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Abstract 
 

Static Linked Faults are considered an interesting 
class of memory faults. Their capability of influencing 
the behavior of other faults causes the hiding of the 
fault effect and makes test algorithm design a very 
complex task. A large number of March Tests with 
different fault coverage have been published and some 
methodologies have been presented to automatically 
generate March Tests. In this paper we present an 
approach to automatically generate March Tests for 
Static Linked Faults. The proposed approach 
generates better test algorithms then previous, by 
reducing the test length   
 
1. Introduction 
 

Memories are one of the most important 
components in digital systems, and semiconductor 
memories are nowadays one of the fastest growing 
technologies. Actually the major trend of System-On-
a-Chip (SOC) allows to embed in a single chip all the 
components and functions that historically were placed 
on a hardware board. Within SOCs, [1] forecasts that 
embedded memories will be the densest components, 
reaching the 90% of chips area surface in ten years. It 
is thus common finding, on a single chip, tens of 
memories of different types, sizes, access protocols 
and timing. Moreover they can recursively be 
embedded in embedded cores.  

The high density of their cells array makes 
memories extremely vulnerable to physical defects. 
Due to the complex nature of the internal behaviour of 
memory chips, the design of fault models and tests is 
non-trivial.  

An important class of memory faults is the class of 
linked faults [10]. A linked fault is a memory fault 
composed of two or more simple faults. The behaviour 
of each simple fault can be influenced by the 
remaining ones and in some cases the fault can be 

masked. Classic march tests cannot detect linked faults 
due to the masking. In the latest decade published 
researches mainly focused on the definition of new 
realistic fault models [2] [3] [4] [5] showing the 
importance of developing new memory test algorithms. 
Nevertheless few publications targeted the problem of 
linked faults and their test generation. In [6], [7], and 
[8] the authors present march test solutions having 
high fault coverage on a restricted set of linked 
memory faults. In [9] and [10] the authors present an 
accurate analysis of the linked fault concept. 
Moreover, they present a march test facing new fault 
models.  

In [11], the authors present an automatic generation 
methodology, but it is still affected by the problem of 
considering a limited number of memory faults, the 
same of [6], [7], and [8]. So far, no other Automatic 
Test Generations for Static Linked Faults have been 
proposed.  

In this paper we propose a new approach to 
automatically generate March Tests targeting static 
linked memory faults. The generation process resorts 
to a formal notation that extends the Fault Primitive 
notation [12] to describe the list of faulty behaviors to 
be detected. We successfully applied the proposed 
algorithm to an extensive set of realistic static linked 
faults, obtaining new March Tests, with a computation 
time in order of few seconds. To prove their 
correctness, all generated Tests have been fault 
simulated by an in-house developed memory fault 
simulator [13].  

The paper is structured as follows: Section 2 
presents an overview about memory fault modeling 
and notation. Section 3 introduces the concept of 
Linked Fault (LF) and extends the adopted formalism 
in order to model LFs. Section 4 presents the memory 
model. Section 5 details the steps of the automatic 
March Test generation process, whereas Section 6 
presents experimental results. Section 7 finally 



summarizes the main contributions and outlines future 
research activities. 
 
2. Fault modeling 
 

A Functional Fault Model (FFM) is a deviation of 
the memory behavior from the expected one under a 
set of performed operations. A FFM involves one or 
more Faulty Memory Cells (f-cells) classified in two 
categories: Aggressor cells (a-cells), i.e., the memory 
cells that sensitize a given FFM and Victim cells (v-
cells), i.e., the memory cells that show the effect of a 
FFM. Each faulty behavior is sensitized by a sequence 
of stimuli applied on the f-cells. When dealing with 
SRAMs, the applied stimuli are the memory 
operations. First of all we have to specify the initial 
conditions of the cell, i.e. the value (state) of the 
memory cell, where we are going to apply the 
operations. Hereinafter we resort to n as the size of the 
memory (i.e., the number of memory cells) 

Definition 1: C is the set of the memory states 
(values), formalized as  

 
C = {0[i], 1[i], -[i] | 0 ≤ i ≤ n-1}     (1) 

 
where the apex identifies the address of the cell. If 

the address is omitted, it means that the state can be 
applied on every memory cell indifferently. The ‘-’ 
denotes a don’t care condition.  

