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Sergio Lancelotti *

Author’s version
Published in: Topological Methods in Nonlinear Analysis 18 2 (2001), 303-319

Abstract

We consider a class of asymptotically linear variational inequalities. We show the
existence of a nontrivial solution under assumptions which allow the problem to be
degenerate at the origin.

1 Introduction

Let © be a bounded open subset of R® and g : R — R be a function of class C! with
g(0) = 0 and linear growth at infinity. The existence of nontrivial solutions u to the

semilinear elliptic problem
Au+g(u)=0 inQ

u=0 on 0f

was first studied by Amann and Zehnder in [1] by means of Conley index. The main result
was then refind by Chang, Lazer and Solimini [3, 13|, using Morse theory, and Saccon [15],
again by means of Conley index. The key assumptions are that there exists

g (00) := lim 9(s)
[s| 500 S

and that the quadratic forms
Q) = [ (IDuP - g (O?) da,
Q
Q) = [ (1Duf = g (oc?) da
Q

have different index in H}(Q).
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More recently, the result has been also extended to variational inequalities by Saccon
[16] and to quasilinear equations by Corvellec, Degiovanni, and Lancelotti [6, 12]. In the
first case, one also considers a closed convex subset K of H}(Q2) with 0 € K and looks for
nontrivial solutions u € K of the variational inequality

(1.1) /Q [DuD(v—u) — g(u)(v —u)] de >0 YveK.

It is interesting to remark that the constraint K can induce the existence of nontrivial
solutions also when ¢(s) = As with A € R. However, if for instance

K={ueHyQ): o1 <u<p}

with ¢1 < 0 < ¢, the assumptions considered in [16] require the quadratic form Qg to be
nondegenerate at the origin, a restriction which is not needed for semilinear equations (see
[13]).

Our purpose is to prove the existence of nontrivial solutions to (1.1) without assuming
such a nondegeneracy at 0. While the approach of [16] was based on Conley index, we find
it more convenient to use Morse theory. More precisely, since the precence of the constraint
K makes the problem nonsmooth, we take advantage of the extension of Morse theory to
continuous functionals developed in [5].

Our main result is theorem 2.2, where we prove the existence of a nontrivial solution
to (1.1) in the degenerate case, even if the family of constraints K considered is not so
wide as in [16] (see assumption (2.1)). Since our approach is different, we also treat in
theorem 2.4 the nondegenerate case already considered in [16].

As in [13], the first step in the proof is to find a saddle point u of the functional
f+ K — R defined by

f) =3 [1DuPde = [ Gwde, 6= [awat,

with a suitable information about its critical groups. This is done by an adaptation of

Rabinowitz saddle theorem (see theorem 4.2). Then the main point is to obtain estimates

about the critical groups of f at the origin. Since 0 is possibly degenerate, we adapt to

our nonsmooth setting some ideas of the generalized Morse lemma (see [4, 9, 14]). After

that, it is possible to show that v # 0, obtaining the existence of a nontrivial solution.
The author wishes to thank Marco Degiovanni for helpful discussions.

2 Statement of the main results

Let Q be a bounded open subset of R" | n > 3, 1 : Q = [—00,0] and ¢, : Q — [0, +00] be
two functions such that ¢, is quasi-upper semicontinuous and ¢, is quasi-lower semicon-
tinuous. We consider the convex set

K={ue HyQ): ¢i(z) <a(z) < ps(z) for ge. zin Q}

where @ is a quasi-continuous representative of u. We also consider g : 2 x R — R such
that:



(a) the function {s — g(z,s)} is of class C* for a.e. x € Q and the function {x
g(x,s)} is measurable for every s € R;

(b) g(z,0) =0 for a.e. z € Q;

(¢) there exists b € Lz (Q) such that for a.e. z € Q and for every s € R

|Dsg(,s)| < bl);

(d) for a. e. x € Q there exists

g(z,s)

D,g(z,00) := lim

|s| =00 S

Let us consider the following subsets of €:

K = {ze€Q: pi(z) =0},
F* = {z€9: pu(a) = o0}
F) = {reQ: gofe) =0},
Fe = {zeQ: pa(x) =400} .

