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Abstract. -A nematic layer with opposite boundary conditions (unidirectional planar and

homeotropic) is considered, having strong anchoring at the planar wall. It is known that a periodic
deformation of splay-type can intervene between the aperiodic hybrid alignment and undistorted

planar state as one decreases the film thickness. This periodic state occurs due to the fact that the

energetic cost for a mixed twist-splay can be lower than the surface energetic cost at the

homeotropic wall in the case of undistorted planar alignment. Such a situation may also be

achieved for nematics which have a bulk elastic isotropy. In this paper, the saddle-splay elastic

constant K~~ is shown to influence strongly the occurrence of the periodic pattem of splay-type,
also in the presence of an extemal magnetic field normal to the cell plates, and the role of the

geometrical anchoring in wedge-shaped cells is discussed.

Introduction.

In a nematic liquid crystal cell weakly anchored with opposite boundary conditions, I,e.

homeotropic (H) at one of the substrates, unidirectional planar (P) at the other, it is possible to

achieve an aperiodic hybrid alignment (HAN) only if the cell thickness d exceeds a threshold

d~ [11. Generally speaking, for d
~

d~, an undeformed alignment was expected, driven by the

easy direction of the wall exhibiting the stronger tilt-anchoring [21, since in principle a two-

dimensional distortion would imply too high an energetic cost. Nevertheless, in the absence of

any distortion, an amount of potential energy is bounded at the surface presenting the weaker

anchoring. Thus two deformation sources (elastic and interfacial) are in competition, and the

existence of a periodic distortion (PHAN) may be preferred in a convenient range

d~ ~
d

~
d~, due to the balancing effect of the opposite alignment induced by the surfaces [3,

41 and mediated by the material elastic parameters. As a consequence, the homogeneous P-

state can arise only below the lower threshold d~ of the periodic distortion.
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As we discussed, in the case of hybrid nematic layers with a stronger tilt-anchoring at the P-

wall, whose periodic texture exhibits essentially a twist-splay distortion, the PHAN structure is

deeply favoured by the weakening of the twist-anchoring, especially at the H-wall [4, 51.
Moreover, such a periodic pattern may also occur for high values of the bulk elastic ratio

K~~/Kjj this behaviour is quite different from that presented by an undeformed planar cell

subjected to magnetic fields inducing periodic distortions [6-91.
In this paper we investigate the effect of an extemal magnetic field normal to the cell plates

on the static periodic pattem [101 in a hybrid nematic layer with bulk elastic isotropy, I-e- with

equal splay and twist elastic constants Kj
j =

K~~
=

K. In order to study the influence of the H-

boundary, both direct and mediated by the surface-like elasticity, the cell is supposed to have a

strong planar and weak homeotropic anchoring for both the azimuth 4i (in-plane twist angle)
anf the polar angle 0 (off-plane tilt angle). Hence the possible periodic deformation can only be

of the splay type. Moreover, we consider liquid crystals which have different values of the

saddle-splay elastic constant K~~ [I1-lsl, with the thermodynamical constraints )K~~) ~
K~~

[16], in order to show the great influence of K~~ on the PHAN, and to provide a possible
method for measuring K~~.

Theory.

PHAN PATTERN. Let us consider a nematic layer confined between two substrates, placed

at z =

0 and
z =

d, where the easy directions are H- (along the z-axis) and P- (along the x-axis),

respectively. The anchoring is supposed to be strong only at the planar wall. We are looking for

the existence of the transverse periodicity, with the wave vector parallel to the y-axis : hence

the tilt angle 0 and the twist angle 4i turn out to be depending on y and z, I-e-,

0
=

0~y, z) and 4i
=

4i~y, z) (see Fig. I). In order to simplify the notation of spatial

derivatives which is necessary to describe the director distortion, hereafter the subscript

y (or z) means a partial derivative with respect to y (or z, respectively).