Definition 2: X is the set of the memory operations, 
formalized as  

  
X = {r[i]

[d], w[i]
d | 0 ≤ i ≤ n-1; d ∈ (0,1)} ∪ {t}      (2) 

 
where:  
• wi

d is a write operation of the value  d performed 
in the cell i;  

• ri
d is a read operation performed in the cell i. 

The value d is not strictly needed in case of a 
read operation. If used, it means the expected 
value that should be red from the i-th memory 
cell;  

• t is a wait operation for a defined period of time. 
This additional element is needed to deal with 
Data Retention Faults [14]. 

 
If the address is omitted, it means that the operation 

can be applied on every memory cell indifferently. 
 
Each FFM can be described by a set of Fault 

Primitives (FPs) [12].   

Definition 3: A Fault Primitive FP represents the 
difference between an expected (fault-free) and the 
observed (faulty) memory behavior denoted by: 

 
 < Sa ; Sv / F / R >   (3)  

                            
Where Sa and Sv are the Sequence of Sensitizing 
Operations and/or Conditions respectively applied to 
a-cell and v-cell, needed to sensitize the given fault. 
The j-th condition/operation is represented as c[x], 
where c ∈ C (1), and x ∈ X (2). R = { (r)n | r ∈ C }  is 
the sequence of values read on the aggressor cell 
when applying S.  

 
As an example FP = < 0w1 ; 0 / 1 / - > means that the 

operation ‘w1’ performed on the a-cell, when the initial 
state is 0 for both a and v cells, causes the v-cell to flip. 
No addresses are specified; therefore this fault can 
affect each couple of memory cell. Several FPs 
classification rules can be adopted, based on the 
number of memory operations (m) needed to sensitize 
the FP (static when m = 1 or dynamic fault elsewhere); 
and based on the number of memory cells (#FC) 
involved by the FP (single-cell where #FC = 1 or n-
cells elsewhere fault) [14]. Since the FP notation not 
necessarily explicates the address of both aggressor 
and victim memory cells, we extend the FP model by 
introducing the Addressed Fault Primitive concept. 

Definition 4: An Addressed Fault Primitive (AFP) 
is an instantiation of a FP which explicit the involved 
addresses, and both the faulty and fault-free final 
memory state, reached by the memory, after applying 
the AFP. It can be formalized as: 

 
AFP = (I , Es ,Fv , Gv)        (4) 

where: 
• I = { (s) #IC | s ∈ C } is the initial state, i.e., the 

value stored in the #IC involved cells, before 
applying the AFP. The first value correspond to 
the less significative bit (i.e. the memory cell 
with the lowest address); 

• Es = { (op)m │op ∈ X } is the sequence of 
operations, performed on the aggressor cells, 
needed to sensitize the fault; each operation 
belong to the alphabet X, the set of all the 
possible memory operations; 

• Fv = { (f) #IC | f ∈ C } is the logical value stored 
in the memory cells after applying Es (faulty 
state) 

• Gv = { (g) #IC | g ∈ C } is the logical value stored 
in the memory cells after applying Es on the 
fault-free memory (expected state). 

 
The FP of the above example < 0w1 ; 0 / 1 / - > can be 
translated into AFP1 = (00, w0

1, 11, 10) and  AFP2 = 



(00, w1
1, 11, 01), with a memory having n = 2  (i.e., 

two cells). Each AFP can be covered by a Test Pattern. 
Definition 5: A Test Pattern for a given Addressed 

Fault Primitive is defined as: 
 TP = (I, E, O)    (5) 

where:    
• I: is the initial state (see 4); 
• E: is equal to Es (see 4); 
• O = {rd

i │d ∈ (0,1), 0 ≤ i ≤ n-1} is the operation 
needed to observe the fault effect, where rd

i 
means “read the content of the cell i and verify 
that its value is equal to d”.  