Hy = {ue H)Q
H, = {ue H}Q
Hy = {ue€ H}(Q
H, = {ue H}Q

cu=0for qe. zin FYNEY},
: uw =0 for q.e. x outside F® U Fy°},
: u=0for qe. zin FYUFY},
: u =0 for q.e. x outside F* N F5°}.

Finally, let us denote by ()\Igo)> ,(/L](CO)> the eigenvalues of the linear operator —A —

Dgg(x,0) respectively in Hy and Hj, and by ()\,(fo)> , (uéoo)> the eigenvalues of the linear

operator —A — D,g(x,00) respectively in H,, and H. (A is the Laplace operator and
eigenvalues are repeated according to multiplicity).

Remark 2.1 Since H, C Hy and H., C H,,, we have that
VeEeN: A< 0 )<l
Theorem 2.2 Assume that
(2.1)  (p1(z) # 0 and po(z) #0) = (p1(z) = —o0 and po(x) = +00)  q.e. in

and that ,u,(fo) <0< )\,(ffi for some k. Moreover, suppose there exists h # k such that
either
h <k and uﬁf’) <0< )\gl
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or

h>Fk and u20)<0.

Then there exists a nontrivial solution u of the semilinear variational inequality
ue K,

Q %

Remark 2.3 Assumption (2.1) is satisfied, for instance, if K has the form
K ={ue H)(Q): a(x) >0 for ge. z in E; and @(z) <0 for q.e. zin Ep} |

where Fy, Ey are two subsets of ).
The novelty of theorem 2.2 is that we allow the cases h < k with pglo) =0< /\,(&)1 and

h > k with 'ugo) <0= )\gl, which were excluded in [16].
The next result has been proved also in [16].

Theorem 2.4 Assume that there exist h # k such that
u? <0< N
,uELO) <0< /\E&)l .

Then there exists a nontrivial solution u of the semilinear variational inequality

u€ K,

/QDuD(v—u)d:E—/Qg(x,u)(v—u)dx >0 YWwekK.

3 Background in nonsmooth critical point theory

In this section we recall from [5, 7, 8] some basic facts that will be needed in the following.
Let X denote a metric space endowed with the metric d and f : X — R a continuous
function. Moreover, let B, (u) be the open ball of radius » > 0 centered at v € X . For
every ¢ € R let us set

Fo={ueX: f(u)<c}.

Definition 3.1 For every u € X let us denote by |d f| (u) the supremum of the o’s in
[0, +00[ such that there exist § > 0 and a continuous map H : Bs (u) x [0, 6] — X with

Vo € Bs(u) ,Vt€[0,6] :  d(H(v,t),v) < t,
Vo € Bs(u) ,Vt€0,0] :  f(H(v,t)) < f(v) —ot.
The extended real number |d f| (u) is called the weak slope of f at u.
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It is easily seen that the function |d f| : X — [0, 400] is lower semicontinuous. Moreover,
if X is an open subset of a normed space and f a function of class C!, it turns out that
|d f| (w) = ||f'(u)]] for every u € X.

Let us point out that the above notion has been independently introduced also in [11],
while a variant can be found in [10].

Definition 3.2 An element u € X is said to be a critical point of f, if |d f| (u) = 0. A
real number c is said to be a critical value of f, if there exists a critical point u € X of f
such that f(u) = c. Otherwise c is said to be a regular value of f.

Definition 3.3 Let ¢ be a real number. The function f is said to satisfy the Palais - Smale
condition at level ¢ ((PS). for short), if every sequence (uy,) in X with |d f| (up) — 0 and
f(un) — ¢ admits a subsequence (up,) converging in X (any cluster point of (uy) is a
critical point of f by the lower semicontinuity of |d f]).

Definition 3.4 Let K be a field. Foru e X andc= f(u) set Cy(f;u) = HI(fC, f\{u}),
where HI(A, B) denotes the g—th cohomology group of the pair (A, B), with coefficients in
K (here we consider the Alezander-Spanier cohomology [17]). The vector space Cy(f;u) is
called the g—th critical group of f at u.

Because of the excision property, for every neighbourhood U of u we have

Co(fiu) = HU(fNU(f*NU)\{u}).
Therefore C,(f;u) depends only on the behaviour of f near w.

