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1 Introduction

LetX be a metric space and f : X → R be a continuous function. Recently, in [4, 7, 8, 9],

a critical point theory has been elaborated for such a setting, which extends the classical

case concerning smooth functionals on smooth Finsler manifolds.

A possible development consists in the study of stability under perturbation. More

precisely, we can assume that c ∈ R is a critical value of f and ask whether any g : X →

R sufficiently close to f has a critical value near c . For functionals of class C1 , such a

problem has been already treated in [12, 13]. In our setting, the question has been the

object of [6, 10].

In the first two sections, we recall the main aspects of the abstract theory of [6,

10]. Let us mention that we are able to deal also with non-isolated critical values. In

addition, we study here in some detail the stability of a critical value originated by a

local minimum.

As it is shown in Theorem (3.1), the critical values, we are able to treat, are stable

if the perturbed functional g is uniformly close to f . In section 4, we treat a class of

functionals in the Sobolev space H1
0 (Ω) , for which Γ-convergence is sufficient to get the

same result.

∗Supported by Ministero dell’Università e della Ricerca Scientifica e Tecnologica (40% – 1993).
†Supported by Ministero dell’Università e della Ricerca Scientifica e Tecnologica (40% – 1993).
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In the last section, we briefly outline a particular case which generalizes some results

of [6, 10], concerning eigenvalue problems for variational inequalities.

2 Trivial pairs and essential values

Throughout this section X will denote a metric space endowed with the metric d and

f : X → R a continuous function. If b ∈ R := R ∪ {−∞,+∞} , let us set

f b = {u ∈ X : f(u) ≤ b} .

We also denote by Br (u) the open ball of centre u and radius r . More generally, if

Y ⊆ X, Br (Y ) denotes the open r-neighbourhood of Y . For the topological notions

involved this section, the reader is referred to [14].

Definition 2.1 Let a, b ∈ R with a ≤ b . The pair
(
f b, fa

)
is said to be trivial, if for

every neighbourhood [α′, α′′] of a and [β′, β′′] of b in R there exists a continuous map

H : fβ
′ × [0, 1] → fβ

′′
such that

H(x, 0) = x ∀x ∈ fβ
′
,

H
(
fβ

′ × {1}
)
⊆ fα

′′
,

H
(
fα

′ × [0, 1]
)
⊆ fα

′′
.

Remark 2.2 If α < α′ in the above definition, we can suppose, without loss of general-

ity, that H(x, t) = x on fα × [0, 1] . Actually, it is sufficient to substitute H(x, t) with

H (x, tϑ(x)) , where ϑ : fβ
′ → [0, 1] is a continuous function with ϑ(x) = 0 for f(x) ≤ α

and ϑ(x) = 1 for f(x) ≥ α′ .

Theorem 2.3 Let a, c, d, b ∈ R with a < c < d < b. Let us assume that the pairs(
f b, f c

)
and

(
fd, fa

)
are trivial.

Then the pair
(
f b, fa

)
is trivial.

Proof. Let [α′, α′′] be a neighbourhood of a and [β′, β′′] a neighbourhood of b . Without

loss of generality, we can assume α′′ < c and β′ > d . Moreover, let c < γ < d .

There exists a continuous map H1 : fβ
′ × [0, 1] → fβ

′′
such that H1(x, 0) = x ∀x ∈

fβ
′
, H1

(
fβ

′ × {1}
)

⊆ fγ , H1

(
fα

′′ × [0, 1]
)

⊆ fγ and such that H1(x, t) = x on

fα
′ × [0, 1] . Moreover there exists a continuous map H2 : fγ × [0, 1] → fβ

′
such that
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H2(x, 0) = x ∀x ∈ fγ , H2 (f
γ × {1}) ⊆ fα

′′
, H2

(
fα

′ × [0, 1]
)
⊆ fα

′′
. If we define

H : fβ
′ × [0, 1] → fβ

′′
by

H(x, t) =

{
H1(x, 2t) 0 ≤ t ≤ 1

2

H2 (H1(x, 1), 2t− 1) 1
2 ≤ t ≤ 1

,

it turns out that H is a continuous map with the required properties. Therefore the

assertion follows.

Definition 2.4 A real number c is said to be an essential value of f , if for every ε > 0

there exist a, b ∈]c− ε, c+ ε[ with a < b such that the pair
(
f b, fa

)
is not trivial.

Remark 2.5 The set of the essential values of f is closed in R .

Theorem 2.6 Let a, b ∈ R with a < b. Let us assume that f has no essential value in

]a, b[ .

Then the pair
(
f b, fa

)
is trivial.

Proof. Let [α′, α′′] be a neighbourhood of a , [β′, β′′] be a neighbourhood of b and let

a′ ∈]a, α′′[ and b′ ∈]β′, b[ with a′ < b′ . For every c ∈ [a′, b′] there exists ε > 0 such that

for every a, b ∈]c−ε, c+ε[ with a < b the pair
(
f b, fa

)
is trivial. Since [a′, b′] is compact,

there exist a′ ≤ c1 < · · · < ck ≤ b′ and εi > 0 for i = 1, · · · , k , such that

[a′, b′] ⊆
k∪
i=1

]ci − εi, ci + εi[

and such that for every a, b ∈]ci − εi, ci + εi[ with a < b the pair
(
f b, fa

)
is trivial.

Arguing by induction on k and taking into account Theorem (2.3), we deduce that the

pair
(
f b

′
, fa

′
)
is trivial. Then there exists a continuous map H : fβ

′ × [0, 1] → fβ
′′
such

that

H(x, 0) = x ∀x ∈ fβ
′
,

H
(
fβ

′ × {1}
)
⊆ fα

′′
,

H
(
fα

′ × [0, 1]
)
⊆ fα

′′
.

