
24 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Automatic March Tests Generations for Static Linked Faults in SRAMs / Benso, Alfredo; Bosio, Alberto; DI CARLO,
Stefano; DI NATALE, Giorgio; Prinetto, Paolo Ernesto. - STAMPA. - 1:(2006), pp. 1-6. (Intervento presentato al
convegno Design, Automation and Test in Europe, Conference and Exhibition (DATE) tenutosi a Munich, DE nel 6-10
Mar. 2006) [10.1109/DATE.2006.244097].

Original

Automatic March Tests Generations for Static Linked Faults in SRAMs

Publisher:

Published
DOI:10.1109/DATE.2006.244097

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1499961 since:

IEEE Computer Society

Automatic March Tests Generations for Static Linked Faults in SRAMs

A. Benso, A. Bosio, S. Di Carlo, G. Di Natale, P. Prinetto

Politecnico di Torino
Dipartimento di Automatica e Informatica

Torino, Italy
E-mail {benso, bosio, dicarlo, dinatale, prinetto}@polito.it

http://www.testgroup.polito.it

Abstract

Static Linked Faults are considered an interesting
class of memory faults. Their capability of influencing
the behavior of other faults causes the hiding of the
fault effect and makes test algorithm design a very
complex task. A large number of March Tests with
different fault coverage have been published and some
methodologies have been presented to automatically
generate March Tests. In this paper we present an
approach to automatically generate March Tests for
Static Linked Faults. The proposed approach
generates better test algorithms then previous, by
reducing the test length

1. Introduction

Memories are one of the most important
components in digital systems, and semiconductor
memories are nowadays one of the fastest growing
technologies. Actually the major trend of System-On-
a-Chip (SOC) allows to embed in a single chip all the
components and functions that historically were placed
on a hardware board. Within SOCs, [1] forecasts that
embedded memories will be the densest components,
reaching the 90% of chips area surface in ten years. It
is thus common finding, on a single chip, tens of
memories of different types, sizes, access protocols
and timing. Moreover they can recursively be
embedded in embedded cores.

The high density of their cells array makes
memories extremely vulnerable to physical defects.
Due to the complex nature of the internal behaviour of
memory chips, the design of fault models and tests is
non-trivial.

An important class of memory faults is the class of
linked faults [10]. A linked fault is a memory fault
composed of two or more simple faults. The behaviour
of each simple fault can be influenced by the
remaining ones and in some cases the fault can be

masked. Classic march tests cannot detect linked faults
due to the masking. In the latest decade published
researches mainly focused on the definition of new
realistic fault models [2] [3] [4] [5] showing the
importance of developing new memory test algorithms.
Nevertheless few publications targeted the problem of
linked faults and their test generation. In [6], [7], and
[8] the authors present march test solutions having
high fault coverage on a restricted set of linked
memory faults. In [9] and [10] the authors present an
accurate analysis of the linked fault concept.
Moreover, they present a march test facing new fault
models.

In [11], the authors present an automatic generation
methodology, but it is still affected by the problem of
considering a limited number of memory faults, the
same of [6], [7], and [8]. So far, no other Automatic
Test Generations for Static Linked Faults have been
proposed.

In this paper we propose a new approach to
automatically generate March Tests targeting static
linked memory faults. The generation process resorts
to a formal notation that extends the Fault Primitive
notation [12] to describe the list of faulty behaviors to
be detected. We successfully applied the proposed
algorithm to an extensive set of realistic static linked
faults, obtaining new March Tests, with a computation
time in order of few seconds. To prove their
correctness, all generated Tests have been fault
simulated by an in-house developed memory fault
simulator [13].

The paper is structured as follows: Section 2
presents an overview about memory fault modeling
and notation. Section 3 introduces the concept of
Linked Fault (LF) and extends the adopted formalism
in order to model LFs. Section 4 presents the memory
model. Section 5 details the steps of the automatic
March Test generation process, whereas Section 6
presents experimental results. Section 7 finally

summarizes the main contributions and outlines future
research activities.

