
14 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

PROMON: a profile monitor of software applications / Benso, Alfredo; DI CARLO, Stefano; DI NATALE, Giorgio; Prinetto,
Paolo Ernesto; Tagliaferri, Luca; Tibaldi, Clara. - STAMPA. - (2005), pp. 81-86. (Intervento presentato al convegno IEEE
8th Workshop on Design and Diagnostics of Electronic Circuits and Systems (DDECS) tenutosi a Sopron, HU nel 13-16
Apr. 2005).

Original

PROMON: a profile monitor of software applications

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1499953 since:

IEEE Computer Society

PROMON: A PROFILE MONITOR OF SOFTWARE APPLICATIONS

A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, L. Tagliaferri, C. Tibaldi
Politecnico di Torino, Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24, 10129, Torino (Italy)
{alfredo.benso, stefano.dicarlo, giorgio.dinatale, paolo.prinetto, luca.tagliaferri,

clara.tibaldi}@polito.it

Abstract. Software techniques can be efficiently used to increase the
dependability of safety-critical applications. Many approaches are based on
information redundancy to prevent data and code corruption during the
software execution. This paper presents PROMON, a C++ library that exploits
a new methodology based on the concept of “Programming by Contract” to
detect system malfunctions. Resorting to assertions, pre- and post-conditions,
and marginal programmer interventions, PROMON-based applications can
reach high level of dependability.

1 Introduction
With the recent progress of the technology it is simple to design and produce high

performance low cost microprocessor systems. Unfortunately, these systems do not usually
guarantee high levels of reliability because of mainly two reasons: to lower as much as
possible the Time-to-Market they are designed without the necessary care to dependability
issues; new and smaller technologies are much more sensitive than older systems to
environmental perturbations that cause transient errors [1][2].

Recently, Commercial Off-The Shelf (COTS) hardware and software components have
been introduced in safety-critical automotive and space applications; these components
guarantee high performances at the price of a low dependability [3]. COTS hardware
cannot be modified. The only possible low-cost solution is to take advantage of SIHFT
(Software Implemented Hardware Fault Tolerance) techniques that allow, by using
software elements only, to detect and correct errors [4][5]. SIHFT techniques are, in
general, based on the addition, to the original target application, of software routines able to
check the validity and correctness of the executed code and the managed data.

This paper presents PROMON, a software able to intercept faults that may occur during
the execution of the application and block the execution; the innovative aspect of the
approach is that the implemented methodology relies on the principle of Programming by
contract, and on the use of common assertions, pre and post-conditions, to ensure that the
code follows its expected behavior [6][7][8][9].

Many techniques have been proposed in the past in order to improve the reliability of
non-reliable COTS; the majority of them are based on the insertion of redundant code and
data in the running applications, so that each single operation is entrusted by at least one re-
computation. The redundant information can be inserted statically in the original high level
code during a preliminary phase: this is the case of source-to-source compilers like Porch

8 IEEE Workshop on
Design and Diagnostics of Electronic Circuits and Systems

Sopron, Hungary, April 13 - 16, 2005

th

81

[10] and Recco [11]. Other approaches as BSSC, ECI and watchdogs are designed to check
the consistency of the executed machine code [12]. Watchdogs stem from the idea that
errors (software or hardware) bring the processor to follow an execution flow different from
the expected one. A Watchdog is usually a hardware/software component able to check at
runtime the correctness of the execution flow [13].

The paper is organized as follows: PROMON architecture is sketched in Section 2;
Section 3 proposes some experiments to show PROMON performances. Section 4 presents
the conclusions and outlines future works.

2 PROMON Architecture
PROMON implements a pure software fault-tolerance technique based on assertions.

Transient errors can cause different types of system errors such as the corruption of a
memory location that stores a variable. This type of errors can easily propagate to other
variables. PROMON offers a methodology to observe the value of the variables during the
application execution and to detect if the value of each “protected” variable is legal or not.