Theorem 3.5 Let X be a Banach space which splits into a direct sum X = X~ @ X™*
with dim X~ =m < +oo and X closed. Let K be a closed subset of X and f: K - R a
continuous function. Assume there exist a,b € R with a < b and r > 0 such that

X NB. (0 CK,

max f<a< inf f and max f <b.
X~NdBr(0) Knx+ X—NB,(0)

Suppose also that f satisfies the (PS). condition for any ¢ € [a,b].
Then f admits a critical value in [a, b]; more precisely, either f admits infinitely many
critical points in f~'([a,b]), or there exists a critical point u of f in f~'([a,b]) such that

Cm(f,0) # {0}

Proof. Consider the homomorphisms, induced by inclusion maps,

H™X, X\ X)) — H™(f* ) — H™(X N B, (0), X NdB,(0)).

Since the inclusion map (X~ NB, (0), X NI B, (0)) — (X, X\ X ) induces an isomorphism
in cohomology, the homomorphism

H™(f*, f*) — H™(X™ NB, (0),X~ NAJB,(0))

is surjective. On the other hand, it is well-known that H™ (X ~NB, (0), X~ Nd B, (0)) # {0}.
It follows that H™(f°, f) # {0}.
From [5, Theorem 4.4] the assertion follows. m



4 The saddle point

In this section let us consider K and g as in sect. 2. Let f; : H}(2) — R be the functional
defined by

fl(u)zé/Q|Du|2d:c—/QG(:1:,u)dx,

where G(x,s) = / g(z,t)dt, and let f: K — R be the restriction of f; to K.
0
Let also Q4 : Hi(2) — R be the quadratic form defined by

Qoo(u) = / | Dul|? dv — / D,g(x, 0o)u* dx .
Q Q
In the following, || ||12 and || - || 1.2 will denote the standard norms in H} () and H ().

Proposition 4.1 The following facts hold:
(a) K is a convex closed subset of H}(Q) containing 0 ;
(b) the functional fy is of class C* with f{(0) =0;

(¢) for every u € K there exists n € H'(Q) such that ||n]|_12 < |d f| (u) and
/DuD(v —u)dx —/g(x,u)(v —u)dr > (n,v—u) YveK.
Q Q

Proof. Assertions (a) and (b) are well-known. Assertion (c) follows from [8, Theorem (2.11)
and Proposition (2.10)]. =

Theorem 4.2 Let us assume that there exists k € N such that

e <0< N

Then, if f has only a finite number of critical points, there exists a critical point u of

[ such that Cy(f,u) # {0} .

Proof. Let X~ be a maximal subspace of H/ where Q. is negative definite. Since

u,goo) <0< /\I(Cfi < /L,(Coﬂ , we have dim X~ = k. Let us set

)?JF:{UGHOO: /DuDvdx—/Dsg(x,oo)uvdm =0 ‘V’UEX_},
0 Q

so that Hy = X~ @ X+. Moreover, () is positive definite on X*. In fact, consider for
a contradiction u € )A(+, u # 0, such that Q(u) < 0. It follows that Q) is negative
semidefinite on (X~ @ span (u)) € H,, with dim (X~ @ span (u)) = k+1: a contradiction,
because ALY) > 0.



Now we have the decomposition Hj(Q) = X~ & X, where Xt = <)A(+ & H;) and
HZ is the orthogonal of H,, in HZ(Q) with respect to the standard scalar product.

We want to apply theorem 3.5 to the functional f : K — R. First of all we have that
f is bounded from below on K N X* . In fact, by contradiction, let us consider a sequence
(up) in K N X% such that f(up) — —oo. Since f is bounded on bounded subsets, we
have that ||up|l12 — +oo. Let u, = ppwy, with pp = |Jupll12 and |Jwp|12 = 1. Up to a
subsequence, (wy,) is weakly convergent to some w € X*. Since

Vi>0: tpr <wp, <tpy q.e. inf)
eventually as h — 0o, we also have w € K, := [ (tK). On the other hand K, C H, so

>0
that w € XT. Since Q« is positive definite on X, ||wp|[12 =1 and

lim/G(L;hwh)dx:/Dsg(x,oo)dex,
hJa Ph Q

1
lim inf {—/ ]thIde—/G(L;hwh)dx} >0.
h 2 Ja Q Ph

it follows

In particular, we have

1
lim f(up) = lim p [—/ |th|2dx—/G(L;hwh)dx] = +o00,
h h 2 Ja Q Ph

whence a contradiction.
In a similar (and simpler) way, one can show that
lim  fi(u) = —oc0,

[lul[1,2—>00
ueX "

so that there exists » > 0 such that

max fi < inf fi.
ueX NI B (0) ueKNX+

Since X~ C H!  C K, we trivially have X~ N B, (0) C K.