 
From AFP1 = (00, w0

1, 11, 10) and AFP2 = (00, 
w1

1, 11, 01) we obtain the following Test Patterns: 
• TP1 = (00, w0

1, r1
0) , TP2 = (00, w1

1, r0
0) 

 
3. Linked Fault: Concept & Modeling 
 

In some cases it is possible that the effect of a FFM 
influences another functional fault. If these faults share 
the same aggressor and/or victim cells, the FFMs are 
called Linked, otherwise they are called simple or un-
linked and each fault is independent from the others. 
To understand the concept of linked faults we can 
consider, as an example, the Disturb Coupling Faults 
[14] described by the following two FPs: 
 

FP1 = < 0w1 ; 0 / 1 / - >,  FP2 = < 0w1 ; 1 / 0 / - >    (6) 
 
A general case is represented in Figure 1, in which 

a n cells memory is affected by two FPs (FP1 and FP2) 
having different a-cells (a1, a2) and the same v-cell (v). 
The vertical arrow shows the address order of the 
memory (from the lowest memory address to the 
highest) in which i, j and k represent the address of a1, 
a2 and v, respectively. By first performing “0w1” (FP1) 
on cell i, the v-cell k flips from 0 to 1; than performing 
“0w1” (FP2) on cell j, the v-cell k changes its value 
again, from 1 to 0. The global result is that the fault 
effect is masked by the application of FP2, since FP2 
has a fault effect (F) opposite to FP1. Looking at the 
example of Fig. 1, we can derive a rigorous definition 
of a Linked Fault (LF): 

Definition 6: Two FPs, FP1 = <S1/F1/R1> and FP2 
= <S2/F2/R2>, are said to be Linked, and denoted by     
“FP1 → FP2”, if both of the following conditions are 
satisfied: 

• FP2 masks FP1, i.e., F2 = not (F1);  
• The Sensitizing operation (S2) of FP2 is applied 

after S1, on either the a-cell or v-cell of FP1. 
 
To detect linked faults (LFs), one must detect in 

isolation (i.e., without allowing the other FP to mask 

the fault) at least one of the FPs that compose the fault 
[10]. We extend the concept and the notation described 
in Definition 6 resorting to AFP (4) formalism. 

a1

a2

v

0

n-1

i

j

k

 
Figure 1 : Example of Linked Fault 

 
Definition 7: Two AFPs, AFP1 = (I1, Es1, Fv1, Gv1) 

and AFP2= (I2, Es2, Fv2, Gv2) are said to be Linked, and 
denoted by     “AFP1 → AFP2” if:  

• I2  = Fv1 : the state reached by AFP1 is equal to 
initial state of AFP2;  

• AFP2 masks AFP1 : V(Fv2)  = NOT [V(Fv1)]  
where V(s) function extracts the victim cell 
from the memory  state s 

 
As an example the Linked Fault represented in (6), 

includes two AFPS obtained by FP1 and FP2: 
• AFP1 = (000, w0

1, 101, 100)    (7) 
• AFP2 = (101, w1

1, 110, 111) 
 
If we set the size of memory cell n = 3 (0,1,2), the 

a-cell is cell 0 in AFP1 and cell 1 in AFP2. Both AFP 
have v-cell equal 2. 