PROMON is implemented as a C++ [14] template library based on the use of assertions
(pre and post-conditions) on the application variables. Pre and post-conditions can be
manually setup by an expert programmer or can be automatically extracted from the
analysis of the behavior of each variable during a set of fault-free executions of the
application. Pre and post conditions are extracted in the three phases (Figure 1) summarized
here and detailed in the next sub-sections:
1. Code instrumentation: a set of selected critical variables are “redefined” so that, during

the software execution, their behavior can be traced on a log file. Techniques to select
the most critical variables have been presented in [15];

2. Golden executions: the user runs the application with different workloads. During each
execution the value of each protected variable is logged for later analysis. The choice of
the workloads to apply is a very critical task. In general, the greater the workload is, the
more precise the extracted assertions will be and less probable to generate “false
negatives” (errors not recognized as such);

3. Assertion extraction: all the log files are analyzed and, for each variable, a set of
assertions is extracted. In this phase users can also provide a set of “user-defined”
assertions, maybe difficult to extract but known as true by the programmer.
At this point, the value of each protected variable is validated, at run-time, using the

extracted assertions; if PROMON finds any kind of violation an exception is raised and the
execution is stopped.

Figure 1: PROMON Architecture

Original Code

User’s Assertions
Original Code

Golden Executions

Code Instrumentation

Assertion Extraction

Assertion’s Set

Monitored Execution

Program Check

Exceptions

82

2.1 Instrumentation
The only manual intervention required by the proposed methodology is the

instrumentation phase, where the original definition of the variables that need to be
protected has to be replaced with the predefined types included in the PROMON C++
library (PROMON<int>, PROMON<char>, PROMON<float>, …). The set of possible pre
and post-conditions that can be specified and that PROMON is able to extract are: <Greater
then n / Greater than variable>, < Lower than n / Lower than variable >, <Even / Odd>,
<Always increasing / Always decreasing>, <Multiple of n / Multiple of variable>, <Is the
index in a cycle>, <User-defined set condition>. In addition, the programmer has the
possibility of specifying for each variable a set of valid ranges or validation functions.

Apart from the variables’ redefinition the user is not expected to change anything else in
the code since a complete set of overloaded operators let protected variables behave exactly
as normal type variables. Therefore, each original operation is executed as planned but an
additional routine is executed to log the behavior of each variable. An example of
redefinition of the “=” and the “++” operators is presented in Figure 2.

Figure 2: PROMON operator overloading

The resulting program is functionally equivalent to the original one except from the fact
that during the execution the program itself logs significant variable usage statistics, such as
the number of times a variable is written and read, and each value the variable stored during
the execution.

2.2 Golden execution and assertion extraction
This phase is probably the most important one, since the choice of the workloads

directly affects the “precision” of the assertions PROMON is able to extract. Applying
different workloads allows logging a number of “golden” (surely correct) executions of the
target application: PROMON analyzes these executions to derive a list of valid assertions
for each variable. It is programmer’s duty to choose a sufficient number of golden runs to
build a significant application profile.

The analysis of the golden logs then tries to map each variable’s behavior in one or
more of the pre and post-conditions listed in Table 1. As an example, consider a variable x
that during three different golden executions assumes the values listed in Table 2.

1st execution: 2,6,10 2nd execution: 4,8,12 3rd execution: 10,14,18

Table 1: Example of assertion extraction

From the analysis of the logged values PROMON is able to extract the following
assertions for variable x: Greater than 2, Even, Always increasing, Lower than 18

 At the end of the analysis of the golden executions a “readable” text file is produced
with all the extracted assertions.

Promon<int> a (…);
Promon<int> b(…);
a = 0 ; b = 10;
a=a+b;
a++;

Operator = {
save_Value(…);
increase number of write access;
…}

Operator ++ {
save_Value(…);
increase number of read access;
increase number of write access;
…}

83

2.3 On-line execution
After the assertions extraction, the behavior of the protected variables changes. Their

task is not anymore to log the variable behavior but to check that the value of a protected
variable is compatible with the set of assertions for that variable. The behavior of the on-
line check is summarized in Figure 3.

Figure 3: Condition check

If, during execution, all the pre and post-conditions are satisfied, the program terminates
normally; otherwise, in case of an error detection, PROMON can proceed (as the user
prefers) in two ways: in “Exception Mode” an exception routine is called and the
application execution is interrupted; in “Warning Mode” the execution continues and, when
the application ends, the presence of anomalies is signaled to the user via a log file
containing the list of the violated assertions.