Now let us prove that f satisfies (PS). for every ¢ € R. Let (u;) be a sequence in K
such that f(up) — ¢ and |d f] (up) — 0. First of all, let us prove that (uy) is bounded.
By contradiction, let |lup|l12 — +o0o. By proposition 4.1, there exists a sequence (7,) in
HY(Q) with i, — 0 and

(4.1) /QDuhD(v —up) dx — /Qg(a:,uh)(v —up)dx > (np,v —up) Y€ K.

Let up, = ppwy, with p, = |Jupl|12 and ||wp|12 = 1. As in the previous step, up to a
subsequence (wy,) is weakly convergent to some w € K., C H.,. Moreover, we have that

(4.2) /thD(v—wh) dx—/ M(v—wh) dx > (@,v—wh) Yo € K.
Q Q Ph Ph



Going to the limit as h — oo, we get
(4.3) / DwD(v — w) dx — / Dyg(x,00)w(v —w)dx >0 Yve K.
Q Q

On the other hand, choosing v = 0 in (4.2) we obtain

/|th|2dx < / Mwhdx—l— (@,wh>,
Q Q Ph Ph

whence w # 0. R
Let w = w_ +w, with w_ € X~ and wy € X*. Since X~ C H, C K, , we may
choose v = 2w_ = (w_ — w4 ) + w in (4.3), obtaining

/ D(w_ +wy)D(w_ —wy)dx — / Dgg(z,00)(w_ +wy)(w_ —wy)dr >0,
Q Q
hence

/Q\Dw\2da:—/QDsg(x,oo)(w)2daz 2/Q]Dw+|2dx—/QDSg(:c,oo)(er)Zd:c.

Since (), is negative definite on X~ and positive definite on X+ , we have that w = 0 and
a contradiction follows.

Being bounded, (uy) is weakly convergent, up to a subsequence, to some u € K. If we
choose v = u in (4.1), we obtain

/ |Duh|2 de < / [DupDu — g(x,up)(u — up)] de — (np,u — uyp,) .
Q Q

It follows
limsup/ | Duy|? do < / |Dul?dx
h Q Q

so that (uy) is strongly convergent to u .
Since dim X~ = k, by theorem 3.5 there exists a critical point u of f such that

5 Critical groups for ¢ large enough

In this section we consider a reflexive Banach space X, a convex closed subset K of X
with 0 € K and a continuous function f : K — R. Let us assume that X splits into a
direct sum X =V & W, with dim V' = m < 400 and W closed, and denote by P, and Py
the associated projections. Moreover, let us suppose that:

(1) for every sequence (uy) in K weakly convergent to u with li}rln f(up) = f(u), one has

that (uyp) is strongly convergent to u;

(77) for every u € K, the function f is strictly convex on K N (u+ W);
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(i77) there exists a continuous function ¢ : V' — R such that {u+— f(u)+ ¢(Pyu)} is
convex on K

(i) V€ U (K);

t>0

(v) f(w) > f(0) for every we WNK.
Theorem 5.1 We have C,(f,0) = {0} for every g >m+1.

Theorem 5.2 Under the previous assumptions, let us suppose that there exists § > 0 such
that V N Bs (0) C K and f(v) < f(0) for every v € VN Bs (0).
Then
{0} fq#m,
K ifqg=m.

Cl](fvo) ~ {

The section will be devoted to the proof of these results.

Theorem 5.3 Assume that K is also bounded.

Then, for every v € Py(K), the function {w — f(v + w)} has one and only one
minimum point in (K —v) N W.

Moreover, if we denote by ®(v) such a minimum point, then the following properties

hold:
(a) 0 € inty (Py(K)) and the map ® : inty (Py(K)) — W is continuous with ®(0) =0
(b) the function ¢ :inty (Py(K)) — R defined by p(v) = f(v+ ®(v)) is continuous;
(c) Cylp,0) = Cy(f,0) for every q.