These two AFP satisfy the constraint of Definition 
7: 

• I2  = 101 = Fv1 
• V(Fv2)  = 0 = NOT [V(Fv1) = 1] 

 
Each Linked fault can be modelled by two AFP 

according to Definition 7. The last step generates the 
relative Test Patterns (5) able to cover the AFPs, in 
such a way that from “AFP1 → AFP2” we obtain: 

 
“TP1 → TP2”   (8) 

Where 
• TP1 = (I1, E1, O1) , TP2 = (I2, E2, O2) 

 
4. Fault Graph and Memory Model 
 
The generation of a functional test algorithm 

consists in finding a sequence of memory operations 
able to initialize the memory in a given state, to 
sensitize and to observe all the faulty behaviors in the 
target fault list 



For each AFP, the Test Pattern notation (5) already 
contains this information, hence the generation task 
become finding a set of TPs able to cover the entire 
fault list, minimizing the number of operations 
required.  To tackle the problem we resort to the model 
proposed in [15] to represents the behavior of both the 
good and the faulty memory. An n one-bit cells 
memory can be represented as a deterministic Mealy 
Automata, formally defined as: 

 
M = (Q, X, Y, δ, λ)  (9) 

where: 
• Q = { (0| 1| -)n }  is the set of possible memory 

states;  
• X is the input alphabet defined in (2); 
• Y  = {0,1,-}  is the output alphabet, composed of 

the possible values read as a result of a read 
operation; ‘−’ denotes the value obtained when a 
write operation is performed; 

• δ = Q × X → Q is the state transition function; 
• λ = Q × X → Y is the output function. 

 
The memory model defined in (8) can be represented 

as a labeled direct graph 
 

  G = {V, E}   (10) 
where: 
• V is the set of vertices, each vertex representing 

one of the possible states of the memory; |V| = 2n, 
• E is the set of edges, each edge representing one 

of the possible memory operations that cause the 
transition from a vertex u to a vertex v; the kth 
label associated with the kth edge has the 
following representation: 

 Labelk = x / d   (11) 
     where: 

− x ∈ X  is a memory operation  
− d = λ(v,x), d ∈ Y is the output value obtained 

when performing the operation x when the 
memory is in the state v. 

 
As an example, Figure 2 shows the model of a 2 bit 

memory, conventionally named G0 in the sequel. In G0, 
the letters i and j are used to identify the first and the 
second cell, respectively. Hereinafter, we shall assume 
i < j.  According to (8) each Linked Fault is covered by 
a sequence of two Test Pattern TP1 and TP2, each TP 
can be modeled on G0 by a single additional edge 
(faulty edge) [15] The couple of Linked TPs is 
represented on the graph by adding two extra faulty 
edges as shown in Figure 3. In the graph 
representation, the memory state reached by TP1 (Fv1) 
is equal to I2 (initial state of TP2) in order to satisfy 
Definition 7.  

The graph including the faulty edges is named 
Pattern Graph (PG) and is defined as: 

 
PG = {Vp, Ep ∪ Fp}  (11) 
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Figure 2: Fault Free Memory Model G0 
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Figure 3: Linked Test Pattern Representation 
 
where each vertex v ∈ Vp is associated to a memory 

state, Ep is the set of edges modeling the fault free 
memory, and Fp is the set of faulty edges. If n is the 
number of cells composing the target memory the 
number of nodes composing the pattern graph is |Vp| = 
2n.  The cardinality of PG vertices is 2max(#f-cells

i
) with 0 

≤ i ≤ #FP, where #FP represents the number of FPs in 
the target fault list [15]. 

Definition 8: given fl , fk ∈ Fp , fi masks fk if and only 
if  V(Fvk)  = V(Il),  where fl is incident from vertex Il is 
the and fk is incident in vertex Fvk . V(s) is defined in 
Definition 7 

 
As an example Disturb Coupling Fault linked to 

Disturb Coupling Fault [10] is modeled as two FPs:  
 

< 0w1 ; 0 / 1 / - > → < 1w0 ; 1 / 0 / - >  (12) 
 
Expressing the FPs in terms of AFPs we obtain: 

 
(00, wi

1, 11, 10)  → (11, w1
0, 00, 01)           (13) 

 
The above AFPs are covered by Test Patterns: 

 
(00, wi

1, rj
0)  → (11, w1

0, rj
1)         (14) 

 
The PG (named PGCF in the sequel) modeling LF 

(12) is shown in Figure 4 where the bold edges 
represent the additional faulty edges of (14). 