It follows that the pair (f b, fa) is trivial.
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3 Properties of essential values

Let X denote again a metric space and f : X → R a continuous function.

Theorem 3.1 Let c ∈ R be an essential value of f .

Then for every ε > 0 there exists δ > 0 such that every continuous function g : X →

R with

sup {|g(x)− f(x)| : x ∈ X} < δ

admits an essential value in ]c− ε, c+ ε[ .

Proof. By contradiction, assume there exist ε > 0 and a sequence of continuous functions

gk : X → R such that

sup {|gk(x)− f(x)| : x ∈ X} < 1

k

and such that gk has no essential value in ]c− ε, c+ ε[ .

Let a, b ∈]c− ε, c+ ε[ with a < b . Let us show that the pair
(
f b, fa

)
is trivial. Let

[α′, α′′] be a neighbourhood of a and [β′, β′′] a neighbourhood of b . Since the function gk

has no essential value in ]a, b[ , the pair
(
gbk, g

a
k

)
is trivial, by Theorem (2.6). Moreover,

if k is sufficiently large, we have α′ + 1/k < a < α′′ − 1/k and β′ + 1/k < b < β′′ − 1/k .

Then there exists a continuous map Hk : g
β′+ 1

k
k × [0, 1] → g

β′′− 1
k

k such that

Hk(x, 0) = x ∀x ∈ g
β′+ 1

k
k ,

Hk

(
g
β′+ 1

k
k × {1}

)
⊆ g

α′′− 1
k

k ,

Hk

(
g
α′+ 1

k
k × [0, 1]

)
⊆ g

α′′− 1
k

k .

Since fα
′ ⊆ g

α′+ 1
k

k ⊆ g
α′′− 1

k
k ⊆ fα

′′
and fβ

′ ⊆ g
β′+ 1

k
k ⊆ g

β′′− 1
k

k ⊆ fβ
′′
, it follows that the

pair (f b, fa) is trivial. Therefore, c is not an essential value of f : a contradiction.

Now, let us recall a notion from [4, 7, 9].

Definition 3.2 For every u ∈ X let us denote by |df |(u) the supremum of the σ’s in

[0,+∞[ such that there exist δ > 0 and a continuous map H : Bδ (u)× [0, δ] → X with

d(H(v, t), v) ≤ t ,

f(H(v, t)) ≤ f(v)− σt .

The extended real number |df |(u) is called the weak slope of f at u.
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It is readily seen that the function |df | : X → [0,+∞] is lower semicontinuous.

Definition 3.3 An element u ∈ X is said to be a critical point of f , if |df |(u) = 0. A

real number c is said to be a critical value of f , if there exists a critical point u ∈ X of

f such that f(u) = c. Otherwise c is said to be a regular value of f .

Definition 3.4 Let c be a real number. The function f is said to satisfy the Palais -

Smale condition at level c ((PS)c for short), if every sequence (uh) in X with |df |(uh) →

0 and f(uh) → c admits a subsequence (uhk) converging in X to some v (which is a

critical point of f , by the lower semicontinuity of |df |).

For every c ∈ R let us set

Kc = {u ∈ X : f(u) = c, |df |(u) = 0} .

Theorem 3.5 (Deformation Theorem) Let c ∈ R . Let us assume that X is complete

and that f satisfies the Palais-Smale condition at level c .

Then, for every ε > 0, O neighbourhood of Kc (if Kc = ∅ , we allow O = ∅) and

λ > 0 , there exist ε > 0 and a continuous map η : X × [0, 1] → X such that:

(a) d(η(u, t), u) ≤ λt ;

(b) f(η(u, t)) ≤ f(u) ;

(c) f(u) /∈ ]c− ε, c+ ε[ =⇒ η(u, t) = u ;

(d) η(f c+ε \ O, 1) ⊆ f c−ε .

Proof. See [4, Theorem (2.14)].

Theorem 3.6 (Noncritical Interval Theorem) Let a ∈ R and b ∈ R ∪ {+∞} (a < b).

Let us assume that X is complete, that f has no critical point u with a ≤ f(u) ≤ b and

that f satisfies (PS)c for every c ∈ [a, b] .

Then there exists a continuous map η : X × [0, 1] → X such that

(a) η(u, 0) = u ;

(b) f(η(u, t)) ≤ f(u) ;

(c) f(u) ≤ a =⇒ η(u, t) = u ;

(d) f(u) ≤ b =⇒ f(η(u, 1)) ≤ a .
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Proof. See [4, Theorem (2.15)].

Theorem 3.7 Let c be an essential value of f . Let us assume that X is complete and

that (PS)c holds.

Then c is a critical value of f .

Proof. By contradiction, let us assume that c is not a critical value of f . Since the

function |df | is lower semicontinuous and (PS)c holds, there exists ε > 0 such that

inf {|df |(x) : x ∈ X, c− ε < f(x) < c+ ε} > 0 .

In particular, f has no critical value in ]c− ε, c+ ε[ and (PS)d holds whenever c− ε <

d < c+ ε . Let a, b ∈]c− ε, c+ ε[ with a < b . By the Noncritical Interval Theorem there

exists a continuous map η : X × [0, 1] → X such that

η(x, 0) = x ,

f(η(x, t)) ≤ f(x) ,

f(x) ≤ b =⇒ f(η(x, 1)) ≤ a ,

f(x) ≤ a =⇒ η(x, t) = x .

In particular the pair
(
f b, fa

)
is trivial. Therefore, c is not an essential value of f : a

contradiction.

Example 3.8 Let f : R2 → R be defined by

f(x, y) = ex − y2 .

Then 0 is an essential value of f , but not a critical value of f . On the other hand,

(PS)0 is not satisfied for f .