2. Fault modeling

A Functional Fault Model (FFM) is a deviation of
the memory behavior from the expected one under a
set of performed operations. A FFM involves one or
more Faulty Memory Cells (f-cells) classified in two
categories: Aggressor cells (a-cells), i.e., the memory
cells that sensitize a given FFM and Victim cells (v-
cells), i.e., the memory cells that show the effect of a
FFM. Each faulty behavior is sensitized by a sequence
of stimuli applied on the f-cells. When dealing with
SRAMs, the applied stimuli are the memory
operations. First of all we have to specify the initial
conditions of the cell, i.e. the value (state) of the
memory cell, where we are going to apply the
operations. Hereinafter we resort to n as the size of the
memory (i.e., the number of memory cells)

Definition 1: C is the set of the memory states
(values), formalized as

C = {0[i], 1[i], -[i] | 0 ≤ i ≤ n-1} (1)

where the apex identifies the address of the cell. If

the address is omitted, it means that the state can be
applied on every memory cell indifferently. The ‘-’
denotes a don’t care condition.

Definition 2: X is the set of the memory operations,
formalized as

X = {r[i]

[d], w[i]
d | 0 ≤ i ≤ n-1; d ∈ (0,1)} ∪ {t} (2)

where:
• wi

d is a write operation of the value d performed
in the cell i;

• ri
d is a read operation performed in the cell i.

The value d is not strictly needed in case of a
read operation. If used, it means the expected
value that should be red from the i-th memory
cell;

• t is a wait operation for a defined period of time.
This additional element is needed to deal with
Data Retention Faults [14].

If the address is omitted, it means that the operation

can be applied on every memory cell indifferently.

Each FFM can be described by a set of Fault

Primitives (FPs) [12].

Definition 3: A Fault Primitive FP represents the
difference between an expected (fault-free) and the
observed (faulty) memory behavior denoted by:

 < Sa ; Sv / F / R > (3)

Where Sa and Sv are the Sequence of Sensitizing
Operations and/or Conditions respectively applied to
a-cell and v-cell, needed to sensitize the given fault.
The j-th condition/operation is represented as c[x],
where c ∈ C (1), and x ∈ X (2). R = { (r)n | r ∈ C } is
the sequence of values read on the aggressor cell
when applying S.

As an example FP = < 0w1 ; 0 / 1 / - > means that the

operation ‘w1’ performed on the a-cell, when the initial
state is 0 for both a and v cells, causes the v-cell to flip.
No addresses are specified; therefore this fault can
affect each couple of memory cell. Several FPs
classification rules can be adopted, based on the
number of memory operations (m) needed to sensitize
the FP (static when m = 1 or dynamic fault elsewhere);
and based on the number of memory cells (#FC)
involved by the FP (single-cell where #FC = 1 or n-
cells elsewhere fault) [14]. Since the FP notation not
necessarily explicates the address of both aggressor
and victim memory cells, we extend the FP model by
introducing the Addressed Fault Primitive concept.

Definition 4: An Addressed Fault Primitive (AFP)
is an instantiation of a FP which explicit the involved
addresses, and both the faulty and fault-free final
memory state, reached by the memory, after applying
the AFP. It can be formalized as:

AFP = (I , Es ,Fv , Gv) (4)

where:
• I = { (s) #IC | s ∈ C } is the initial state, i.e., the

value stored in the #IC involved cells, before
applying the AFP. The first value correspond to
the less significative bit (i.e. the memory cell
with the lowest address);

• Es = { (op)m │op ∈ X } is the sequence of
operations, performed on the aggressor cells,
needed to sensitize the fault; each operation
belong to the alphabet X, the set of all the
possible memory operations;

• Fv = { (f) #IC | f ∈ C } is the logical value stored
in the memory cells after applying Es (faulty
state)

• Gv = { (g) #IC | g ∈ C } is the logical value stored
in the memory cells after applying Es on the
fault-free memory (expected state).

The FP of the above example < 0w1 ; 0 / 1 / - > can be
translated into AFP1 = (00, w0

1, 11, 10) and AFP2 =

(00, w1
1, 11, 01), with a memory having n = 2 (i.e.,

two cells). Each AFP can be covered by a Test Pattern.
Definition 5: A Test Pattern for a given Addressed

Fault Primitive is defined as:
 TP = (I, E, O) (5)

where:
• I: is the initial state (see 4);
• E: is equal to Es (see 4);
• O = {rd

i │d ∈ (0,1), 0 ≤ i ≤ n-1} is the operation
needed to observe the fault effect, where rd

i
means “read the content of the cell i and verify
that its value is equal to d”.