2.4 Self injection
In order to evaluate the effectiveness of the proposed approach, a set of Fault Injection

experiments has been executed. In particular a number of faults have been artificially
injected inside the application variables in order to check if the extracted assertions where
precise enough to eventually detect an error in one or more application variable.

The PROMON C++ library can be configured to perform random injections in the
protected variables during the application execution. Figure 4 shows how the injections and
errors detection flow are performed.

Figure 4: PROMON self injection

At the end of a self-injected execution PROMON provides a log file containing the
injected variable, the correct and wrong values detected in each variable, the output of the
application (to detect if the results are correct or not), and the detected errors.

3 Benchmark and experimental results
This Section presents the experimental results obtained applying PROMON to the

following set of benchmark applications: Whetstone [16] (a CPU/RAM benchmark),
Stream [17] (a RAMtoRAM transfer-rate calculator), a Knapsack problem solver [17] and a
Dhrystone application [16]. We executed each application 1,000 times, each time injecting
a random fault in one of the application variables. In the following experiments, where not
mentioned otherwise, all variables of the application have been protected by PROMON.

Promon<type> var
(…);
…………………..
var ++ ;
…………………..
b = var ;
………………………..

Operator = {
 …………………………..
 pre-condition-check();

……………………………
.
}

Operator ++ {
 pre-condition-check();
 ………………………….
 write();
 ………………………….
 post-condition-check();
}

variable X
Assertions set:

Odd
Greater than 0
Increasing

int main() {
 X=10;

……………..
 Y=X;
 ……………..
}

Injected error:
X=9

Detected error:
X does not fit
“Odd assertion”

84

0

200

400

600

800

1000

Whetstone Knapsack
Problem

Fibonacci
Series

Dhrystone

Detected
Undetected

Fault detection per assertion

23%

35%

9%

30%

8%

0%
5%

10%
15%
20%
25%
30%
35%
40%

Assertion type

Even/Odd

Always increasing/
decreasing
Multiple of n

Greater/Lower then x

Index in a cycle

Figure 5: PROMON error detection capability Figure 6: Fault detection per assertion

As it can be seen from Figure 5, the detected errors vary from 80 to 99% on an overall
number of one thousand injections for each tested application. The different detection rates
is also due to the different behavior of the variables in each benchmark: the more a variable
is read, the greater is the influence on other variable, and therefore the probability that the
error is spread and, eventually, an assertion will fail. Figure 6 shows the detection
capabilities of each type of assertion and, as it can be seen, not all the assertions have the
same performance. The reason why the sum of the percentage is greater than 100% is that
for a number of variable errors are detected by more than one assertion.

Finally a set of user-defined assertions has been introduced in the four benchmarks; the
new assertions have been designed by an expert programmer analyzing the source code:
these user-defined assertions increase the average error detection by a 5%.

PROMON assertions, obviously, introduce a time overhead during the application
execution: this extra time depends on the number of monitored variables and the number of
active assertions. Figure 7 and Figure 8 show the execution time overhead for the
Dhrystone application.

Each assertion give a different contribution to time overhead: the two heaviest
assertions are the ones pertaining bounds and parity check; this event is caused by the fact
that these are the most commonly applicable constraints for variables.

The number of variables influences the time overhead: for the Stream benchmark,
which only has four protected variables, the increase in execution time is about 3%.

The memory overhead instead is constant for all the benchmarks (about 1 KB); this is
due to the fact that for middle size applications PROMON memory allocation is almost
independent from the number of assertion and variables monitored.

Figure 7: Time overhead w.r.t. the number of
monitored variables

Figure 8: Time overhead w.r.t. the number of
active assertions

738
1298

2328

4011

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Original
Code

With 5
Promon

Var

With 7
Promon

Var

With 12
Promon

Var

Number of monitored variables

Ce
nt

s
of

 s
ec

on
d

Drystone
Execution time

738

4038
40113900

1964
1885

0
1000
2000
3000
4000
5000

Orig
ina

l c
od

e
One

Two
Tree

Fou
r

Five

Number of active assertions

C
en

ts
 o

f s
ec

on
d

Dhryston
execution
time

85

4 Conclusion
This paper proposes a technique that shows how some “Programming by Contract”

paradigms can provide a new approach to Software Implemented Hardware Fault
Tolerance. The use of pre and post-conditions, automatically extracted and verified at run-
time, seems to be an excellent alternative to traditional information redundancy techniques.
The main advantage of the proposed approach is that it requires a very low manual
intervention still guaranteeing very significant error detection rates. Moreover,
programmers can choose to use the assertion mechanism for a reduced and critical subset of
variables, so to trade-off between CPU effort and detection capabilities. The experiments
show that the proposed technique results in a significant increase of the benchmarks
reliability; on the other hand the time overhead introduced by the extra computation can
increase rapidly depending on the number of the monitored variables.

