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Abstract. Software techniques can be efficiently used to increase the 
dependability of safety-critical applications. Many approaches are based on 
information redundancy to prevent data and code corruption during the 
software execution. This paper presents PROMON, a C++ library that exploits 
a new methodology based on the concept of “Programming by Contract” to 
detect system malfunctions. Resorting to assertions, pre- and post-conditions, 
and marginal programmer interventions, PROMON-based applications can 
reach high level of dependability. 

1 Introduction
With the recent progress of the technology it is simple to design and produce high 

performance low cost microprocessor systems. Unfortunately, these systems do not usually 
guarantee high levels of reliability because of mainly two reasons: to lower as much as 
possible the Time-to-Market they are designed without the necessary care to dependability 
issues; new and smaller technologies are much more sensitive than older systems to 
environmental perturbations that cause transient errors [1][2]. 

Recently, Commercial Off-The Shelf (COTS) hardware and software components have 
been introduced in safety-critical automotive and space applications; these components 
guarantee high performances at the price of a low dependability [3]. COTS hardware 
cannot be modified. The only possible low-cost solution is to take advantage of SIHFT 
(Software Implemented Hardware Fault Tolerance) techniques that allow, by using 
software elements only, to detect and correct errors [4][5]. SIHFT techniques are, in 
general, based on the addition, to the original target application, of software routines able to 
check the validity and correctness of the executed code and the managed data. 

This paper presents PROMON, a software able to intercept faults that may occur during 
the execution of the application and block the execution; the innovative aspect of the 
approach is that the implemented methodology relies on the principle of Programming by 
contract, and on the use of common assertions, pre and post-conditions, to ensure that the 
code follows its expected behavior [6][7][8][9]. 

Many techniques have been proposed in the past in order to improve the reliability of 
non-reliable COTS; the majority of them are based on the insertion of redundant code and 
data in the running applications, so that each single operation is entrusted by at least one re-
computation. The redundant information can be inserted statically in the original high level 
code during a preliminary phase: this is the case of source-to-source compilers like Porch 
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[10] and Recco [11]. Other approaches as BSSC, ECI and watchdogs are designed to check 
the consistency of the executed machine code [12]. Watchdogs stem from the idea that 
errors (software or hardware) bring the processor to follow an execution flow different from 
the expected one. A Watchdog is usually a hardware/software component able to check at 
runtime the correctness of the execution flow [13]. 

The paper is organized as follows: PROMON architecture is sketched in Section 2; 
Section 3 proposes some experiments to show PROMON performances. Section 4 presents 
the conclusions and outlines future works. 

2 PROMON Architecture 
PROMON implements a pure software fault-tolerance technique based on assertions. 

Transient errors can cause different types of system errors such as the corruption of a 
memory location that stores a variable. This type of errors can easily propagate to other 
variables. PROMON offers a methodology to observe the value of the variables during the 
application execution and to detect if the value of each “protected” variable is legal or not.

PROMON is implemented as a C++ [14] template library based on the use of assertions 
(pre and post-conditions) on the application variables. Pre and post-conditions can be 
manually setup by an expert programmer or can be automatically extracted from the 
analysis of the behavior of each variable during a set of fault-free executions of the 
application. Pre and post conditions are extracted in the three phases (Figure 1) summarized 
here and detailed in the next sub-sections: 
1. Code instrumentation: a set of selected critical variables are “redefined” so that, during 

the software execution, their behavior can be traced on a log file. Techniques to select 
the most critical variables have been presented in [15]; 

2. Golden executions: the user runs the application with different workloads. During each 
execution the value of each protected variable is logged for later analysis. The choice of 
the workloads to apply is a very critical task. In general, the greater the workload is, the 
more precise the extracted assertions will be and less probable to generate “false 
negatives” (errors not recognized as such); 

3. Assertion extraction: all the log files are analyzed and, for each variable, a set of 
assertions is extracted. In this phase users can also provide a set of “user-defined” 
assertions, maybe difficult to extract but known as true by the programmer.
At this point, the value of each protected variable is validated, at run-time, using the 

extracted assertions; if PROMON finds any kind of violation an exception is raised and the 
execution is stopped. 