By assuming, as usual, the Rapini-Papoular form for the anchoring energy density [17-19],

and by taking into account the surface contribution due to the surface-like saddle-splay elastic

constant K~~, the linearized surface reduced free energy density (which is the free energy

density divided by K/2) is given by :

gs
=

Li( 4~) Lil °)
+ 2(1 + K24/K) 1°o 4~j,o 4~o °j,ol (I)

where L~~ =
K/W~~ are de Gennes-Kldman extrapolation lengths (I

=

4i, 0 at the homeotropic
wall (z

=

0, index o) [20, 21], W~~ being the relevant anchoring strengths. Also 4i,, and

~ are calculated at the wall z =

0 (index o).

When a magnetic field parallel to the z-axis is present, the bulk reduced free energy density
is obtained as

g~
=

(4i~ + 0~)~ + (0~ 4i~)~ h~ 0~ (2)

where h =H (Xa/K)"~ is the reduced field, Xa being the anisotropy of the magnetic

susceptibility.
Hence the cell reduced free energy is written

d I I

G
=

g~ dy dz + g~ dy (3)
o o o

where A is the PHAN wavelength along the y-axis,

By applying the usual minimization procedure [22], the linearized Euler-Lagrange equations
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Fig. I. PHAN pattem of splay-type b~ a nematic cell with opposite boundary conditions. A magnetic
field H is applied normally to the cell plates. The tilt- and twist-angles b ~y, z and 45 ~y, z ) are periodic
functions of the transverse in-plane coordinate y, with wavelength A. Both tilt- and twist-anchorings are

supposed to be weak at the H-wall (z
=

0) and strong at the P-wall (z
=

d).

read :

0~~ + 0~~ +
h~ 0

=

0

4~~~ + 4~~~ =

0
~~~

and their solutions must satisfy the linearized boundary conditions which are given by :

R0~~ +
Ljj 4i~ 4i~~

=

0

R4i~~ + Lj~' 0~ + 0~~ =

0

q~ ~
(5)

0j
=

0

where R
=

2 (1 + K~4/K).
Hence the tilt- and twist-angles for small periodic distortions are obtained as :

o
=

(A sh qz + B ch qz ) cos fly
~~~

4i
=

(ashpz+bchpz)sinpy
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where p
=

2 «IA is the in-plane wave vector of the periodic pattern along the y-axis, and

q~
=

p~- h~. Note that q =

ik can also be imaginary : in this case, the first equation of

system (6) reads :

0
=

(A sin kz + B cos kz cos fly (7)

By substituting (6) into the boundary conditions, a linear system in the integration constants