Proof. Suppose, for a contradiction, that 0 ¢ inty (Py(K)). Since dimV < +o0, there
exists n € V*\ {0} such that (n,v) < 0 for any v € Py (K). It follows (1, Pyu) < 0 for

any u € K, hence for any v € |J(tK). From assumption (iv) we deduce that (n,v) <0
>0
for any v € V, which is clearly impossible.

By assumption (i), for every v € Py (K), the function {w —— f(v 4+ w)} has one
and only one minimum point ®(v) in (K —v) N W. From assumption (v) it follows that
®(0) =0.

Let us define a function f : K — R by

fu) = flu) +9(Pru).

By assumption (iii), f is convex and continuous. Moreover, for every v € Py(K), we
have that ®(v) is also the unique minimum point of the function {w —— f(v + w)} in

~

(K —v)NW. Define ¢ : Py(K) — R by ¢(v) = f(v+ P(v)) = p(v) + ¥(v).

9



We claim that ¢ is convex and lower semicontinuous. Actually, let vg, v1 € Py (K) and
let ¢t € [0,1]. Since f is convex, we have

F((1 =ty + toy + D((1 — t)vg + tvy)) <

F (1=t + to, + (1 — 1)B(vg) + tP(vy)) <
1- )f(vo + ®(vg)) + tf (v1 + @(v1)) =

1 —t)p(vo) +tp(vr) .

S((1 = t)vg + tvy)

IAINA

(
(
Now, let (v;,) be a sequence in Py (K) converging to v. Up to a subsequence, (®(vy)) is
weakly convergent to some w € W with v +w € K. It follows

(v) = flu+d(v)) < flo+w) < limhinf flop+®(vp)) = limhinf S(vp) -

Being convex and lower semicontinuous, ¢ is continuous on inty (Py(K)). Therefore, if
(vp) is convergent to v in inty (Py (K)), we have that (®(vy,)) is weakly convergent to ®(v).
From assumption (i) it follows that (®(vy)) is strongly convergent to ®(v). At the end,
also ¢ is continuous on inty (Py(K)).

c

Finally, let us prove property (c¢). Without loss of generality, we may assume that
f(0) = p(0) = 0. If we set
U = iIltV (Pv(K)) + W,

M ={v+®(v): veinty (Py(K))},
then {v — v+ ®(v)} is a homeomorphism of inty (Py(K)) onto M . Since ®(0) = 0, the
pair (©°, %\ {0}) is homeomorphic to the pair <(f‘M)O, (f|M)O \ {O}> . In particular,
Cal,0) = H (%, \ {0}) ~ H7 ((fin)” (finr) "\ {0}) -

On the other hand, since {w — f(v+w)} is convex, the map n: (f°NU,(f°NU)\ {0}) x
0,1] = (f°NU, (f°NU)\ {0}) defined by

n(u,t) = Pyu+ (1 —t)Pyu + t®(Pyu),

is a strong deformation retraction of (f*NU, (f°NU)\ {0}) in ((f|M)O ) (f|M)0 \ {0}) In

particular,

H ((finr) s (Fn) " \AO}) =~ HY (£ 10, (£ N U)\ {0}) = Cy(,0).

and assertion (c) follows. m

Now we may prove the main results of this section.

Proof of theorem 5.1. By substituting K with K N B; (0), we may assume that K is also
bounded. Let ¢ : inty (Py(K)) — R be as in theorem 5.3. We know that

Vg Colf,0) = Cy(e,0).
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Since ¢° \ {0} C ¢° C V with dimV = m, it follows that C,(p,0) = {0} whenever
g>m+1. =

Proof of theorem 5.2. Again, we may assume K to be bounded. Let @ : inty (Py(K)) - W
and ¢ : inty (Py(K)) — R be as in theorem 5.3. For every v € K N Bs (0), we have

() = flv+P(v)) < f(v) < f(0) = ¢(0).