00

01

10

11w0
i,ri

j

w1
i,r0

j

 
Figure 4: Linked CF Pattern Graph (PGCF) 



 
5. March Tests Generation Algorithm 
 
As pointed out in [15], the problem of generating 

March Tests consists in finding a sequence of TPs able 
to cover all the memory faults in the target fault list. 
Since each TP is represented by a faulty edge, the 
problem is equivalent to finding a sequence of edges 
(walk) on the pattern graph traversing at least all the 
faulty edges. The memory operations are easily 
deduced from the labels of the edges composing the 
walk. 

Definition 9 : Sequence of Operations (SO) is a 
sequence of memory operation SO= so1 so2…, with soi 
∈ {X} (see Definition 2). A walk is directly translated 
into a SO by writing the label of the edges in the 
sequence. 

 
In the follow we summarize some definitions taken 

from [15] in order to reduce the complexity of the 
algorithm.  

Definition 10: A March Test (MT) is a sequence of 
March Elements; each March Element (ME) is a 
sequence of memory operations applied on every cell 
in a specific Address Order AO (increasing, 
decreasing, random). 

 
The problem is to find a sequence of SOs able to 

cover all the faults in the fault list while respecting the 
Definition 9, and without causing masking. The 
strategy adopted by the algorithm will be to extract a 
sequence of SOs where each SO will correspond to a 
March Element.    

Definition 11: a Sequence of Operations is valid if 
and only if all the operations are performed on the 
same memory cell i; otherwise the sequence causes a 
constraint violation.  

 
The valid SO property ensures that the operations 

belonging to the SO will be applied on each memory 
cell as a ME. 

Definition 12: The Address Specification of a valid 
SO is the memory address on which the operations of 
the SO are performed. 
   Definition 13: fi ∈ Fp is SO Compatible if its address 
is equal to the address specification of a valid SO and 
if fj does not mask fj  ∈ SO. 

 
The algorithm works on the PG. It attempts to 

generate a set of March Elements by building valid 
sequences of operations SO. A valid SO can be 
directly translated into a March Element by specifying 
its address order and by removing the address 
specification; considering the G0 memory model (i < 
j), the march element address order is defined as 
follow: 
• If the address specification of a valid SO is equal 

to i then the address order will be ‘⇑’ 

• If the address specification of a valid SO is equal 
to j then the address order will be ‘⇓’ 
 

The algorithm mainly consists in finding a path on the 
graph able to touch each faulty edge exactly once 
while respecting the March Test constraints. The main 
steps of the algorithm are summarized in Fig. 5. 

1. Repeat  
a. Initialize the Sequence of Operations (SO=∅) 
b. While (the next f ∈ Fp  is SO Compatible) 

i. Put the f into the Sequence of Operations SO 
ii. Delete  f  

c. If (The Sequence of Operations contains at least one f) then 

i. Apply the Sequence of Operations to each memory cell
1

 
ii. If (new fs are covered) then delete the covered fs  

iii. Translate the Sequence of Operations into a March 
Element by setting its address order 
iv. Print the March Element 

d. Else  
i.Report that the f cannot be cover by the March Test 

3. Until (Fp  is empty) 
Figure 5: March Generation Algorithm  

 
6. Experimental Results 
 
This section reports some experimental results 

obtained by applying the proposed generation 
algorithm to different fault lists. The algorithm has 
been implemented in about 900 lines of C++ code, 
compiled with gcc compiler. All the experiments are 
performed on a ASUS, AMD 1500Mhz based Laptop 
with 512 MB of RAM. We performed two classes of 
experiments, targeting two different fault lists. The 
fault lists include the set of realistic linked faults 
presented in [10] :  

1. Fault List #1 includes single, two and three cells 
LFs [10] 

2. Fault List #2 includes the single cell LFs [10]. 
 
All generated March Tests have been verified using 

an ad hoc memory fault simulator [13] able to validate 
their correctness w.r.t. the target Fault list.  