Let us show that the values arising from usual min–max procedures are all essential.

Theorem 3.9 Let Γ be a non-empty family of closed non-empty subsets of X and let

d ∈ R ∪ {−∞} . Let us assume that for every C ∈ Γ and for every deformation η :

X × [0, 1] → X with η(x, t) = x on fd × [0, 1] , we have η(C × {1}) ∈ Γ . Let us set

c = inf
C∈Γ

sup
x∈C

f(x)

and let us suppose that d < c < +∞ .

Then c is an essential value of f .
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Proof. By contradiction, let us assume that c is not an essential value of f . Let d < a < c

and b > c be such that the pair
(
f b, fa

)
is trivial. Let

d < α′ < a < α′′ < c < γ < β < b .

Then there exists a continuous map H : fβ × [0, 1] → X such that

H(x, 0) = x ∀x ∈ fβ ,

H
(
fβ × {1}

)
⊆ fα

′′
,

H
(
fα

′ × [0, 1]
)
⊆ fα

′′
,

H(x, t) = x ∀ (x, t) ∈ fd × [0, 1] .

Let ϑ : X → [0, 1] be a continuous function such that ϑ(x) = 1 for f(x) ≤ γ and ϑ(x) = 0

for f(x) ≥ β . Let us define η : X × [0, 1] → X by

η(x, t) =

{
H(x, ϑ(x)t) if f(x) ≤ β

x if f(x) ≥ β
.

It turns out that η is a deformation with η(x, t) = x on fd × [0, 1] . Let C ∈ Γ be such

that C ⊆ fγ . Then η(C × {1}) ∈ Γ and η(C × {1}) ⊆ fα
′′
; this is absurd, as α′′ < c .

Corollary 3.10 Let (D,S) be a pair of compact sets, let ψ : S → X be a continuous

map and let

Φ = {φ ∈ C(D;X) : φ|S = ψ} .

Let us assume that Φ ̸= ∅ and let us set

c = inf
φ∈Φ

max
x∈φ(D)

f(x) .

If c > max
x∈ψ(S)

f(x) , then c is an essential value of f .

Proof. Let us set

Γ = {φ(D) : φ ∈ Φ} ,

d = max
x∈ψ(S)

f(x) .

Then the assertion follows from the previous theorem.
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Corollary 3.11 Assume that X is non-empty and f is bounded from below.

Then infX f is an essential value of f .

Proof. Let us set

Γ = {{x} : x ∈ X} ,

and d = −∞ . Then the assertion follows from Theorem (3.9).

Now we want to study in more detail the case of a local minimum.

Example 3.12 Let X = R and let f : R → R be defined by

f(x) =


(x+ 1)3 if x < −1

0 if −1 ≤ x ≤ 1

(x− 1)3 if x > 1

.

Then 0 is a local minimum of f , but 0 = f(0) is not an essential value of f . In fact

fε(x) = f(x) + ε arctanx , ε > 0

has no critical value, even if fε satisfies (PS)c for any c ∈ R and (fε − f) is uniformly

small. From Theorems (3.1) and (3.7) it follows that 0 is not an essential value of f .

Now we study the situation for a strict local minimum u .

Definition 3.13 We say that u ∈ X is a strict local minimum for f , if there exists a

neighbourhood U of u such that

∀v ∈ U \ {u} : f(v) > f(u) .

Example 3.14 Let X be the Hilbert space l2 . For any integer j ≥ 1 , let φj : R → R

be the continuous function defined by

φj(s) =


−1− s if s < −1

1
j s(s+ 1) if −1 ≤ s ≤ 0

s if s > 0

.

It is readily seen that

φj(s) ≥ − 1

4j
,

|φj(s)| ≤ |s| .

Let Φj : R → R be the primitive of φj such that Φj(0) = 0 and let f : X → R be defined

by

f(u) =
∞∑
j=1

Φj
(
u(j)

)
.
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Then f is of class C1 and has a strict local minimum at the origin. Define fh : X → R

by

fh(u) = f(u) +
1

h
arctan

(
u(h)

)
.

Then fh is of class C1 and uniformly close to f . Moreover it is

∀u ∈ X : f ′h(u)eh = φh
(
u(h)

)
+

1

h

1

1 +
(
u(h)

)2 ≥ 1

4h
.

It follows that fh satisfies (PS)c for any c ∈ R and has no critical value. From The-

orems (3.1) and (3.7) we deduce again that 0 = f(0) is not an essential value of f .

Observe that f does not satisfy (PS)0 .

In the next theorem, we give a positive result, when the minimum is strict in a stronger

sense. In particular, the cases where X is finite dimensional or (PS)c holds for f are

covered.

Theorem 3.15 Let u ∈ X . Assume there exists a neighbourhood U of u such that

∀v ∈ U : f(v) ≥ f(u) ,

inf{f(v) : v ∈ ∂U} > f(u)

(the agree that inf ∅ = +∞).

Then f(u) is an essential value of f .

Proof. Let c = f(u) , 0 < δ < inf{f(v) : v ∈ ∂U} − f(u) and let ε ∈ ]0, δ[ . Let

a ∈ ]c−ε, c− ε
2 [ and b ∈ ]c+ ε

2 , c+ε[ . We claim that (f b, fa) is not trivial. By contradiction,

let H : f c+
ε
2 × [0, 1] → f c+ε be a deformation such that H

(
f c+

ε
2 × {1}

)
⊆ f c−

ε
2 .

We have H
(
f c+

ε
2 × [0, 1]

)
∩ ∂U = ∅ , hence H ({u} × [0, 1]) ⊆ U . This is absurd, as

f(H(u, 1)) ≤ c− ε
2 .