Therefore

Cy(£.0) ~ Cylp,0) = H* (9" NB; (0), (¢" NB;s (0)) \ {0}) =
H (VN B; (0), (VN B;s(0)) \ {0})

and the assertion follows. m

6 Critical groups for ¢ small enough

In this section we consider a Banach space X , a convex closed subset K of X with 0 € K
and a continuous function f : K — R. Let us assume that X splits into a direct sum
X =VaW, withdimV =m < 4oco and W closed. Moreover, let us suppose that:

(¢) there exists 0 > 0 such that

(VNB;(0) + (KNWNB;s(0) C K;

(1) for every w € K N W N Bs(0), the function {v — f(v+ w)} is strictly concave on
V' NB;s(0).

Theorem 6.1 We have C,(f,0) = {0} for every g <m —1.
The section will be devoted to the proof of this result.
Lemma 6.2 Let S be a symmetric subset of V and C' be a convexr subset of W such that
0eCand S+ (KNC)CK.

Then S+ (KNC)=KN(S+C). In particular, it is

(VNBs(0)+ (KNWNBs(0)) =KN[(VNBs(0)) +(WnNBs(0))].

Proof. Let v+w € K withv e Sandw e C. If we KNC, we have —v +w € K, hence
(w+w)/2 € KNC. Starting from 0 € KNC, we find by induction that (1—27%)w € KNC

for any k € N. Tt follows that w € K, whence v+w € S+ (K NC). The opposite inclusion
is obvious. =
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Lemma 6.3 Let V = span(e) @ Z with e # 0 and assume that f(v) < f(0) for every
v e VNBg (0) .
Then there ezxist v > 0 and p €]0,r] such that:

(a) foreveryu e (ZNB,(0))+(KNWNB,(0)) and everyt € [—r,r] we have te+u € K ;

(b) for everyu e (ZNB,(0)) +(KNWNB,(0)) the function {t — f(te +w)} has one
and only one maximum point ¥(u) on [—r,r] with |9(u)| < r;

(c) the function ¥ : (ZNB,(0))+(KNW NB,(0)) = R is continuous with ¥(0) =0 ;

(d) the function ¢ : (ZNB,(0))+(KNWNB,(0)) = R defined by p(u) = f(I(u)e+u)

18 continuous,

(e) we have
V2e ZNB,(0): ¢(z) <¢(0)

and for every w € KNW N B, (0) the function {z — p(z+w)} is strictly concave
on ZNB,(0).

Proof. Let r €]0,d] be such that |[te + z|| < § whenever |t| < r and z € Z N B, (0). From
assumption (7), it follows that

Vue (ZNB,.(0)+(KNWNB,(0)),Vte|[-rr]: tetuekK.

By assumption (i7) we have that f(—re) < f(0) and f(re) < f(0). Therefore, there exists
p €]0,r] such that

Vue (ZNB,(0)+(KNWNB,(0): fl=re+u) < flu), [flretu)<flu).

Then assertions (a) and (b) easily follow. Moreover, since f(te) < f(0) for every t € [—r, 1],
we have 9(0) = 0.

Now, let (u) be a sequence in (ZNB, (0))+(KNWNB, (0)) converging to w. Up to a
subsequence, (¥(uy)) is convergent to some t € [—r,r|. On the other hand f(J(up)e+uy) >
f(O(u)e + up) . Since f is continuous it follows that f(te + u) > f(#(u)e + u), whence
t = J(u). Therefore ¥ is continuous. Of course, ¢ also is continuous.

For every z € ZNB, (0) and ¢t € [—r,r] we have f(te+2) < f(0), whence p(z) < ¢(0).
Finally, let w € KNW NB,(0), 20,21 € ZNB,(0) with 25 # 2, and let ¢t €]0,1[. From
assumtion (73) it follows that

o(1=t)zo+tzy +w) = fFO((1—1t)z0 +tz1 +w)e+ (1 —t)z0 +tz1 +w) >

F(L = 8)9(z0 + w) + (21 + w)|e + (1 — t)z0 + tz1 + w) >
(1—=t)f(V(z0+w)e+ zo+w) +tf(V (21 +w)e+ 2 +w) =
(1= 1t)p(z0 + w) + to(z1 + w).