From AFP1 = (00, w0

1, 11, 10) and AFP2 = (00,
w1

1, 11, 01) we obtain the following Test Patterns:
• TP1 = (00, w0

1, r1
0) , TP2 = (00, w1

1, r0
0)

3. Linked Fault: Concept & Modeling

In some cases it is possible that the effect of a FFM
influences another functional fault. If these faults share
the same aggressor and/or victim cells, the FFMs are
called Linked, otherwise they are called simple or un-
linked and each fault is independent from the others.
To understand the concept of linked faults we can
consider, as an example, the Disturb Coupling Faults
[14] described by the following two FPs:

FP1 = < 0w1 ; 0 / 1 / - >, FP2 = < 0w1 ; 1 / 0 / - > (6)

A general case is represented in Figure 1, in which

a n cells memory is affected by two FPs (FP1 and FP2)
having different a-cells (a1, a2) and the same v-cell (v).
The vertical arrow shows the address order of the
memory (from the lowest memory address to the
highest) in which i, j and k represent the address of a1,
a2 and v, respectively. By first performing “0w1” (FP1)
on cell i, the v-cell k flips from 0 to 1; than performing
“0w1” (FP2) on cell j, the v-cell k changes its value
again, from 1 to 0. The global result is that the fault
effect is masked by the application of FP2, since FP2
has a fault effect (F) opposite to FP1. Looking at the
example of Fig. 1, we can derive a rigorous definition
of a Linked Fault (LF):

Definition 6: Two FPs, FP1 = <S1/F1/R1> and FP2
= <S2/F2/R2>, are said to be Linked, and denoted by
“FP1 → FP2”, if both of the following conditions are
satisfied:

• FP2 masks FP1, i.e., F2 = not (F1);
• The Sensitizing operation (S2) of FP2 is applied

after S1, on either the a-cell or v-cell of FP1.

To detect linked faults (LFs), one must detect in

isolation (i.e., without allowing the other FP to mask

the fault) at least one of the FPs that compose the fault
[10]. We extend the concept and the notation described
in Definition 6 resorting to AFP (4) formalism.

a1

a2

v

0

n-1

i

j

k

Figure 1 : Example of Linked Fault

Definition 7: Two AFPs, AFP1 = (I1, Es1, Fv1, Gv1)

and AFP2= (I2, Es2, Fv2, Gv2) are said to be Linked, and
denoted by “AFP1 → AFP2” if:

• I2 = Fv1 : the state reached by AFP1 is equal to
initial state of AFP2;

• AFP2 masks AFP1 : V(Fv2) = NOT [V(Fv1)]
where V(s) function extracts the victim cell
from the memory state s

As an example the Linked Fault represented in (6),

includes two AFPS obtained by FP1 and FP2:
• AFP1 = (000, w0

1, 101, 100) (7)
• AFP2 = (101, w1

1, 110, 111)

If we set the size of memory cell n = 3 (0,1,2), the

a-cell is cell 0 in AFP1 and cell 1 in AFP2. Both AFP
have v-cell equal 2.

These two AFP satisfy the constraint of Definition
7:

• I2 = 101 = Fv1
• V(Fv2) = 0 = NOT [V(Fv1) = 1]

Each Linked fault can be modelled by two AFP

according to Definition 7. The last step generates the
relative Test Patterns (5) able to cover the AFPs, in
such a way that from “AFP1 → AFP2” we obtain:

“TP1 → TP2” (8)

Where
• TP1 = (I1, E1, O1) , TP2 = (I2, E2, O2)

4. Fault Graph and Memory Model

The generation of a functional test algorithm

consists in finding a sequence of memory operations
able to initialize the memory in a given state, to
sensitize and to observe all the faulty behaviors in the
target fault list

For each AFP, the Test Pattern notation (5) already
contains this information, hence the generation task
become finding a set of TPs able to cover the entire
fault list, minimizing the number of operations
required. To tackle the problem we resort to the model
proposed in [15] to represents the behavior of both the
good and the faulty memory. An n one-bit cells
memory can be represented as a deterministic Mealy
Automata, formally defined as:

M = (Q, X, Y, δ, λ) (9)

where:
• Q = { (0| 1| -)n } is the set of possible memory

states;
• X is the input alphabet defined in (2);
• Y = {0,1,-} is the output alphabet, composed of

the possible values read as a result of a read
operation; ‘−’ denotes the value obtained when a
write operation is performed;

• δ = Q × X → Q is the state transition function;
• λ = Q × X → Y is the output function.

The memory model defined in (8) can be represented

as a labeled direct graph

 G = {V, E} (10)
where:
• V is the set of vertices, each vertex representing

one of the possible states of the memory; |V| = 2n,
• E is the set of edges, each edge representing one

of the possible memory operations that cause the
transition from a vertex u to a vertex v; the kth
label associated with the kth edge has the
following representation:

 Labelk = x / d (11)
 where:

− x ∈ X is a memory operation
− d = λ(v,x), d ∈ Y is the output value obtained

when performing the operation x when the
memory is in the state v.

