POLITECNICO DI TORINO
Repository ISTITUZIONALE

Memory Fault Simulator for Static-Linked Faults

Original

Memory Fault Simulator for Static-Linked Faults / Benso, Alfredo; Bosio, Alberto; DI CARLO, Stefano; DI NATALE,
Giorgio; Prinetto, Paolo Ernesto. - STAMPA. - (2006), pp. 31-36. (Intervento presentato al convegno IEEE 15th
AsianTest Symposium (ATS) tenutosi a Fukuoka, JP nel 20-23 Nov. 2006) [10.1109/ATS.2006.260989].

Availability:
This version is available at: 11583/1499992 since:

Publisher:
IEEE Computer Society

Published
DOI:10.1109/ATS.2006.260989

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

25 April 2024

Politecnico di Torino

NMemory Fault Simulator for
Static-Linked Faults

Authors: Benso A., Bosio A., Di Carlo S., Di Natale G., Prinetto P,,

Published in the Proceedings of the IEEE 15th AsianTest Symposium (ATS), 20-23 Nov. 2006,
Fukuoka, JP.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL.: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4030737

DOI: 10.1109/ATS.2006.260989

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4030737
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4030737
http://dx.doi.org/10.1109/ATS.2006.260989
http://dx.doi.org/10.1109/ATS.2006.260989

Memory Fault Simulator for Static-Linked Faults

A. Benso, A. Bosio, S. Di Carlo, G. Di Natale, P. Prinetto
Politecnico di Torino
Dipartimento di Automatica e Informatica
Torino, Italy
E-mail {benso, bosio, dicarlo, dinatale, prinetto}@polito.it
http://www.testgroup.polito.it

Abstract

Static Linked Faults are considered an interestin
class of memory faults. Their capability of influencipgthe
behavior of other faults causes the hiding of the Jt

effect and makes test algorithm design and va io
very complex task. This paper presents ory Kault
Simulator architecture targeting the N\ot/linked

faults.

1. Introduction @9
Memories are one ost importa
in digital systems, and\ semiconducte

nowadays one of the fastest

a single chip all the co
historically were placed
SOCs, embedded mepaoyi
accounting for up
common finding,

Moreover they
cores.

The main in memory test is to define
comprehensive fault models able to carefully represent
the most common defects occurring in the production
phase of the chips. On the other hand once a new fault
models has been defined a memory test algorithm, able to
detect it, must be developed [2] [3] [4] [5] and obviously
validated. Memory fault simulation is therefore necessary
to compute the Fault Coverage of a test sequence every
time a new defect is discovered and the corresponding
fault model defined.

An important class of memory faults is the class of
linked faults [6]. A linked fault is a memory fault
composed of two or more simple faults. The remaining

scursively be embedded in embedded

i
N
at, Ayansition, coupljz

Y simple fault and

Qe
n ence the behaviQur ‘of\e
s%as the fault ¢ e%ﬁ‘e.
ue to the complexity of hoth'the fault models and the
emory architectm%r‘l‘ nalysis [7] of the memory
t

ault coverage ore possible. In [8], a memory
imation Package Plus, MAP+) has
N 1s tool, developed at the Delft

Technology, has been employed as a

pattern sensitive, read\disturb faults, etc.). Although very

a very detailed fault simulation.
e fault coverage computation,
other characteristics such as power

In surprevious work [10] an architecture for a new

xible memory fault simulator, designed to address all
the most critical issues in memories test generation and
validation has been presented, in order to support the test
engineer in optimizing the test algorithm and in
addressing power consumption constraints. The tool is in
fact able to compute the power consumption generated by
the test input sequence, and to suggest a modification of
the test algorithm in case its application does not fulfill a
user-defined power consumption constraint.

To out best knowledge none of the previous works are
able to deal with the complex class of linked faults. This
paper presents a fault simulator architecture based on the
architecture showed in [10] but extending it on the linked
faults class. In particular we extend the fault model
formalism and the simulator algorithm in order to be able
to model the linked faults.