Corollary 3.16 Let X be locally compact and let u ∈ X be a strict local minimum of

f .

Then f(u) is an essential value of f .

Proof. It follows from the previous theorem.
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Corollary 3.17 Let u be a strict local minimum of f . Assume that X is complete and

that the Palais-Smale condition is satisfied at level f(u) .

Then f(u) is an essential value of f .

Proof. Let r > 0 be such that

∀v ∈ B2r (u) \ {u} : f(v) > f(u) .

By Theorem (3.15) it is sufficient to show that

inf{f(v) : v ∈ ∂Br (u)} > f(u) .

Let us set c = f(u) . By contradiction, let (vh) be a sequence in ∂Br (u) with f(vh) →

f(u) . By the Deformation Theorem, there exist ε > 0 and a deformation η : X× [0, 1] →

X such that

d(η(u, t), u) ≤ rt ,

η
((
f c+ε \ Br (Kc)

)
× {1}

)
⊆ f c−ε .

For h sufficiently large, it follows η(vh, 1) ∈ B2r (u) and f(η(vh, 1)) ≤ c − ε : a contra-

diction.

4 Perturbations with variable domain

Definition 4.1 Let X be a topological space and, for any h ∈ N := N ∪ {+∞} , let

fh : X → R ∪ {+∞} be a function. According to [1, 5], we write that

f∞ = Γ(X−) lim
h
fh ,

if the following facts hold:

(a) if (uh) is a sequence in X convergent to u , we have

f∞(u) ≤ lim inf
h

fh(uh) ;

(b) for every u ∈ X there exists a sequence (uh) in X convergent to u such that

f∞(u) = lim
h
fh(uh) .
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Definition 4.2 Let X be a normed space and, for any h ∈ N , let Kh be a closed convex

subset of X . According to [11], we say that the sequence (Kh) is convergent to K∞ in

the sense of Mosco, if the following facts hold:

(a) if hj → +∞ , uj ∈ Khj and the sequence (uj) is weakly convergent to u in X,

then u ∈ K∞ ;

(b) for every u ∈ K∞ there exists a sequence (uh) strongly convergent to u in X

with uh ∈ Kh .

Now let Ω be a bounded open subset of Rn with n ≥ 3 . For every h ∈ N let fh :

H1
0 (Ω) → R ∪ {+∞} be a functional and let us denote by

D(fh) = {u ∈ H1
0 (Ω) : fh(u) < +∞}

the effective domain of fh . In the following ∥ · ∥p will denote the norm in Lp(Ω) and ∥ · ∥

the norm in H1
0 (Ω) . Let us assume that:

(i) for every h ∈ N the functional fh|D(fh)
is continuous with respect to the strong

topology of H1
0 (Ω) ;

(ii) f∞ = Γ(w − H1
0 (Ω)

−) limh fh , where w − H1
0 (Ω) denotes the space H1

0 (Ω)

endowed with the weak topology;

(iii) if (uh) and (vh) are weakly convergent to u in H1
0 (Ω) with uh, vh ∈ D(f∞)

and

lim sup
h

(∥vh∥ − ∥uh∥) ≤ 0 ,

then

lim sup
h

(f∞(vh)− f∞(uh)) ≤ 0 ;

(iv) if (uh) is weakly convergent to u in H1
0 (Ω) and limh fh(uh) = f∞(u) < +∞,

then uh is strongly convergent to u in H1
0 (Ω) ;

(v) if (uh) is strongly convergent to u in H1
0 (Ω) with uh ∈ D(fh), then fh(uh) →

f∞(u) ;

(vi) if we set Kh := D(fh) for every h ∈ N , Kh is a closed convex subset of H1
0 (Ω)

with 0 ∈ Kh ;

(vii) we have

lim
∥u∥→∞

f∞(u) = +∞

11



and for every R > 0 and b ∈ R there exist h̃ ∈ N and R1, R2 > 0 with

R < R1 < R2 such that∪
h≥h̃

f bh

 ∩ BR2 (0)

 ⊆ BR1 (0) .

First of all, let us investigate the stability of the assumptions (i), . . . , (vii) .

Proposition 4.3 Let us assume that (fh) satisfies the hypotheses (i), . . . , (vii) and let

(gh) be a sequence of continuous functions from H1
0 (Ω) to R such that gh → 0 uniformly

on bounded subsets of H1
0 (Ω) .

Then (fh + gh) satisfies the hypotheses (i), . . . , (vii) .

Proof. It is easy to see that the hypotheses (i), . . . , (vi) hold for (fh + gh) .

Let us prove that the hypothesis (vii) holds for (fh + gh) . Let R > 0 and b ∈ R .

Let h,R1, R2 be related to fh , R and (b + 1) as in the hypothesis (vii) . Let h̃ > h be

such that |gh| < 1 on BR2 (0) for h ≥ h̃ . Then∪
h≥h̃

(fh + gh)
b

 ∩ BR2 (0)

 ⊆ BR1 (0)

and (vii) follows.

For ρ > 0 , let us set

Sρ =

{
u ∈ H1

0 (Ω) :

∫
Ω
u2 dx = ρ2

}
.

In the following, the set Kh ∩ Sρ will be endowed with the H1
0 -metric.

For every h ∈ N let us set f̃h := fh|Kh∩Sρ
. Evidently f̃h : Kh∩Sρ → R is continuous.

Our aim is to obtain a result like Theorem (3.1) in this setting. Observe, however, that

f̃h is not uniformly close to f̃∞ . Actually, even the domain of f̃h is variable.

Let us recall a definition from [3].

Definition 4.4 Let C be a convex subset of a Banach space X, let M be a hypersurface

in X of class C1, let u ∈ C ∩M and let ν(u) ∈ X ′ be a unit normal vector to M at u.

