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Singular Vector Elements in MoM

Roberto. D. Graglia∗ and Guido Lombardi∗

Abstract — This paper presents new singular
divergence-conforming vector bases that incorporate
the edge conditions. Only the bases for curved trian-
gular elements are discussed in this work, although
we obtained also the bases for curved quadrilateral
elements, to be discussed in a future paper. Higher
order basis functions can be obtained from these
bases by application of a technique already reported
in the literature. Our bases are fully compatible
with the standard, high-order regular vector bases
used in adjacent elements. These singular bases
guarantee normal continuity along the edges of the
elements allowing for the discontinuity of tangential
components, adequate modelling of the divergence,
and removal of spurious solutions. These singular
bases should provide more accurate and efficient nu-
merical solutions of surface integral problems. Sam-
ple numerical results confirm the faster convergence
of these bases on wedge problems.

1 INTRODUCTION

In a recently published paper [1] these au-
thors presented new singular curl- and divergence-
conforming vector bases that are complete to ar-
bitrarily high order, and that incorporate the edge
conditions. The singular bases were described in
a unified and consistent manner for curved trian-
gular and quadrilateral elements. The results in
[1] confirm the faster convergence of the singular
curl-conforming bases on wedge problems, when
these are solved numerically by application of the
Finite Element Method. Conversely, divergence-
conforming bases are used to discretize and numer-
ically solve by application of the method of mo-
ments (MoM) the integral equations that model
complex electromagnetic structures made of impen-
etrable materials (perfectly conducting or metallic
structures). The technique to mesh a given struc-
ture in the vicinity of a wedge has been described
in [1]: in the neighborhood of the edge profile one
can use edge singularity quadrilaterals and/or two
types of singularity triangles: the edge (e) and the
vertex (v) singularity triangle (see Fig. 1).

To appreciate the improvement one can get by
use of singular subsectional bases, we report in
Fig. 2 the longitudinal current distribution near the
edges of a square metal cylinder with sides of elec-
tric length ka = 1, for TM plane wave illumination.
The results reported were obtained by MoM solu-
tion of the EFIE (Electric Field Integral Equation),
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Figure 1: a) Local edge-numbering scheme used
for edge singularity quadrilaterals and edge (e) and
vertex (v) singularity triangles.

and by use of scalar bases on subsectional elements
[2]. Singular additive bases incorporating the edge
condition have been defined and used on the ele-
ments attached to the edges to improve the quality
of the solution in Fig. 2

Figure 2: Singular behavior of the longitudinal cur-
rent component induced on a square metal cylinder
at TM incidence.

2 SINGULAR VECTOR BASES FOR
MoM PROBLEMS

In the open literature one finds few works devoted
to singular divergence-conforming vector bases for
MoM applications. Low-order triangular bases in-
corporating the singular behavior of the current
density near the edge of a wedge were first de-
rived in [3] by integrating the basis function di-
vergence, with the correct behavior of the charge
density enforced in the divergence expression. The



procedure used in [3] naturally yields functions of
non-substitutive kind, in the sense that these func-
tions reduce to the standard (regular) zeroth-order
basis functions in the limit for singularity coefficient
ν = 1. In all applications the singularity coefficient
ν must be known a priori [1, 3]; for a perfectly con-
ducting wedge of internal wedge angle α, one has
ν = π/(2π − α). The smallest value, ν = 1/2, oc-
curs for a half plane (α = 0), while ν = 1 represents
an infinite flat plane.

The bases derived in [3] are not satisfactory be-
cause: a) in the neighborhood of an edge the bases
should be of additive kind (see [1, 4]); b) the vector
component normal to the edge-profile of the edge-
singular functions eΛi(r) does not vanish as ξν , ξ
being the parent variable vanishing on the edge pro-
file. The edgeless function for the edge-singular tri-
angular element given in [1] is also not satisfactory,
since its divergence does not properly model the
charge density distribution. There also exist de-
pendencies that have not been pointed out in [1]
for the higher order singular triangular bases given
in there. We have found a new technique to derive
singular bases of the lowest order. These bases can
be obtained by use of scalar generating functions
defined on a given (triangular or quadrilateral) el-
ement. The singular bases derived in this manner
properly satisfy all the requirements (conformity,
completeness, additive nature, proper modelling of
both the current and charge distributions, etc.).