Figure 1: PROMON Architecture 
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2.1 Instrumentation
The only manual intervention required by the proposed methodology is the 

instrumentation phase, where the original definition of the variables that need to be 
protected has to be replaced with the predefined types included in the PROMON C++ 
library (PROMON<int>, PROMON<char>, PROMON<float>, …). The set of possible pre 
and post-conditions that can be specified and that PROMON is able to extract are: <Greater 
then n / Greater than variable>, < Lower than n / Lower than variable >, <Even / Odd>, 
<Always increasing / Always decreasing>, <Multiple of n / Multiple of variable>, <Is the 
index in a cycle>, <User-defined set condition>. In addition, the programmer has the 
possibility of specifying for each variable a set of valid ranges or validation functions. 

Apart from the variables’ redefinition the user is not expected to change anything else in 
the code since a complete set of overloaded operators let protected variables behave exactly 
as normal type variables. Therefore, each original operation is executed as planned but an 
additional routine is executed to log the behavior of each variable. An example of 
redefinition of the “=” and the “++” operators is presented in Figure 2. 

Figure 2: PROMON operator overloading 

The resulting program is functionally equivalent to the original one except from the fact 
that during the execution the program itself logs significant variable usage statistics, such as 
the number of times a variable is written and read, and each value the variable stored during 
the execution. 

2.2 Golden execution and assertion extraction 
This phase is probably the most important one, since the choice of the workloads 

directly affects the “precision” of the assertions PROMON is able to extract. Applying 
different workloads allows logging a number of “golden” (surely correct) executions of the 
target application: PROMON analyzes these executions to derive a list of valid assertions 
for each variable. It is programmer’s duty to choose a sufficient number of golden runs to 
build a significant application profile. 

The analysis of the golden logs then tries to map each variable’s behavior in one or 
more of the pre and post-conditions listed in Table 1. As an example, consider a variable x 
that during three different golden executions assumes the values listed in Table 2. 

1st execution: 2,6,10 2nd execution: 4,8,12 3rd execution: 10,14,18

Table 1: Example of assertion extraction 

From the analysis of the logged values PROMON is able to extract the following 
assertions for variable x: Greater than 2, Even, Always increasing, Lower than 18

 At the end of the analysis of the golden executions a “readable” text file is produced 
with all the extracted assertions. 

Promon<int> a (…); 
Promon<int> b(…); 
a = 0 ; b = 10;  
a=a+b;
a++;

Operator = { 
save_Value(…); 
increase number of write access; 
…}

Operator ++ { 
save_Value(…); 
increase number of read access; 
increase number of write access; 
…}
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2.3 On-line execution 
After the assertions extraction, the behavior of the protected variables changes. Their 

task is not anymore to log the variable behavior but to check that the value of a protected 
variable is compatible with the set of assertions for that variable. The behavior of the on-
line check is summarized in Figure 3. 

Figure 3: Condition check 

If, during execution, all the pre and post-conditions are satisfied, the program terminates 
normally; otherwise, in case of an error detection, PROMON can proceed (as the user 
prefers) in two ways: in “Exception Mode” an exception routine is called and the 
application execution is interrupted; in “Warning Mode” the execution continues and, when 
the application ends, the presence of anomalies is signaled to the user via a log file 
containing the list of the violated assertions. 

2.4 Self injection 
In order to evaluate the effectiveness of the proposed approach, a set of Fault Injection 

experiments has been executed. In particular a number of faults have been artificially 
injected inside the application variables in order to check if the extracted assertions where 
precise enough to eventually detect an error in one or more application variable. 

The PROMON C++ library can be configured to perform random injections in the 
protected variables during the application execution. Figure 4 shows how the injections and 
errors detection flow are performed. 