The paper is organized as follows. Section 2 introduces
the overall tool architecture; Sections 3, 4 and 5 describe
the memory and fault model representation used by the
simulator. The fault simulation algorithm is described in

Section 6, whereas Section 7 gives some experimental
results. Conclusions are summarized in Section 8.

2. The Fault Simulator Architecture

Fault
Models

—'[00O Memory Simulator]

|
—

Test Analysis]
A
| Test Report l| Optimized Test Sequences l

Figure 1. Simulator architecture

Memory

Models

generates two output files storlng
and, whenever possible, an opti
able to provide the same resylt

The memory model is sp

The Fault Mbdel files, formalized as collections of
Fault Primitives (see Section 3), describe all the faulty
behavior that the input test sequence is designed to detect.
The Test Sequence files describe the sequence of
operations applied to test the memory array. Using a
proprietary language, it is possible to describe complex
test algorithms as well as simple sequences of input
patterns.

The Test Report file contains detailed information
about:

e The Fault Coverage of each fault model and, when
necessary, diagnostic information about the cells
where the fault is not covered;

e The total power consumption caused by the
application of the test sequences;

%‘ x
@ € memory Op 10NS?

Finally, the Test Analysis module outputs an optimized
test sequence, where redundant elementary operations not
affecting the final fault coverage are removed. In the
following sections we will detail the functional model that
we modify in order to deal with linked faults, focusing in
particular on the memory and fault models.

3. Fault Modeling

A Functional Fault Model (FFM) is a deviation of the
memory behavior from the expected one under a set of
performed operations. A FFM involves one or more

cells), i.e.,
> M and Vzctz
at show the@ e(o

. Each faulty
tzmulz applied on

S, the applied stimuli

t of all we have to specify
thé-<cell, i.e. the value (state) of
e we are going to apply the
'7 we resort to n as the size of the

e initial conditi

(1)

¥ it means that the state can be applied
cell indifferently. The -’ denotes a

efinition 2: X is the set of the memory operations,
formalized as

X={" Wy 0<i<n-1;de (0,1} U {t} (2)

where:

o w,is a write operation of the value d performed in
the cell i;

o /', is a read operation performed in the cell i. The
value d is not strictly needed in case of a read
operation. If used, it means the expected value that
should be read from the i-th memory cell;

e ¢ is a wait operation for a defined period of time.
This additional element is needed to deal with Data
Retention Faults [4].

If the address is omitted, it means that the operation
can be applied on every memory cell indifferently. Each
FFM can be described by a set of Fault Primitives (FPs)
[14].

Definition 3: A Fault Primitive FP represents the
difference between an expected (fault-free) and the
observed (faulty) memory behavior denoted by:

<S,;S,/F/R> 3)

Where S, and S, are the Sequence of Sensitizing
Operations and/or Conditions respectively applied to a-
cell and v-cell, needed to sensitize the given fault. The j-th
condition/operation is represented as c[x], where ¢ € C
(1),andx e X(2).R={(n)"|re C} isthe sequence of
values read on the aggressor cell when applying S.

As an example FP = < 0w, ; 0/ 1/ - > means that the
operation ‘w;’ performed on the a-cell, when the initial
state is 0 for both a and v cells, causes the v-cell to flip.
No addresses are specified; therefore this fault can affect
each couple of memory cell. Several FPs classification

rules can be adopted, based on the number of memory ,
operations (m) needed to sensitize the FP (static Whe a i

of memory cells (#FC) involved by the FP (si
where #FC = 1 or n-cells elsewhere fault) [14].

FP notation not necessarily explicates the-ad
aggressor and victim memory cells,
model by introducing the Addressed NFa
concept.

state, reached by the memory, after
can be formalized as:

4)
where:

«I={©"|s i
cells, before applying the
correspond to the less

e E.={(op) | op € X } is the sequence of operations,
performed on the aggressor cells, needed to sensitize
the fault; each operation belong to the alphabet X, the
set of all the possible memory operations. m is the
number of operations needed to sensitize the fault;

e F,={ (/" |fe C}is the logical value stored in the
memory cells after applying Es (faulty state)

e G,={(2)" | ge C}is the logical value stored in
the memory cells after applying E; on the fault-free
memory (expected state).