The sets C and M are said to be tangent at u, if we have either

⟨ν(u), v − u⟩ ≤ 0 ∀v ∈ C

or

⟨ν(u), v − u⟩ ≥ 0 ∀v ∈ C ,

where ⟨·, ·⟩ is the pairing between X ′ and X.

The sets C andM are said to be tangent, if they are tangent at some point of C∩M .

12



Now we can state the main result of this section.

Theorem 4.5 Let c ∈ R be an essential value of f̃∞ . Let us assume that K∞ and Sρ

are not tangent at any point of f̃ c∞ .

Then for every ε > 0 there exists h ∈ N such that for every h ≥ h the functional f̃h

has an essential value in ]c− ε, c+ ε[.

The proof of this theorem will be given at the end of this section, after some auxiliary

lemmas.

Lemma 4.6 For every u ∈ K∞ there exists a sequence (uh) strongly convergent to u in

H1
0 (Ω) with uh ∈ Kh .

Proof. From the definition of Γ-convergence, it follows that there exists a sequence (uh)

weakly convergent to u in H1
0 (Ω) with fh(uh) convergent to f∞(u) . From assumption

(iv) we deduce that (uh) is strongly convergent to u and the assertion follows.

Let us set

D =
{
(h, u) ∈ N× Sρ : u ∈ Kh and Kh and Sρ are not tangent at u

}
.

In the following, D will be endowed with the topology induced by N× L2(Ω).

Theorem 4.7 For every ε̃ > 0 there exists a continuous map

η : D → H1
0 (Ω)

such that for every (h, u) ∈ D we have

η(h, u) ∈ Kh ,∫
Ω
u(η(h, u)− u) dx > 0 ,

∥η(h, u)− u∥2 ≤ ε̃ ,

∥Dη(h, u)∥2 ≤ ∥Du∥2 + ε̃ ,

∥η(h, u)∥ ≤ ∥u∥ + ε̃ .

Proof. It is sufficient to prove the assertion without the last inequality.

For every (h, u) ∈ D let us denote by Σ(h, u) the set of σ’s in ]0,+∞[ such that

there exists u+ ∈ Kh with∫
Ω
u(u+ − u)dx > σ , ∥u+ − u∥2 < ε̃ , ∥Du+∥2 < ∥Du∥2 + ε̃ .

13



Because of the definition of D , for every (h, u) ∈ D we can find u+ ∈ Kh with
∫
Ω u(u

+−

u)dx > 0 . By substituting u+ with (1 − t)u + tu+ for some t ∈]0, 1[ , we can also

suppose that ∥u+ − u∥2 < ε̃ and ∥Du+∥2 < ∥Du∥2 + ε̃ . Therefore Σ(h, u) is a non-

empty interval in R .

Moreover, let us consider σ ∈ Σ(∞, u) and let us choose u+ ∈ K∞ according to

the definition of Σ(∞, u) . Let (u+h ) be a sequence converging to u+ in H1
0 (Ω) with

(u+h ) ∈ Kh . Then it is readily seen that σ ∈ Σ(h, v) for every (h, v) sufficiently close to

(∞, u) in D .

Now it is easy to see that, for every (h, u) ∈ D and for every σ ∈ Σ(h, u) , we have

σ ∈ Σ(k, v) whenever (k, v) is sufficiently close to (h, u) in D . Therefore there exists a

continuous function σ : D → ]0,+∞[ such that σ(h, u) ∈ Σ(h, u) .

For every (h, u) ∈ D let us denote by F(h, u) the set of u+’s in Kh such that∫
Ω
u(u+ − u)dx ≥ σ(h, u) , ∥u+ − u∥2 ≤ ε̃ , ∥Du+∥2 ≤ ∥Du∥2 + ε̃ .

Then F(h, u) is a non-empty closed convex subset of H1
0 (Ω) .

Let (∞, u) ∈ D , u+ ∈ F(∞, u) and ε > 0 . Let û+ ∈ K∞ be related to σ(∞, u) , as

in the definition of Σ(∞, u) . By substituting û+ with (1− t)u++ tû+ for some t ∈]0, 1[ ,

we can suppose that ∥û+−u+∥ < ε
2 . Let (û

+
h ) be a sequence converging to û+ in H1

0 (Ω)

with û+h ∈ Kh . Then it is readily seen that ∥û+h − u+∥ < ε and û+h ∈ F(h, v) for every

(h, v) sufficiently close to (∞, u) in D .

Now it is easy to see that the multifunction {(h, u) 7−→ F(h, u)} is lower semi-

continuous on D . By Michael Selection Theorem [2, Theorem (1.11.1)] there exists a

continuous map η : D → H1
0 (Ω) such that η(h, u) ∈ F(h, u) and the assertion follows.

Lemma 4.8 Let b ∈ R and ε̂ > 0 . Let us assume that K∞ and Sρ are not tangent at

any point of f̃ b+ε̂∞ .

Then there exists a function η : D → H1
0 (Ω) as in Theorem (4.7) such that

∥η(∞, u)∥ < ∥u∥ + ε̂ ,

f̃∞(v) < f̃∞(u) + ε̂

whenever u ∈ f̃ b+ε̂∞ , t ∈ [0, 1] and

v = ρ
(1− t)u+ tη(∞, u)

∥(1− t)u+ tη(∞, u)∥2
.

14



Proof. By contradiction, let us assume that there exist uj ∈ f̃ b+ε̂∞ , tj ∈ [0, 1] and a

sequence of continuous functions ηj : D → H1
0 (Ω) such that

∥ηj(∞, uj)− uj∥2 ≤
1

j
,

∥ηj(∞, uj)∥ ≤ ∥uj∥ +
1

j

and

f̃∞(vj) ≥ f̃∞(uj) + ε̂

with

vj = ρ
(1− tj)uj + tjηj(∞, uj)

∥(1− tj)uj + tjηj(∞, uj)∥2
.