is obtained. The coefficient determinant D of such a system is written

RpL~~ 0 pL~~

~ ~~~~
~~~ sh~d' ~~~

ch qd 0 sh qd 0

In the case of validity of (7), (q, ch qd, sh qd~ shall be simply replaced, by
(k, cos kd, sin kd), respectively, in the determinant D. Obviously, in order to avoid a trivial

solution, D must vanish. This means that the threshold thickness d~ has to be found by
imposing D

=

0, with fixed values of L~~, Lg~, h and R~ (the square dependence on

R is due to the structure of D). Such an assumption gives d(p biased by the material and field

parameters. The minimum of the curve d(p is d~, provided that the reduced free energy

G has also a minimum for d
=

d~.
Note that the range of the allowed values of R was obtained by Ericksen through

thermodynamical considerations, giving )K~~/K)
~

l. Then R ranges within (- 3, 1).

In figure 2 the threshold d~ is shown as a function of R for different values of the reduced

magnetic field (h
=

0, 0.5, 1, 2) and of the twist-extrapolation length L~~. More precisely, in

figure 2 three families of the function d~()R), h) are represented, where the values of

L~~ are chosen equal to 0.5 ~Lm, I ~Lm and 5 ~Lm, respectively, whereas L~~
=

0.5 ~Lm is fixed.

o

0.8

d/Le~

o-d "..._ ',

O. 4
~ .,~~

0. 2
'~

o, o

O.8 O-P 1.0 lRl I-I 1.2

Fig, 2.-P-PHAN threshold reduced thickness d~/L~~ vs. the absolute renormalized saddle-splay
)R ), where L~~ 0.5 ~m. The three sets of curves correspond to different values of L~~ (0.5 ~m (-)

1.0 ~m (- -) 5.0 ~m (.,..)). The weakening of the torsional anchoring favours PHAN, so does the

increasing of the reduced field h, Inside each set of curves, h takes the following values : 0, 0.5, and 2.

Note the critical value )R~)
=

I suppressing P-structure, We stress the fact that the P-HAN reduced

threshold d~/L~~ coincides with the maximum of d/L~~ and, being independent of )R) and

L~~, is a decreasing function of h.
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Furthermore, in figures 3 and 4 the corresponding results are reported when L~~
=

I ~Lm and

5 ~Lm, respectively.

HAN PATTERN. Coming back to the P-HAN threshold thickness d~, its behaviour as a

function of h has to be found. When d-d~ from the P-side, obviously 0(z) and

4i
=

0. Hence the only Euler-Lagrange equation is written

0~~ +
h~ 0

=

0 (4')

as the harmonic pendulum equation whereas the boundary conditions are given by :

~zo ~ ~@o ~o ~

0j
=

0 (5')

independently of K~4, as expected, since the distortion is not spatial [12], acting only in the

planes parallel to [xz].

By inserting the solution

0
=

A sin hz + B cos hz (6')

into (5'), and by looking for non-trivial results, a generalized Rapini-Papoular equation [17,

23] is obtained

d~/L~~
=

tan~ ~(hL~~)/(hL~~). (7')

By taking into account that d~(h
=

0) =L~~, as shown in reference [I], equation (7')

demonstrates that d~(h) is a decreasing function, for a given value of the tilt extrapolation
length. More precisely, d~/L~~ goes from I to 0 when hL~~

=

H(Xa K )'~~/W~~ ranges from 0 to

aJ. This was expected, since a normal magnetic field tries to suppress the undeformed P-

alignment : the higher the bulk rigidity, the more pronounced this effect.
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Fig. 3. Fig. 4.

Fig. 3. The same as in figure 2, but with Lg~
=

I ~m. Note that for a sufficiently strong torsional

anchoring (L~~
~

Lg~) )R~) becomes dependent on h and larger than one )R~)
-

I when h
-

oJ).

Fig. 4. The same as in figures 2, 3, but with Lg~
=

5 ~m. The condition L~~
~

Lg~ always provides

that )R~) is larger than one and dependent on h. Note that, for L~~
=

0.5 ~m, PHAN is practically

suppressed if R
~

R~
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Discussion.

By considering the obtained behaviour of the threshold thickness P-PHAN, depicted in the

previous figures, one may easily realize that the PHAN acceptance area for each set of the

triPlet (L~~, L~~, h) is above the d~ threshold line in the phase plane R ), d]. Hence, first of all

the PHAN distortion of the splay-type is always favoured by increasing values of

)R until a critical value )R~ is reached which means that the periodic pattern is favoured

by decreasing values of + K~4/K ). Above R~ the undeformed P-structure is suppressed for

any value of the layer thickness, and d~ vanishes : only the PHAN and HAN structures are

allowed. It tums out to be )R~
=

I for sufficiently weak twist- with respect to tilt-anchoring