As an example, Figure 2 shows the model of a 2 bit

memory, conventionally named G0 in the sequel. In G0,
the letters i and j are used to identify the first and the
second cell, respectively. Hereinafter, we shall assume
i < j. According to (8) each Linked Fault is covered by
a sequence of two Test Pattern TP1 and TP2, each TP
can be modeled on G0 by a single additional edge
(faulty edge) [15] The couple of Linked TPs is
represented on the graph by adding two extra faulty
edges as shown in Figure 3. In the graph
representation, the memory state reached by TP1 (Fv1)
is equal to I2 (initial state of TP2) in order to satisfy
Definition 7.

The graph including the faulty edges is named
Pattern Graph (PG) and is defined as:

PG = {Vp, Ep ∪ Fp} (11)

rj/ 0
ri/ 1

rj/ 1
ri/ 1

rj/ 0 ;
ri/ 0 ;

rj/ 1 ;

00

01

10

11

t/ -
w1

i / -

w1
j / -

w1
i / -

w0
j / -

w0
i / -

w1
j / -w0

j / -

w0
i / -

w0
i/ -

w0
j/ -

t/ -

w1
i/ - ;

w0
j/ - ;

t/ -
w1

i/ - ;
w1

j/ - ;

t/ -
w0

i/ -
w1

j/ -
ri/ 0 ;

Figure 2: Fault Free Memory Model G0

I1
Fv1= I2

Es1/Os1

Fv2

Es2/Os2

Figure 3: Linked Test Pattern Representation

where each vertex v ∈ Vp is associated to a memory

state, Ep is the set of edges modeling the fault free
memory, and Fp is the set of faulty edges. If n is the
number of cells composing the target memory the
number of nodes composing the pattern graph is |Vp| =
2n. The cardinality of PG vertices is 2max(#f-cells

i
) with 0

≤ i ≤ #FP, where #FP represents the number of FPs in
the target fault list [15].

Definition 8: given fl , fk ∈ Fp , fi masks fk if and only
if V(Fvk) = V(Il), where fl is incident from vertex Il is
the and fk is incident in vertex Fvk . V(s) is defined in
Definition 7

As an example Disturb Coupling Fault linked to

Disturb Coupling Fault [10] is modeled as two FPs:

< 0w1 ; 0 / 1 / - > → < 1w0 ; 1 / 0 / - > (12)

Expressing the FPs in terms of AFPs we obtain:

(00, wi

1, 11, 10) → (11, w1
0, 00, 01) (13)

The above AFPs are covered by Test Patterns:

(00, wi

1, rj
0) → (11, w1

0, rj
1) (14)

The PG (named PGCF in the sequel) modeling LF

(12) is shown in Figure 4 where the bold edges
represent the additional faulty edges of (14).

00

01

10

11w0
i,ri

j

w1
i,r0

j

Figure 4: Linked CF Pattern Graph (PGCF)

5. March Tests Generation Algorithm

As pointed out in [15], the problem of generating

March Tests consists in finding a sequence of TPs able
to cover all the memory faults in the target fault list.
Since each TP is represented by a faulty edge, the
problem is equivalent to finding a sequence of edges
(walk) on the pattern graph traversing at least all the
faulty edges. The memory operations are easily
deduced from the labels of the edges composing the
walk.

Definition 9 : Sequence of Operations (SO) is a
sequence of memory operation SO= so1 so2…, with soi
∈ {X} (see Definition 2). A walk is directly translated
into a SO by writing the label of the edges in the
sequence.

In the follow we summarize some definitions taken

from [15] in order to reduce the complexity of the
algorithm.

Definition 10: A March Test (MT) is a sequence of
March Elements; each March Element (ME) is a
sequence of memory operations applied on every cell
in a specific Address Order AO (increasing,
decreasing, random).

The problem is to find a sequence of SOs able to

cover all the faults in the fault list while respecting the
Definition 9, and without causing masking. The
strategy adopted by the algorithm will be to extract a
sequence of SOs where each SO will correspond to a
March Element.

Definition 11: a Sequence of Operations is valid if
and only if all the operations are performed on the
same memory cell i; otherwise the sequence causes a
constraint violation.

The valid SO property ensures that the operations

belonging to the SO will be applied on each memory
cell as a ME.