Because of (vii) , up to a subsequence, (uj) is weakly convergent in H1
0 (Ω) to some

u ∈ K∞ ∩ Sρ . Hence we have that ηj(∞, uj) ⇀ u in H1
0 (Ω) . It follows that

[(1− tj)uj + tjηj(∞, uj)] ⇀ u in H1
0 (Ω) , hence vj ⇀ u in H1

0 (Ω) . Moreover, from

∥(1− tj)uj + tjηj(∞, uj)∥2 ≥ ρ we deduce that vj ∈ K∞ ∩ Sρ . Since

lim sup
j

(∥vj∥ − ∥uj∥) ≤ 0 ,

from assumption (iii) we deduce that

lim sup
j

(
f̃∞(vj)− f̃∞(uj)

)
≤ 0 .

Therefore, for j sufficiently large, f̃∞(vj) ≥ f̃∞(uj) + ε̂ implies a contradiction and the

assertion follows.

For every h ∈ N let us denote by πh : H1
0 (Ω) → Kh the orthogonal projection in

H1
0 (Ω) on the closed convex set Kh .

Lemma 4.9 Let b ∈ R , ε̂ > 0 and R > 0 with f̃ b∞ ⊆ BR (0) . Assume that K∞ and Sρ

are not tangent at any point of f̃ b+ε̂∞ . Let η : D → H1
0 (Ω) be a map as in the previous

lemma. Moreover, if u ∈ f̃ b+ε̂∞ and πh(η(∞, u)) ̸= 0 , let

Ph(u) = ρ
πh(η(∞, u))

∥πh(η(∞, u))∥2
.

Then there exists h ∈ N such that the following facts hold:

(a) for every h ≥ h the sets Kh and Sρ are not tangent at any point of f̃ b+ε̂h ∩

BR+ε̂ (0) ;
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(b) for every h, k ∈ N with h, k ≥ h and u ∈ f̃ b+ε̂k ∩ BR+ε̂ (0) we have

∥πh(η(k, u))∥2 > ρ ,

f̃h

(
ρ

πh(η(k, u))

∥πh(η(k, u))∥2

)
< f̃k(u) + ε̂ ;

(c) for every h ≥ h , u ∈ f̃ b∞ and t ∈ [0, 1] we have

∥Ph(u)∥ < ∥u∥ + ε̂ ,

∥(1− t)η(∞, P∞(u)) + tπ∞(η(h, Ph(u)))∥2 > ρ ,

f̃∞

(
ρ

(1− t)η(∞, P∞(u)) + tπ∞(η(h, Ph(u)))

∥(1− t)η(∞, P∞(u)) + tπ∞(η(h, Ph(u)))∥2

)
< f̃∞(u) + 2ε̂ .

Proof. Let us prove property (a). By contradiction, let us assume that there exist

hk → +∞ and uk ∈ f̃ b+ε̂hk
∩ BR+ε̂ (0) such that Khk and Sρ are tangent at uk. Since

0 ∈ Khk , we have ∫
Ω
uk(v − uk) dx ≤ 0 ∀v ∈ Khk .

Up to a subsequence, (uk) is weakly convergent in H1
0 (Ω) to some u ∈ f̃ b+ε̂∞ . Let

v ∈ K∞. Let (vh) be weakly convergent to v in H1
0 (Ω) with fh(vh) → f∞(v) . It follows

that, eventually, vh ∈ Kh . Therefore, for k sufficiently large, we have∫
Ω
uk (vhk − uk) dx ≤ 0 ,

which implies ∫
Ω
u(v − u) dx ≤ 0 :

a contradiction, because K∞ and Sρ are not tangent at u .

Let us prove property (b). First of all, by contradiction, let us assume that there

exist hj → +∞, kj → +∞ and uj ∈ f̃ b+ε̂kj
∩ BR+ε̂ (0) such that∥∥∥πhj (η(kj , uj))∥∥∥2 ≤ ρ .

Up to a subsequence, (uj) is weakly convergent in H1
0 (Ω) to some u ∈ f̃ b+ε̂∞ . Con-

sequently, (η(kj , uj)) is strongly convergent in H1
0 (Ω) to η(∞, u). Let (vh) be weakly

convergent to η(∞, u) in H1
0 (Ω) with fh(vh) → f∞(η(∞, u)) . From assumption (iv) we

deduce that (vh) is strongly convergent to η(∞, u) in H1
0 (Ω) . For j sufficiently large, we

have that ∥∥∥πhj (η(kj , uj)) − η(kj , uj)
∥∥∥ ≤ ∥vhj − η(kj , uj)∥ .
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Therefore πhj (η(kj , uj)) → η(∞, u) in H1
0 (Ω), which implies ∥η(∞, u)∥2 ≤ ρ . This is

absurd, as
∫
Ω u(η(∞, u)− u)dx > 0 .

Now, by contradiction, let us assume that there exist hj → +∞, kj → +∞ and

uj ∈ f̃ b+ε̂kj
∩ BR+ε̂ (0) such that

f̃hj

(
ρ

πhj (η(kj , uj))

∥πhj (η(kj , uj))∥2

)
≥ f̃kj (uj) + ε̂ .

Up to a subsequence, (uj) is weakly convergent in H1
0 (Ω) to some u ∈ f̃ b+ε̂∞ . As in the

previous argument, it follows πhj (η(kj , uj)) → η(∞, u) in H1
0 (Ω). Since

ρ
πhj (η(kj , uj))

∥πhj (η(kj , uj))∥2
∈ Khj ∩ Sρ ,

from assumption (v) we deduce that

f̃hj

(
ρ

πhj (η(kj , uj))

∥πhj (η(kj , uj))∥2

)
→ f̃∞

(
ρ

(η(∞, u))

∥(η(∞, u))∥2

)
.