The FP of the above example < Ow, ; 0/ 1 /-> can be
translated into AFP1 = (00, wol, 11, 10) and AFP2 = (00,
w'y, 11, 01), with a memory having n =2 (i.e., two cells).

4. Linked Fault: Concept & Modeling

In some cases it is possible that the effect of a FFM
influences another functional fault. If these faults share
the same aggressor and/or victim cells, the FFMs are
called Linked, otherwise they are called simple or un-
linked and each fault is independent from the others. To
understand the concept of linked faults we can consider,
as an example, the Disturb Coupling Faults [14] described
by the following two FPs:

FP,=<Qwy;0/1/-> FPy=<0w ;1/0/->(5)

ffected by t nd FP2)
3 @ same v-cell (v).
der of the memory

the highest) in which
and k repre T dress of a;, a, and v,
spectively. By erforming “Ow,” (FP1) on cell i,
| 1; than performing “Ow,” (FP2)

changes its value again, from 1 to 0.

FP2, since FP2 has a fault effect (F)
ite to FP1. Looking at the example of Figure 2, we
erive a rigorous definition of a Linked Fault (LF):

Definition 5;
<S2/F2/R2>,

Ps, FP1 = <S1/F1/R1> and FP2 =
to be Linked, and denoted by
» if\ both Jof the following conditions are
satisficd
sks FP1, i.c., F2 =not (F1);
o\ The’ Sensitizing operation (S2) of FP2 is applied

after S1, on either the a-cell or v-cell of FP1.

To detect linked faults (LFs), one must detect in
isolation (i.e., without allowing the other FP to mask the
fault) at least one of the FPs that compose the fault [6].
We extend the concept and the notation described in
Definition 6 resorting to AFP (4) formalism.

Definition 6: Two AFPs, AFP1 = (I}, Eq, F,1, Gy1) and
AFP2= (I, Eg, Fy, Gy,) are said to be Linked, and
denoted by “AFP1 — AFP2”if:

e [, =F,, : the state reached by AFP1 is equal to initial

state of AFP2;

e AFP2 masks AFPI1 : V(F,;) = NOT [V(F,;)] where

V(s) function extracts the victim cell from the
memory state s

n-1
Figure 2. Example of Linked Fault

As an example the Linked Fault represented in (5),
includes two AFPS obtained by FP1 and FP2:

e AFP1 = (000, »’;, 101, 100)
e AFP2=(101, w';, 110, 111)

If we set the size of memory cell n = 3 (0,1,2),
cell is cell 0 in AFP1 and cell 1 in AFP2. Both AP havi
it

v-cell equal 2. These two AFP satisfy the S

tton 7 can el ea

Definition 7:

o 12 =101 :Fvl
e V(Fy,) =0=NOT [V{ED

n one-bit cells
deterministic Mealy

where:
e O = { (Q\1] -)"} is the set of possible memory
states;

e Xis the input alphabet defined in (2);

e ¥V ={0,1,-} isthe output alphabet, composed of the
possible values read as a result of a read operation;
‘=’ denotes the value obtained when a write
operation is performed;

® 0= Q0 XX — Qs the state transition function;

o 1= QXX - Yisthe output function.