Definition 12: The Address Specification of a valid
SO is the memory address on which the operations of
the SO are performed.
 Definition 13: fi ∈ Fp is SO Compatible if its address
is equal to the address specification of a valid SO and
if fj does not mask fj ∈ SO.

The algorithm works on the PG. It attempts to

generate a set of March Elements by building valid
sequences of operations SO. A valid SO can be
directly translated into a March Element by specifying
its address order and by removing the address
specification; considering the G0 memory model (i <
j), the march element address order is defined as
follow:
• If the address specification of a valid SO is equal

to i then the address order will be ‘⇑’

• If the address specification of a valid SO is equal
to j then the address order will be ‘⇓’

The algorithm mainly consists in finding a path on the
graph able to touch each faulty edge exactly once
while respecting the March Test constraints. The main
steps of the algorithm are summarized in Fig. 5.

1. Repeat
a. Initialize the Sequence of Operations (SO=∅)
b. While (the next f ∈ Fp is SO Compatible)

i. Put the f into the Sequence of Operations SO
ii. Delete f

c. If (The Sequence of Operations contains at least one f) then

i. Apply the Sequence of Operations to each memory cell
1

ii. If (new fs are covered) then delete the covered fs

iii. Translate the Sequence of Operations into a March
Element by setting its address order
iv. Print the March Element

d. Else
i.Report that the f cannot be cover by the March Test

3. Until (Fp is empty)
Figure 5: March Generation Algorithm

6. Experimental Results

This section reports some experimental results

obtained by applying the proposed generation
algorithm to different fault lists. The algorithm has
been implemented in about 900 lines of C++ code,
compiled with gcc compiler. All the experiments are
performed on a ASUS, AMD 1500Mhz based Laptop
with 512 MB of RAM. We performed two classes of
experiments, targeting two different fault lists. The
fault lists include the set of realistic linked faults
presented in [10] :

1. Fault List #1 includes single, two and three cells
LFs [10]

2. Fault List #2 includes the single cell LFs [10].

All generated March Tests have been verified using

an ad hoc memory fault simulator [13] able to validate
their correctness w.r.t. the target Fault list.

We compare our new generated Test Algorithms
with the previous march tests targeting the same fault
list. In particular we consider:
• 43n March Test : it is the only march test targeting

linked faults automatically generated. It is able to
deal only with a reduced subset of Fault List #1.
Published in [11]

• 41n March SL: it is the state of the art in terms of
complexity and coverage. It is generated by hand; it
covers Fault List #1. Published in [10].

• 11n March LF1: it is the well known march test
able to cover Fault List #2 Published in [16].

1 E.g., if the address of the Sequence of Operations was i, now we
try to apply the same sequence to the cell j and so on …

Table 1 reports March Tests generated for different
fault lists, it also shows the generation time required by
the algorithm in terms of CPU time (in seconds). We
generated unpublished March Test reducing the
complexity of the previous ones. We obtained two
March Tests targeting fault list #1, March ABL and
March RABL, respectively 37n and 35n of complexity.
Comparison results (column 5) show a reduction of
test length, of 13.9% w.r.t 43n March Test, and 9.7%
w.r.t 41n March SL. Finally 9n March ABL1, targeting
fault list #2, reduces test length of 18.1% w.r.t 11n
March LF1.

7. Conclusions

This paper presented a methodology to automatically

generate March Tests. A general model has been used
to represent both known memory faults, and to
possibly add new user-defined faults. In particular we
address Static Linked Faults. With respect to
previously presented approaches our methodology
allows generating non-redundant March Tests in a very
low computation time, and without exhaustive
searches. We have been able to generate March Tests
for the complete set of Static Linked Faults obtaining
new test algorithms. Comparison with state of the art
march tests show that we reduce the complexity of the
well known tests and therefore we reduce the time to
test making our solution very attractive from the
industrial point of view. On going activities are
focused on the extension of the model to multi-port
memory linked faults and on the possibility of
introducing additional constraints on the generated
March Test. In particular, has been demonstrated in
literature that March Tests with particular address
orders (i.e., all increasing or all decreasing) can be
implemented more efficiently, we want to be able to
add to our model these constraints.