We compare our new generated Test Algorithms 
with the previous march tests targeting the same fault 
list. In particular we consider: 
• 43n March Test : it is the only march test targeting 

linked faults automatically generated. It is able to 
deal only with a reduced subset of Fault List #1. 
Published in [11]  

• 41n March SL: it is the state of the art in terms of 
complexity and coverage. It is generated by hand; it 
covers Fault List #1. Published in [10]. 

• 11n March LF1: it is the well known march test 
able to cover Fault List #2 Published in [16]. 

 

                                                 
1 E.g., if the address of the Sequence of Operations was i, now we 
try to apply the same sequence to the cell j and so on … 



Table 1 reports March Tests generated for different 
fault lists, it also shows the generation time required by 
the algorithm in terms of CPU time (in seconds). We 
generated unpublished March Test reducing the 
complexity of the previous ones. We obtained two 
March Tests targeting fault list #1, March ABL and 
March RABL, respectively 37n and 35n of complexity. 
Comparison results (column 5) show a reduction of 
test length, of 13.9% w.r.t 43n March Test, and 9.7% 
w.r.t 41n March SL. Finally 9n March ABL1, targeting 
fault list #2, reduces test length of 18.1% w.r.t 11n 
March LF1. 

 
7. Conclusions 
 
This paper presented a methodology to automatically 

generate March Tests. A general model has been used 
to represent both known memory faults, and to 
possibly add new user-defined faults. In particular we 
address Static Linked Faults. With respect to 
previously presented approaches our methodology 
allows generating non-redundant March Tests in a very 
low computation time, and without exhaustive 
searches. We have been able to generate March Tests 
for the complete set of Static Linked Faults obtaining 
new test algorithms. Comparison with state of the art 
march tests show that we reduce the complexity of the 
well known tests and therefore we reduce the time to 
test making our solution very attractive from the 
industrial point of view. On going activities are 
focused on the extension of the model to multi-port 
memory linked faults and on the possibility of 
introducing additional constraints on the generated 
March Test. In particular, has been demonstrated in 
literature that March Tests with particular address 
orders (i.e., all increasing or all decreasing) can be 
implemented more efficiently, we want to be able to 
add to our model these constraints. 
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Improve (%) 
March Test Algorithm Fault List 

CPU 
Time 

(s) 
O(n) 43n  

March Test 
41n  

March SL 
11n  
March LF1 

ABL 

c(w0)  
⇑(r0,r0,w0,r0,w1,w1,r1) ⇑(r1,r1,w1,r1,w0,w0,r0) 
⇓(r0,w1) ⇓(r1,w0) ⇓(r0,r0,w0,r0,w1,w1,r1) 
⇓(r1,r1,w1,r1,w0,w0,r0) ⇑(r0,w1) ⇑(r1,w0) 

#1 1.03 37n 13.9% 9.7% - 

RABL 
c (w0) ⇑(r0,r0,w0,r0) ⇑(r0,w1,r1,r1,w1,r1,w0,r0) 
⇑(r0,w1) ⇓(r1,r1,w1,r1,w0,r0,w0,r0) 
⇑(w1) ⇑(r1,r1,w1,r1,w0,r0,r0,w0,r0,w1,r1) 

#1 1.35 35n 18.6% 14.6% - 

ABL1 c (w0,) c (w0,r0,r0,w1) c (w1,r1,r1,w0)  #2 0.98 9n - - 18.1% 
Table 1: Experimental Results 