The memory model defined in (7) can be represented
as a labeled direct graph

G=1{V E} (3)
where:

entionally named G -in
t] te nd j are usedRa,_ it the first and the
(6) %ﬂ el respectively. r ¢ shall assume i <
s\ According to Definjti eac

e J/is the set of vertices, each vertex representing one
of the possible states of the memory; |V] = 2",

e E is the set of edges, each edge representing one of
the possible memory operations that cause the
transition from a vertex u to a vertex v; the k™ label
associated with the ™ edge has the following
representation:

Label, =x/d ©)]
where:
— X € X is a memory operation
— d = Av,x), d € Y is the output value obtained
when performing the operation x when the
memory is in the state v.

igure 3 shows thesmodsl of a 2 bit
e

memo quel. In Gy,

inked Fault is covered
dresy Fault Primitives AFP1 and
be ‘iodeled on G, by a single

c
sequence of t
FP2, each Al

the faulty edges is named Pattern
ed as:

PG= {V,, E, UF} (10)

@ hertex v € V, is associated to a memory
ate,\E, 15 the set of edges modeling the fault free

emOry, and F), is the set of faulty edges. If n is the
er of cells composing the target memory the number
of nodes composing the pattern graph is |V,| = 2". The
cardinality of PG vertices is 2™7“5) with 0 < i < #FP,
where #FP represents the number of FPs in the target fault
list [2]. Moreover, the user can specify the size (i.e. the
number of cell) of the memory by the Memory Model file
(see Section 2), it is therefore possible model a real
memory.

Definition 7: given f;, fy € F,,, fi masks f; if and only if
V(F,x) =V({)), where f; is incident from vertex /, is the
and f; is incident in vertex F,; . V(s) is defined in
Definition 6.

i - t/-
wi/ - 1/ 0

w,/- 1/ 1

WIJ/_

wi/ -/ 1
- w,l/ -1/ 1
t/- t/ -

W

The PG (named PGzpi
is shown in Figure/S
additional faulty edge

e sequal)modeling LF (12)
edges represent the

Figure 5. Linked CF Pattern Graph (PGcy)

6. Simulator Engine

The simulator algorithm is based on a functional
model, represented as a Finite State Machine (see Section
5) where each Functional Faults is represented as en edge.

5% @ree factors:

ult linked @
two FPs; \sedual to 0(#@\%0)
Seii
(1

After generation of the memory model from the fault
model and Memory model file, we inject one fault a time
in the memory model (in case of linked faults we inject
two faults a time) then the algorithm reads from the Test
Sequence file the operation to be applied on the memory

The user can specify the data-background (DB),
defined as the pattern of ones and zeros as seen in an
array of memory cells. The most common types of data-
backgrounds are: Solid (s), Checkerboard (c), Column
Stripe (cs), and Row Stripe (rs) (Figure 6 shows an
example of DB in case of 3x3 memory cells array).

The algorithm starts from a vertex depending on the
DB selected by the user (i.e. in case of solid-0 DB and
two cell m y model, the initial state"will be ‘00”).
Then if the ry operation to be ap
ans that the

e simulation
[]
[]

these three factors we can calculate the complexity

Colum Stripe

0 1 0 1
0{d/o g o[1]o] [1]o]1
o = KK o[1]o] [1]o]1
@05111 ol1]o] [1]o]1
@ Chekerboard Row Stripe
0 1 0 1
o[1]o] [1]o]1 olofo] [1][1]1
1]o]1] lo]1]o 1]1]1] [o]o]o
o[1]o] |1]o]1 olofo] |1[1]1

Figure 6. Data Background

7. Experimental Results

This section reports some experimental results
obtained by applying the proposed simulation algorithm
to different fault lists and different test algorithm. The
algorithm has been implemented in about 10000 lines of
C++ code, compiled with gcc compiler. All the
experiments are performed on an ASUS, AMD 1500Mhz
based Laptop with 512 MB of RAM.

We simulate and compare several March test on the
same fault list and memory model. The fault lists include
the set of realistic linked faults presented in [6] for a total
of 552 fault primitives:

The adopted memory model consider the minimum
number of required memory cell, since we are dealing
with linked faults no more than three cells are required (n
= 3). Eventually we consider the well known march test
targeting the linked faults space (A, B, LR, LA, [3],
March SL, March MSL, March AB, March RAW).