Figure 4: PROMON self injection 

At the end of a self-injected execution PROMON provides a log file containing the 
injected variable, the correct and wrong values detected in each variable, the output of the 
application (to detect if the results are correct or not), and the detected errors. 

3 Benchmark and experimental results 
This Section presents the experimental results obtained applying PROMON to the 

following set of benchmark applications: Whetstone [16] (a CPU/RAM benchmark), 
Stream [17] (a RAMtoRAM transfer-rate calculator), a Knapsack problem solver [17] and a 
Dhrystone application [16]. We executed each application 1,000 times, each time injecting 
a random fault in one of  the application variables. In the following experiments, where not 
mentioned otherwise, all variables of the application have been protected by PROMON. 

Promon<type> var 
(…);
………………….. 
var ++ ; 
………………….. 
b = var ; 
………………………..

Operator = { 
 ………………………….. 
 pre-condition-check(); 

……………………………
.
}

Operator ++ { 
 pre-condition-check(); 
 …………………………. 
 write(); 
 …………………………. 
 post-condition-check(); 
}

variable X 
Assertions set: 

Odd 
Greater than 0 
Increasing 

int main() { 
 X=10; 

…………….. 
 Y=X; 
 …………….. 
}

Injected error: 
X=9

Detected error: 
X does not fit 
“Odd assertion”
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Figure 5: PROMON error detection capability                         Figure 6: Fault detection per assertion 

As it can be seen from Figure 5, the detected errors vary from 80 to 99% on an overall 
number of one thousand injections for each tested application. The different detection rates 
is also due to the different behavior of the variables in each benchmark: the more a variable 
is read, the greater is the influence on other variable, and therefore the probability that the 
error is spread and, eventually, an assertion will fail. Figure 6 shows the detection 
capabilities of each type of assertion and, as it can be seen, not all the assertions have the 
same performance. The reason why the sum of the percentage is greater than 100% is that 
for a number of variable errors are detected by more than one assertion. 

Finally a set of user-defined assertions has been introduced in the four benchmarks; the 
new assertions have been designed by an expert programmer analyzing the source code: 
these user-defined assertions increase the average error detection by a 5%. 

PROMON assertions, obviously, introduce a time overhead during the application 
execution: this extra time depends on the number of monitored variables and the number of 
active assertions. Figure 7 and Figure 8 show the execution time overhead for the 
Dhrystone application. 

Each assertion give a different contribution to time overhead: the two heaviest 
assertions are the ones pertaining bounds and parity check; this event is caused by the fact 
that these are the most commonly applicable constraints for variables. 

The number of variables influences the time overhead: for the Stream benchmark, 
which only has four protected variables, the increase in execution time is about 3%.  

The memory overhead instead is constant for all the benchmarks (about 1 KB); this is 
due to the fact that for middle size applications PROMON memory allocation is almost 
independent from the number of assertion and variables monitored. 

Figure 7: Time overhead w.r.t. the number of 
monitored variables 

Figure 8: Time overhead w.r.t. the number of 
active assertions 
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4 Conclusion
This paper proposes a technique that shows how some “Programming by Contract” 

paradigms can provide a new approach to Software Implemented Hardware Fault 
Tolerance. The use of pre and post-conditions, automatically extracted and verified at run-
time, seems to be an excellent alternative to traditional information redundancy techniques. 
The main advantage of the proposed approach is that it requires a very low manual 
intervention still guaranteeing very significant error detection rates. Moreover, 
programmers can choose to use the assertion mechanism for a reduced and critical subset of 
variables, so to trade-off between CPU effort and detection capabilities. The experiments 
show that the proposed technique results in a significant increase of the benchmarks 
reliability; on the other hand the time overhead introduced by the extra computation can 
increase rapidly depending on the number of the monitored variables. 

Future work will investigate the possibility of creating dependencies between assertions 
in order to make the validation mechanism more precise and fast. 
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