Future work will investigate the possibility of creating dependencies between assertions
in order to make the validation mechanism more precise and fast.

References

[1] F. Faccio, C. Detcheverry, M. Huhtinen CERN, Geneva, Switzerland,“First evaluation of the Single
Event Upset (SEU) risk for electronics in the CMS Experiment“, CMS NOTE 1998/054 CERN,
Geneva, Switzerland.

[2] P.P. Shirvani, N.R. Saxena, E.J. McCluskey, “Software-implemented EDAC protection against SEUs”,
IEEE Transactions on Reliability, vol. 49 Issue: 3, Sep 2000, Page(s): 273 -284.

[3] P.P. Shirvani, N. Oh, E.J. McCluskey, D.L. Wood, M.N. Lovellette, K.S. Wood, “Software-
Implemented Hardware Fault Tolerance Experiments: COTS in Space“ International Conference on
Dependable Systems and Networks (FTCS-30 and DCCA-8), New York (NY), 2000, Page(s) B56-57.

[4] D. Todd Smith, T. A DeLong, B. W. Johnson, J. A. Profeta III, “An Algorithm Based Fault Tolerant
Technique for Safety Critical Applications”, Reliability and Maintainability Symposium, Philadelphia,
1997.

[5] M. Zenha Rela, H. Madeira, J. G. Silva, “Experimental Evaluation of the Fail-Silent Behavior in
Programs with Consistency Checks”, 26th International Symposium on Fault-Tolerant Computing
(FTCS-26), Sendai (J), 1996, Page(s). 394-403.

[6] Rosenblum, D.S., “A practical approach to programming with assertions”; IEEE Transactions on
Software Engineering , Volume: 21 , Issue: 1 , Jan. 1995 Pages:19 – 31.

[7] J.M Voas , K.W. Miller, “Putting assertions in their place”; Software Reliability Engineering, 1994.
Proceedings., 5th International Symposium on , 6-9 Nov. 1994 Pages:152 – 157.

[8] Yin Hwei, J.M. Bieman, “Improving software testability with assertion insertion”, Test Conference,
1994. Proceedings., International , 2-6 Oct. 1994. Pages:831 – 839.

[9] Meyer B., “Applying Design by Contract”, IEEE Computer, Volume: 25 , Issue: 10 , Oct. 1992
Pages:40 - 51

[10] V. Strumpen, Portable and Fault-Tolerant Software Systems, IEEE Micro, September-October 1998,
pp. 22-32

[11] Benso, A.; Chiusano, S.; Prinetto, P.; Tagliaferri, L.; “A C/C++ source-to-source compiler for
dependable applications”; Dependable Systems and Networks, 2000. DSN 2000. Proceedings
International Conference on, 25-28 June 2000 Pages:71-78.

[12] Miremadi, G., Johan Karlsson, Ulf Gunneflo and Jan Torin. Two software Tecniques for On-line Error
Detection. Digest of Papers, 22nd Annual International.

[13] D.J. Lu, “Watchdog Processor and Structural Integrity Checking”, IEEE Transactions on Computers,
vol. C-31, No. 7, pp. 681-685, July 1982.

[14] The C++ Programming Language (Third Edition and Special Edition) Addison-Wesley.
[15] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, L. Tagliaferri, Data Criticality Estimation in Software

Applications, IEEE International Test Conference, Charlotte (NC), October 2003, pp. 802-810
[16] W.J. Price, “A benchmark tutorial”; Micro, IEEE , Volume: 9 , Issue: 5 , Oct. 1989 Pages:28 – 43.
[17] http://www.cs.virginia.edu/stream/ref.html[21] R. Hinterding, “Representation, constraint satisfaction

and the knapsack problem” , Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999
Congress on, Volume: 2 , 6-9 July 1999 Pages: 1286-1292 Vol. 2.

86