References

[1] International Technology Roadmap for Semiconductors,
“International technology roadmap for semiconductors 2004
Update”, http://public.itrs.net/Home.htm, 2004

[2] R. Dekker, F. Beenker, L. Thijssen, “A Realistic Fault Model and
Test Algorithms for Satic Random Acces Memory”, IEEE
Transaction on Computer-Aided Design, Volume: 9, Issue: 6, June
1990
[3] R.D. Adams and E.S. Cooley, “Analysis of a Deceptive
Destructive Read Memory fault Model and Recommended Testing”,
NATW 1996. 5th IEEE North Atlantic Test Workshop, 1996
[4] Z. Al-Ars, Ad J. van de Goor, “Static and Dynamic Behavior of
Memory Cell Array Opens and Shorts in Embedded DRAMs”, DATE
2001, IEEE Design Automation and Test in Europe, 2001, pp. 496-
503.
[5] Z. Al-Ars and A.J. van de Goor, “Approximating Infinite
Dynamic Behavior for DRAM Cell Defects”, VTS 2002, 20th IEEE
VLSI Test Symposium, 2002, pp.401-406.
[6] D. S. Suk, S. M. Reddy, “A March Test for Functional Faults in
Semiconductor Random-Access Memory” IEEE Transaction on
Computer-Aided Design, Volume: 30, Issue: 12, 1981
[7] A. J. van de Goor, G.N. Gayadadjiev, V.N. Yarmolik, V.G.
Mikitjuk, “March LA: A Test for Linked Memory Faults”, ED&TC
1997, Proc. European Design and Test Conference, 1997, pp. 167
[8] A. J. van de Goor, G.N. Gayadadjiev, V.N. Yarmolik, V.G.
Mikitjuk, “March LR: A Test for Realistic Linked Faults”, VTS
1996, 16th IEEE VLSI Test Symposium, 1996, pp. 272-280.
[9] S. Hamdioui, Z. Al-Ars, A.J. van de Goor, M. Rodgers, “March
SL: a test for all static linked memory faults”, ATS 2003, 12th IEEE
Asian Test Symposium, 2003. pp. 372 – 377
[10] S. Hamdioui, Z. Al-Ars, A. J. van de Goor, M. Rodgers,
“Linked Faults in Random Access Memories Concept Fault Models
Test Algorithms and Industrial Results”, IEEE Transaction on
Computer-Aided Design, Volume: 23, Issue: 5, May 2004, pp. 737-
757
[11] S. M. Al-Harbi, S. K. Gupta, “Generating Complete and
Optimal March Tests for Linked Faults in Memories”, VTS 2003,
21th IEEE VLSI Test Symposium, 2003, pp. 254 -261
[12] A. J. van de Goor, Z. Al-Ars, “Functional Memory Faults: A
Formal Notation and a Taxonomy”, VTS 2000, 18th IEEE VLSI Test
Symposium, 2000, pp. 281-289.
[13] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, “Specification
and design of a new memory fault simulator”, ATS 2002, 11th IEEE
Asian Test Symposium, 2002.pp. 92 – 97.
[14] A. J. van de Goor, B. Smit, “Generating March Tests
Automatically”, ITC 1994, IEEE International Test Conference,
1994, pp.870-877, 1994
[15] A. Benso, A. Bosio, S. Di Carlo, G. Di Natale, P. Prinetto,
“Automatic March Tests Generation for Static and Dynamic Faults
in SRAMs”, ETS 2005, 10th IEEE European Test Symposium, 2005.
[16] S. Hamdioui, Z. Al-Ars, A. J. van de Goor, “A Fault Primitive
Based Analysis of Linked Faults in RAMs”, MTDT 2003, IEEE
International Workshop on Memory Technology, Design and
Testing, 2004,

Improve (%)
March Test Algorithm Fault List

CPU
Time

(s)
O(n) 43n

March Test
41n

March SL
11n
March LF1

ABL

c(w0)
⇑(r0,r0,w0,r0,w1,w1,r1) ⇑(r1,r1,w1,r1,w0,w0,r0)
⇓(r0,w1) ⇓(r1,w0) ⇓(r0,r0,w0,r0,w1,w1,r1)
⇓(r1,r1,w1,r1,w0,w0,r0) ⇑(r0,w1) ⇑(r1,w0)

#1 1.03 37n 13.9% 9.7% -

RABL
c (w0) ⇑(r0,r0,w0,r0) ⇑(r0,w1,r1,r1,w1,r1,w0,r0)
⇑(r0,w1) ⇓(r1,r1,w1,r1,w0,r0,w0,r0)
⇑(w1) ⇑(r1,r1,w1,r1,w0,r0,r0,w0,r0,w1,r1)

#1 1.35 35n 18.6% 14.6% -

ABL1 c (w0,) c (w0,r0,r0,w1) c (w1,r1,r1,w0) #2 0.98 9n - - 18.1%
Table 1: Experimental Results