Table 1 summarizes the simulation results; each row

represents a March test ordered by complexity (column
4).
Then we show the percentage of coverage in the different
fault lists and eventually (last column) the fault coverage
in the full set if linked faults. The underlined cells in table
1, point up the March tests that reach the 100% of
coverage w.r.t. the considered Fault List. Experimental
results show that March RAW [11] originally designed for
covering dynamic un-linked faults only also covers the set
of realistic static linked faults. The CPU time is negligible
in fact it takes in the worst case 2.34 second.

8. Conclusions

This paper proposed a memory fault
targeting the entire set of linked memor
proposed tool addresses the problem of Al
fast validating of memory test algorifiy
fault models or new memory strugt

each known march test.

9. References

[1] International Techx
“International technolo,
http://public.itrs.net/Hor

>

Roadmap) Tor Semiconductors,
~semitonductors 2004 Update”,

[2] A. Benso, A. Bosio, S. Di Carlo, G. Di Natale, P. Prinetto,
“Automatic March Tests Generation for Static and Dynamic Faults in
SRAMs”, ETS 2005, 10th IEEE European Test Symposium, 2005.

[3] S. M. Al-Harbi, S. K. Gupta, “Generating Complete and Optimal
March Tests for Linked Faults in Memories”, VTS 2003, 21th
IEEEVLSI Test Symposium, 2003, pp. 254 -261

[4] A. J. van de Goor, B. Smit, “Generating March Tests
Automatically”, ITC 1994, 1EEE International Test Conference, 1994,
pp-870-877, 1994

[5] A. Benso, A. Bosio, S. Di Carlo, G. Di Natale, P. Prinetto,
“Automatic March Tests Generations for Static Linked Faults in
SRAMs”, DATE 2006, IEEE Design Automation and Test in Europe
2006

[6] S. Hamdioui, Z. Al-Ars, A. J. van de Goor, M. Rodgers, “Linked
Faults in Random Access Memories Concept Fault Models Test
Algorithms and Industrial Results”, IEEE Transaction on Computer-
Aided Design, e: 23, Issue: 5, May 2004, pp. 737757.

[7]1 A. J. van d or, “Testing Semiconductor
Practice”, Fohn

[8S. D : ~Hen g

“Simplatiog\gnd) Development of Short T 2, ests for RAM”,

1EE h aif Test Symposium S\2801V Kyoto (J), November
101

[,

Int

Wu; C. Huang, C. Wy,
tional Symposiu;
stems, 1999, Page(s): -173

AMSES:
cicot Jand Fault Tolerance in VLSI

TAl-Ars, A. J. van de Goor, “Testing Static and
Random Access Memories”, VTS 2002, 20th IEEE

“March LA: A Test for Linked Memory Faults”, ED&TC
roc. European Design and Test Conference, 1997, pp. 167.

t for Realistic Linked Faults”, VTS 1996,
um, 1996, pp. 272-280.
Al-Ars, ©

1 &
wechAB1: New March Tests for Unlinked Dynamic Memory
ITC 2005, IEEE International Test Conference, 2005.

1.4, Harutunyan, V.A. Vardanian, Y. Zorian, “Minimal March Test
Algorithm for Detection of Linked Static Faults in Random uiAccess
Memories”, DATE 2006, IEEE Design Automation and Test in Europe

2006

Table 1. Simulation results for both single and two/three -cells LF

B C.'PU Single (Two/Three)-cells

Mr Rif ";”q)e Om) Cell LF2, LF2, LF2, All
LR [12] 03 14n 75% 82% 75% 80% 80%
A [7] 0.2 15n 66% 75% 60% 73% 69%
B [7] 043 17n 75% 70% 64% 73% 70%
LA [13] 1.02 22n 83% 87% 83% 86% 86%
AB [15] 0.97 22n 100% 100% 100% 100% 100%
MSL [16] 0.99 23n 100% 100% 100% 100% 100%
RAW [11] 1.12 26n 100% 100% 100% 100% 100%
ABL [5] 1.34 37n 100% 100% 100% 100% 100%
SL [6] 2.01 41n 100% 100% 100% 100% 100%
- [3] 2.34 43n 83% 84% 83% 86% 84%