>
>

Therefore the function {z — (2 + w)} is strictly concave on Z N B, (0). =
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Let us set

Et = {te+u: we (ZNB,0)+(KNWANB, o>>,z9(u)gtgr},

B = {te+u: we (ZNB,0) + (KNWNB,0), —r<t<v

FE = EtTNE = {ﬁ(u)e—i—u: uG(ZﬂBp(O))—i—(KﬂWﬂBp(O)},

U., = ETUE =<{te+u:uec(ZNB,0)+(KNWNB,(0)), —r<t<ryg.
. P p

Lemma 6.4 Under the assumptions of the previous lemma, we have Cy(f,0) =~ C,_1(p,0)
for any q.

Proof. Without loss of generality, we may assume that f(0) = 0. From lemma 6.2 and (a)
of lemma 6.3, it follows that U, , is a neighbourhood of 0 in K.

Now, let 7: ET — [0, +00[ be a continuous function such that 7(u)e + u € ET for any
u € ET and 7(0) > 0. Let us define H : (f°NET) x [0,1] = f°N ET by

H(u,s) =u+ st(u)e.

Then H is continuous and takes actually its values in f°NE* by assumption (i7). Moreover,
we have
Vue fOoNEY: H(u,0)=u, H(u,1)#0,

Vue (fO NET)\{0},¥s€[0,1]: H(u,s)#0.

It follows
Vg: HI(f°nET (f°nET)\{0}) ={0}.

In a similar way, we find that
Yo HU(fPNE(f°nE7)\{0}) = {0}.

Since E* and E~ are closed in U,., and we are considering Alexander-Spanier cohomology
in a metric space, we have the Mayer-Vietoris exact sequence

= HTH(fPNE (P nE)\{0}) @ HT (PN ET (fP N ET)\{0}) —

= HT (" NE (fPnE)\{0}) = H (f* N U, (f' N U) \{0}) =

= H'(fPnE~,(f'nE)\{0}) @ H* (f*nE*,(f* nE")\{0}) .
It follows that

HY (f° 0 U, (f* N U \{0}) ~ HH(f° N E (f° N E)\{0})
(

hence Cy(f,0) = Cy—1(f|g,0). On the other hand, ®(u) = ¥(u)e + v is a homeomorphism
of (ZNB,(0)+ (KNWnNB,(0)) onto £ with ®(0) = 0. It follows that C,_1(¢,0) ~
Cralfip.0).
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Proof of theorem 6.1. 1If there exists vy € V N Bs(0) such that f(vy) > f(0), then
|d ] (0) # 0. Actually, by assumption (ii) we may assume that ||vg|| < 6/2. If

f(vo) — f(O)

O<o<
[[voll

Y

by lemma 6.2 there exists ¢’ > 0 such that, for every u € K N By (0), one has that
{u+svy: =0 <s<1} C K, fis concave on {u + svy: —0' < s <1} and

flu+wv) — f(u)

> 0.
[l
Let H : (K N By (0)) x [0,'] — K be defined by
Yo
H(u,t) =u—t :
[l

Then #H is continuous and ||H(u,t) — ul| = t. Moreover, for every u € K N By (0) and
t €10,0'], we have

o ool
el T T g )
hence ’| H
Vo
which is equivalent to
F(H(u ) < flu) — ﬁ (Flu+ v0) — f(u)) .

It follows f(H(u,t)) < f(u) — ot, whence |d f| (0) > ¢ > 0. By [5, Proposition (3.4)] we
deduce that C,(f,0) = {0} for every q.

Therefore, we may assume that f(v) < f(0) for every v € VN Bs (0). Let us argue by
induction on m = dim V.

If m =0, ie V = {0}, there is nothing to prove. Now let m > 1 and assume the

assertion is true form—1. Let ¢ : (ZNB,(0))+(KNWNB,(0)) = R be as in lemma 6.4.
We know that

Vg:  Cy(f,0) = Coa(p,0).

On the other hand, by lemma 6.3 ¢ satisfies the same assumptions of f, with V' substituted

by Z and K by (ZNB,(0)) + (KNWNB,(0)). Since dimZ = m — 1, by the inductive
assumption we have that

Vg<m—2: Cyg,0) ={0}

and the assertion follows. m
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7 Proof of the main results

This section is devoted to the proof of Theorems 2.2 and 2.4.
Let K, g, fi and f be as in sect. 4. Let also Qg : Hj(2) — R be the quadratic form
defined by

Qo(u)Z/Q|DU|2dx—/QDsg(x,O)u2dx.