Combining this fact with f∞(u) ≤ lim infj fkj(uj) , by Lemma (4.8) we get a contradic-

tion.

Let us prove property (c). Since ∥η(∞, u)∥ < ∥u∥ + ε̂ and 0 ∈ Kh , it is clear that

∥Ph(u)∥ < ∥u∥ + ε̂ . Now, by contradiction, let us assume that there exist hk → +∞,

uk ∈ f̃ b∞ and tk ∈ [0, 1] such that

∥(1− tk)η(∞, P∞(uk)) + tkπ∞(η(hk, Phk(uk)))∥2 ≤ ρ .

Up to a subsequence, (uk) is weakly convergent in H1
0 (Ω) to some u ∈ f̃ b∞ . As in the

proof of property (b) , we have that πhk (η(∞, uk)) → η(∞, u) in H1
0 (Ω). It follows

Phk(uk) → P∞(u) and η(hk, Phk(uk)) → η(∞, P∞(u)) in H1
0 (Ω). As in the proof of (b) ,

we get a contradiction.

Finally, by contradiction, let us assume that there exist hk → +∞, uk ∈ f̃ b∞ and

tk ∈ [0, 1] such that

f̃∞

(
ρ

(1− tk)η(∞, P∞(uk)) + tkπ∞(η(hk, Phk(uk)))

∥(1− tk)η(∞, P∞(uk)) + tkπ∞(η(hk, Phk(uk)))∥2

)
≥ f̃∞(uk) + 2ε̂ .

Up to a subsequence, (uk) is weakly convergent in H1
0 (Ω) to some u ∈ f̃ b∞ . As in the pre-

vious argument, we have (1− tk)η(∞, P∞(uk)) + tkπ∞(η(hk, Phk(uk))) → η(∞, P∞(u))

in H1
0 (Ω) . Therefore by assumption (v) and Lemma (4.8) we get a contradiction.
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Lemma 4.10 Let R > 0 , b ∈ R and ε̂ > 0 . Let us assume that f̃ b∞ ⊆ BR (0) and that

K∞ and Sρ are not tangent at any point of f̃ b+ε̂∞ .

Then there exists h ∈ N and, for every h ≥ h , two continuous maps

Ph : f̃ b∞ → Kh ∩ Sρ ∩ BR+ε̂ (0) , Qh : f̃ b+ε̂h ∩ BR+ε̂ (0) → K∞ ∩ Sρ

such that f̃h(Ph(u)) ≤ f̃∞(u) + ε̂ , f̃∞(Qh(v)) ≤ f̃h(v) + ε̂ for every u ∈ f̃ b∞ , v ∈

f̃ b+ε̂h ∩ BR+ε̂ (0) and such that Qh ◦ Ph : f̃ b∞ → f̃ b+2ε̂
∞ is homotopic to the inclusion map

f̃ b∞ → f̃ b+2ε̂
∞ by a homotopy H : f̃ b∞ × [0, 1] → f̃ b+2ε̂

∞ such that

∀(u, t) ∈ f̃ b∞ × [0, 1] : f̃∞(H(u, t)) ≤ f̃∞(u) + 2ε̂ .

Proof. Let η : D → H1
0 (Ω) be as in Lemma (4.8) and let h ∈ N be as in Lemma (4.9).

According to Lemma (4.9), for every h ∈ N with h ≥ h let us set

∀u ∈ f̃ b∞ : Ph(u) = ρ
πh(η(∞, u))

∥πh(η(∞, u))∥2
,

∀v ∈ f̃ b+ε̂h ∩ BR+ε̂ (0) : Qh(v) = ρ
π∞(η(h, v))

∥π∞(η(h, v))∥2
.

By Lemma (4.9) it is readily seen that Ph and Qh are well defined, continuous and satisfy

f̃h(Ph(u)) ≤ f̃∞(u) + ε̂ , f̃∞(Qh(v)) ≤ f̃h(v) + ε̂ for every u ∈ f̃ b∞ , v ∈ f̃ b+ε̂h ∩ BR+ε̂ (0) .

Now let us define H0 : f̃
b
∞ × [0, 1] → f̃ b+ε̂∞ by

H0(u, t) = ρ
(1− t)u+ tη(∞, u)

∥(1− t)u+ tη(∞, u)∥2
.

Then H0(u, 0) = u and, by Lemma (4.8), we have f̃∞(H0(u, t)) ≤ f̃∞(u)+ ε̂ . Essentially

in the same way, we can define H1 : f̃
b
∞ × [0, 1] → f̃ b+2ε̂

∞ by

H1(u, t) = ρ
(1− t)P∞(u) + tη(∞, P∞(u))

∥(1− t)P∞(u) + tη(∞, P∞(u))∥2
.

Thus, H1(u, 0) = H0(u, 1) and f̃∞(H1(u, t)) ≤ f̃∞(u) + 2ε̂ .

Finally, let us define H2 : f̃
b
∞ × [0, 1] → f̃ b+2ε̂

∞ by

H2(u, t) = ρ
(1− t)η(∞, P∞(u)) + tπ∞(η(h, Ph(u)))

∥(1− t)η(∞, P∞(u)) + tπ∞(η(h, Ph(u)))∥2
.

By Lemma (4.9), H2 is well defined, continuous, with f̃∞(H2(u, t)) ≤ f̃∞(u) + 2ε̂ .

Moreover, H2(u, 0) = H1(u, 1) and H2(u, 1) = Qh(Ph(u)) . The proof is complete.