L~~

~
Lg~, independently of the values of h. Otherwise, for stronger twist- with respect to tilt-

anchoring energies, the critical saddle splay value )R~) increases with the reduced field

h as well (see Figs. 2-4). Anyway, when )R
~ )R~ ), PHAN is favoured with respect to the

undistorted P-alignment by conveniently small twist-anchoring strength balanced by suffi-

ciently high tilt-anchoring energy.

With respect to this conclusion, it is important to note that the first observations of the

PHAN pattem were performed for the nematic film placed between two isotropic media

(isotropic fluid and air) [3, 24]. The isotropic nature of the substrate usually implies the

azimuthal degeneracy of the boundary conditions [25]. For example, the elastic energy per unit

surface area of the aperiodic HAN solution for weak polar anchoring at both surfaces [I].

Fo
=

K (2 d)- ' (ho )2 (9)

(ho
=

0~ 0j), depends only on the mutual polar orientations at the boundaries and should

not depend on the azimuthal angle 4i when one has no special treatment of the nematic-

isotropic medium interface. However, this azimuthal degeneracy can be removed just by
simple inclination of the cell plates with respect to each other [26].

Thus, let the P-boundary be tilted with respect to the H-boundary by a small angle
y « ho. Obviously, the difference ho in the polar orientation at the walls will now be

azimuthally dependent :

ho
=

(@~ y cos 4~
,

( lo)

where 4i is the azimuthal angle in the tilted plane measured from the normal to the rotation axis

y. Equations (9) and (10) lead to an azimuthally dependent elastic energy of the aperiodic HAN

solution with the minimum at 4i
=

0 :

F =F~+Ky (2d)~'(ycos~4i -2A0cos 4i). ill)

The second term in the last equation (11) may be considered as a special artificial

«
anchoring

»
induced by mutual inclination at the surfaces. The extrapolation length of this

anchoring can be expressed as L~
=

d/y. With d
=

(1 -10 ~m) and y =

(10~~ 1), one

finds that L~ can vary in the range >

(1-10~)
~Lm of course, much higher values of

L~ are easily reached. In the case of
«

physical
»

anchoring, due to a special surface treatment,

one has usually 0.I w L, <10 ~Lm for the extrapolation length L, (I
=

4i, 0).
Thus, L~ and L, can be of the same order of magnitude, thus L~ should be included in the

solutions of the problems with a non-trivial shape of the liquid-crystalline volume.

In the experimental situation discussed in references [3, 24], where L~
=

oc, the domains

appeared in the precursor part of the spreading nematic film, where dwl ~Lm and

y =0.01- 0.I. Thus L~
=

(10-100 ~Lm), I-e- the corresponding anchoring is too small to

prohibit the periodic pattem, as may be deduced from figures 2-4.
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Instead, in the present case we consider L~j
=

Lgj
=

0 at the P-wall : this fact enables us to

compare the effect of only two anchoring parameters (La~, Lg~ at the H-wall) and of the saddle-

splay elasticity )R with the magnetic field effect. This means that three measurements of the

threshold thickness d~ at different reduced fields h are enough to obtain an estimate of

Lg~, La~ and )R ). Hence a method based on d~-detection is unable to discriminate the sign of

the Gaussian curvature [14] of the director profile at the sample surface, I-e- the sign of

~24.
From the point of view of the magnetic field-director coupling, it should be pointed out that

increasing the intensity h of the reduced magnetic field always favours the occurrence of

PHAN with respect to the P-undistorted structure, provided that the tilt-extrapolation length is

not too large (Lg~
~

5 ~Lm) and the twist-extrapolation length is not too small (L~~
~

0.5 ~Lm) at

the same time. Note that the linearization method we used is a simple and powerful tool for

obtaining the P-HAN and the P-PHAN threshold (d~ and d~, respectively) : but it is unable to

provide the HAN-PHAN threshold d~~, which in principle could be greater than d~. In fact,

d~ represents just an asymptotical approximation of d~~ (when d~ -
d~, then p

-
0). In order to

calculate d~~, it is necessary either to consider the second variation of the cell free energy [3] or

to solve the non-linear Euler~Lagrange equations with proper boundary conditions. The latter

approach, based on a perturbation method, is under study, and will be published elsewhere.
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