofe is assumed to be 22, to have a good agr
ment at 250 K, between the theoretical calculation and
experimental data in the case of an isotopically pure silic
sample.

Relaxation-time approximation is avoided for the thre
phonon scatterings, but is introduced for boundary scatte
in the form of tp5L/sp , whereL represents the characte
istic length in the sample,20 andsp is the velocity of sound
for a phonon with polarization indexp.

The role of the isotope effect is considered here, as in R
9. The isotope effect on the thermal conductivity is due
point defects, with a mass difference in the lattice posit
where the defect is placed, giving a scattering probabi
rate of a phononqp into a phononq8p8 of the form

rs

e

5-5
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Pqp
q8p85

p

2 S DM

M D 2 1

N2
vqpvq8p8ueqp•eq8p8u

2

3d~vqp2vq8p8!nqp
o ~11nq8p8

o
!, ~24!

where DM is the mass variation andnqp
o the equilibrium

phonon distribution. If the defects are assumed to be pre
in a fraction f i of the crystal sites, there will beN fi centers
producing an elastic scattering. These defects are more
considered statistically distributed in both sites of the latt
basis.

The agreement with experimental data23–25 is good.
It is now possible to compare the results of the pres

calculations with the data obtained in the previous pap8

analyzing a phonon system with a central potential. In Ref
the theoretical thermal conductivity at temperatures hig
than 100 K seems to deviate from the experimental data,
in both cases~pure silicon and silicon with isotopic defects!
it is lower than the experimental data. Here, we can se
better agreement with the experimental data, obtained w

FIG. 4. Thermal conductivity as a function of the temperatu
for silicon, obtained with scattering probabilities coming from E
~23!. The upper continuous curve represents the thermal condu
ity evaluated for an isotopically pure silicon crystal, whereas
lower curve shows the behavior of a sample with a natural isoto
composition. The experimental data are obtained from Refs. 23
The dotted lines represent thermal conductivities evaluated with
central potential as in Ref. 8.
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only three~two harmonic and one anharmonic! parameters
inserted in calculations, instead of six used with the cen
potential.

As a conclusion, the paper shows that pairwise and n
pairwise potentials give the same phonon dispersions, bu
number of parameters required to fit the experimental dat
one-half for the model with a non-pairwise potential. In t
thermal conductivity evaluation, the renormalization of t
anharmonic coefficients~23!, used in the phonon-phonon
scattering probability, is able to give a better agreement w
experimental data, in the case of isotopically pure and na
ral silicon. Then, the use of a nonpairwise potential can gi
for certain materials, an improvement in the thermal cond
tivity evaluation.
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APPENDIX

Terms of the third order, coming from the development
Eq. ~10! are

1/9~Ri j •di j !~di j •di j !, ~A1!

1/9~Rik•dik!~di j •di j !, ~A2!

1/3~Rik•di j !~di j •di j !, ~A3!

1/3~Ri j •dik!~di j •di j !, ~A4!

2/3~Ri j •di j !~di j •dik!, ~A5!

2~Ri j •dik!~di j •dik!, ~A6!

21/3~Ri j •di j !
3, ~A7!

25/9~Ri j •di j !
2~Rik•dik!, ~A8!

25/3~Ri j •di j !
2~Ri j •dik!, ~A9!

25/3~Ri j •di j !
2~Rik•di j !, ~A10!

22~Ri j •dik!2~Ri j •di j !, ~A11!

22~Ri j •dik!2~Rik•dik!, ~A12!

22~Ri j •di j !~Rik•dik!~Ri j •dik!, ~A13!

24~Ri j •di j !~Rik•di j !~Ri j •dik!. ~A14!
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