By proposition 4.1, each critical point of f is a solution of (2.2). Therefore, without loss of
generality, we may assume that f has only a finite number of critical points. By theorem 4.2
there exists a critical point @ of f such that Ci(f,u) # {0} . Therefore, it is sufficient to
show that C¢(f,0) = {0}.

Proof of theorem 2.2. Suppose first that there exists h < k such that M;LO) <0< /\,(21.
Let V be a maximal subspace of H{ where @) is negative semidefinite and let W be a
maximal closed subspace of Hy where @y is positive definite. Since ,u,(lo) <0< )\gl, we
have dimV = codimHOW =h. Let Hy =V & W and let Py, Py be the projections
associated with the decomposition. We clearly have V N W = {0}. Therefore Py : V — 1%

is injective, hence bijective. For any v € Hy, let u = 0 4+ w with 0 € V and w € W. Let
also v € V with Pyv = 0. Then we have

u:P‘A/v—l—iZ):U—i-(ﬁ)—Pﬁ;v) EV—i-/W.

Therefore Hy =V & W,
Consequently, we have the decomposition HJ(Q2) = V & W, where W = (W B Hol>
and Hg" is the orthogonal of Hy in H} () with respect to the standard scalar product. Let

Py be the associated projection on V.
We want to apply theorem 5.1. Assumption (i) is clearly satisfied. Since f; is of class

—~

C?, f1(0) = 0 and f{'(0) is positive definite on W, there exist w,d > 0 such that

Ywe WnBs(0): fi(w)> fi(0),

Vu € Bs (0) - the function f is strictly convex on By (0) N (u + /W) :
{ur fi(u) + w||Pyul|*} is convex on Hy N Bs (0).

Since we want to estimate the critical groups of f at 0, we may substitute K with KNBg (0).
As K C H,, it follows that assumptions (i7), (i7i) and (v) are satisfied. Finally, according
to [16], we have

U(tK) ={ue Hy(Q): u(z)>0gqe. in FY and u(z) <0 qe. in F§} .

t>0

It follows V C Hy C U(tK) . By theorem 5.1 we conclude that Ci(f,0) = {0}.
>0
Now, suppose that there exists h > k such that ,ul(lo) < 0. Arguing as in the proof of
theorem 4.2, we find a decomposition of the form H}(Q) =V & W, where W is closed and
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V' is a subspace of H|, with dim V' = h such that Qo = f{'(0) is negative definite on V. By
assumption (2.1) we have H) C K, hence V + K = K . Moreover, there exists § > 0 such
that, for every w € By (0), the function {v — fi(v 4 w)} is strictly concave on V N Bs (0).
By theorem 6.1 we conclude that Ci(f,0) ={0}. m

Proof of theorem 2.4. Arguing as in the proof of theorem 4.2, we find a decomposition of
the form H} () =V & W @ Hy, where W is closed in Hy, V is a subspace of H} with
dimV = h, Qy = f17(0) is negative definite on V and positive definite on W. Set also
W =Waea Hg. Tt is readily seen that H), C |J(t(K N (=K))). Let {z1,...,2} be a

>0
basis in V. Given € > 0, there exist t; > 0 and v; € t;(K N (—K)) with ||v; — 2| < e.
Let V' be the linear subspace spanned by {vy,...,v,}. If € is sufficiently small, we have
dimV = h, H}(Q) =V & W and f/(0) is negative definite also on V. Moreover, we have

[—t;',t;'v; C K, hence

11 11
71 - I I I
(7.1) { htl’htl}vl+ +{ hth’hth}vh_

As in the proof of theorem 2.2, we see that assumptions (i) — (v) of sect. 5 are satisfied.
Since f{'(0) is negative definite on V', by (7.1) we find § > 0 such that V' N B (0) C K and
fi(v) < f1(0) for any v € V N B (0). From theorem 5.2 we conclude that Cy(f,0) = {0} .
n

Remark 7.1 Let us point out that assumption (2.1) is actually needed only to treat the
case h > k with pJELO) < 0, while it is not used in the case h < k with pJELO) <0< )‘gr
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