Figure 3 shows the behavior of some of the new
triangular vector functions. The corner nodes of
the triangle are locally numbered from 1 to 3, and
each edge of the triangle is given the same local-
order number already associated with its opposite
corner. This figure has been obtained by assuming
edge 3 of the triangular element (the edge opposite
to node 3) to be singular. The first vector plot is
relative to the regular divergence-conforming func-
tion Λ1(r), that has a vanishing normal component
along edge 2 and 3, with a constant normal com-
ponent along the first edge (opposite to node 1).
The second row of Fig. 3 shows the behavior of
the edge-less function e

Λ
3(r), that has a vanishing

normal component along all the three edges of the
element, but with a normal component that, to-
ward the third edge, goes to zero as ρν , ρ being the
distance from the edge profile lying on edge 3. The
divergence of e

Λ
3(r) is reported on the right-hand

side of the figure. This divergence is singular as
ρν−1 in the neighborhood of the third edge, so that
this function is able to model the edge singularity of
the charge density distribution on the triangular el-
ement. The last row at bottom of Fig. 3 represents
the behavior of the singular divergence-conforming

function eΛ1(r), with a vanishing normal compo-
nent along edge 2 and 3, and with a singular normal
component along the first edge (opposite to node 1).
This function, together with the eΛ function asso-
ciated with the second edge (that is eΛ2(r)), is able
to model the ρν−1 singularity of the current compo-
nent parallel to the edge profile (which in this case
happens to be normal to the first edge). Obviously,
the vector plot relative to this latter function has
been obtained by omitting all the samples on the
third edge of the triangle, because of the infinite
value of this function on the singular edge. The
divergence of eΛ1(r) is reported on the right-hand
side, at bottom of the figure. Once again, this di-
vergence is singular as ρν−1 in the neighborhood
of the third edge, so that also this function is able
to model the edge singularity of the charge density
distribution on the triangular element.

Figure 3: Regular (top) and edge-singular (mid–
bottom) triangular vector functions: the 3rd edge
(opposite to node 3) is assumed to be singular.

3 INTEGRATION OF THE SINGULAR
BASES IN MoM APPLICATIONS

The main problem in MoM applications that use
the Galerkin method is the evaluation of the MoM
integrals for self and near-self elements. The dif-
ficulty of this problem is worsened when singular
bases are in use. At the Conference we will re-
port some of the techniques we have developed and
used to solve this problem. As a matter of fact,



we still consider the integration problem as open
when dealing with singular expansion and/or test-
ing functions. We attached the integration prob-
lem in several different ways, by studying in detail
the results provided by each integration method we
have tested. For example, Fig. 4 shows the in-
tensity of the field over a triangular test-element
(reported at left) due to the edge-singular source-
element shown at right. These are triangular near-
self elements with the hypotenuse in common. The
color scale used to report the intensity shows higher
values with light grey color.

Figure 4: Near-self elements with a common hy-
potenuse: field intensity over the triangular test-
element (reported at left) due to the edge-singular
source-element shown at right.

Figure 5: Rectangular plate problem: 8 (top) and
256 (bottom) triangular elements are used to mesh
the structure.

4 NUMERICAL RESULTS

The test problem considered in this section is the
problem of a rectangular plate (0.5λ × 0.6λ) nor-
mally illuminated by a plane wave. The EFIE of
this problem was numerically solved by use of the
meshes shown in Fig. 5. We studied this problem
by use of regular as well as singular bases defined
over the coarse and the dense mesh. The results re-
ported in Fig. 6 show the magnitude of the far-field
scattered by the plate versus the observation angle
φ (φ = 0 at backscattering).

Figure 6: Magnitude of the far-field scattered by a
rectangular plate (0.5λ×0.6λ) normally illuminated
by a plane wave. Results are reported versus the
observation angle φ, with φ = 0 at backscattering.

To appreciate the differences in the obtained nu-
merical results we report in Fig. 7 the results in
the region 0 ≤ φ ≤ 25◦. This figure shows that
the results obtained by working with the coarse
mesh (8 elements) and with regular zeroth-order
(i.e., p = 0) bases are rather poor. To improve the
quality of the results, without using singular bases,
one can either use regular (p = 0)-order elements
on a denser mesh (256 elements), or still work on
the coarse mesh but with higher-order (for exam-
ple p = 2) regular elements. The results obtained
by working on the coarse mesh (8 triangles) with
singular (s = 0) elements of regular order p = 2
are in good agreement with those provided by use
of regular elements of order p = 2 on the denser
mesh.

These results show that singular high-order
divergence-conforming bases should provide more
accurate and efficient numerical solutions of surface
integral problems.

5 CONCLUSIONS

This paper presents new singular divergence-
conforming vector bases that incorporate the edge



Figure 7: Magnitude of the far-field scattered by a
rectangular plate (0.5λ×0.6λ) normally illuminated
by a plane wave. Results are reported versus the
observation angle φ, with φ = 0 at backscattering.

conditions on curved triangular elements. Higher
order bases can be obtained from these new bases
by application of the technique already reported in
[1]. Our bases are fully compatible with the stan-
dard, high-order regular vector bases used in ad-
jacent elements. These singular bases guarantee
normal continuity along the edges of the elements
allowing for the discontinuity of tangential compo-
nents, adequate modelling of the divergence, and
removal of spurious solutions. Sample numerical re-
sults confirm the faster convergence of these bases
on wedge problems.
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