Proof of Theorem (4.5). Let ε̃ > 0 be such that K∞ and Sρ are not tangent at any point

of f̃ c+ε̃∞ . Infact, by contradiction, let us assume that there exists uj ∈ f̃
c+ 1

j
∞ such that
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K∞ and Sρ are tangent at uj . Up to a subsequence, (uj) is weakly convergent in H1
0 (Ω)

to some u ∈ f̃ c∞ . We have that∫
Ω
uj(v − uj) dx ≤ 0 ∀v ∈ K∞

and, as j → +∞ , we obtain∫
Ω
u(v − u) dx ≤ 0 ∀v ∈ K∞ :

a contradiction, because K∞ and Sρ are not tangent at u .

Because of (vii) , there existsR > 0 such that f̃ c+ε̃∞ ⊆ BR (0) . Let h̃ ∈ N , R1, R2 > 0

with R < R1 < R2 be such that∪
h≥h̃

f̃ c+ε̃h

 ∩ BR2 (0)

 ⊆ BR1 (0) .

Now, by contradiction, let us assume there exist ε > 0 and hk → +∞ such that f̃hk has

no essential value in ]c− ε, c+ ε[. Without loss of generality, let us assume that ε < ε̃ .

Let a, b ∈]c−ε, c+ε[ with a < b. Let us prove that the pair
(
f̃ b∞, f̃

a
∞

)
is trivial. Let

[α′, α′′] be a neighbourhood of a and [β′, β′′] be a neighbourhood of b with β′′ < c + ε̃ .

Since f̃hk has no essential value in ]a, b[ , the pair
(
f̃ bhk , f̃

a
hk

)
is trivial by Theorem (2.6).

Let a′, a′′, b′, b′′ ∈ R be such that α′ < a′ < a < a′′ < α′′ and β′ < b′ < b < b′′ < β′′. For

every k ∈ N there exists a continuous function Kk : f̃
b′
hk

× [0, 1] → f̃ b
′′
hk

such that

Kk(u, 0) = u ,

Kk

(
f̃ b

′
hk

× {1}
)
⊆ f̃a

′′
hk
,

Kk

(
f̃a

′
hk

× [0, 1]
)
⊆ f̃a

′′
hk
.

Let ε̂ ∈ ]0, ε̃[ be such that α′ + ε̂ ≤ a′, a′′ + ε̂ ≤ α′′, β′ + ε̂ ≤ b′, b′′ + ε̂ ≤ β′′ and such

that R1 + ε̂ ≤ R2 .

Now let h, Ph and Qh be related to R1 , (b
′′ − ε̂) and ε̂ as in Lemma (4.10) and let

k ∈ N be such that hk ≥ max{h̃, h}. Let us define H : f̃β
′

∞ × [0, 1] → f̃β
′′

∞ by

H(u, t) = Qhk (Kk(Phk(u), t)) .

Of course H
(
f̃β

′
∞ × {1}

)
⊆ f̃α

′′
∞ and H

(
f̃α

′
∞ × [0, 1]

)
⊆ f̃α

′′
∞ . By Lemma (4.10) H(·, 0) :(

f̃β
′

∞ , f̃
α′
∞

)
→
(
f̃β

′′
∞ , f̃α

′′
∞

)
is homotopic to the inclusion map. Therefore the pair

(
f̃ b∞, f̃

a
∞

)
is trivial.

We conclude that c is not an essential value of f̃∞ : a contradiction.
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5 A more specific case

Throughout this section, Ω will denote a bounded open subset of Rn with n ≥ 3 . Let

(Kh) , h ∈ N , be a family of closed convex subsets of H1
0 (Ω) with 0 ∈ Kh . We assume

that (Kh) is convergent to K∞ in the sense of Mosco.

Let Ph : Ω×R → R , h ∈ N , be Carathéodory functions such that

(H1) for every ε > 0 there exists aε ∈ L1(Ω) such that

|Ph(x, s)| ≤ aε(x) + ε|s|
2n
n−2

for a.e. x ∈ Ω and all s ∈ R and h ∈ N ;

(H2) for a.e. x ∈ Ω we have

P∞(x, s) = lim
h
Ph(x, s)

uniformly on compact subsets of R ;

(H3) we have P∞(x, s) ≥ 0 for a.e. x ∈ Ω and all s ∈ R .

Finally, let (µh) be a sequence strongly convergent to µ∞ = 0 in H−1(Ω) .

Now define fh : H1
0 (Ω) → R ∪ {+∞} , h ∈ N , by

fh(u) =

{
1
2

∫
Ω |Du|2 dx +

∫
Ω Ph(x, u) dx − ⟨µh, u⟩ ∀u ∈ Kh

+∞ elsewhere
.

Lemma 5.1 The sequence (fh) satisfies all the conditions (i), . . . , (vii) of the previous

section.

Proof. Let (uh) be a sequence weakly convergent to u in H1
0 (Ω) . Up to a subsequence,

(uh) is convergent to u a.e. in Ω . For every ε > 0 , we have

Ph(x, uh) + ε|uh|
2n
n−2 ≥ − aε(x) .

From (H2) and Fatou’s Lemma it follows that∫
Ω
P∞(x, u) dx + ε

∫
Ω
|u|

2n
n−2 dx ≤ lim inf

h

∫
Ω
Ph(x, uh) dx + ε lim sup

h

∫
Ω
|uh|

2n
n−2 dx ,

hence ∫
Ω
P∞(x, u) dx ≤ lim inf

h

∫
Ω
Ph(x, uh) dx + ε sup

h
∥uh∥

2n
n−2
2n
n−2

.

By the arbitrariness of ε , we have∫
Ω
P∞(x, u) dx ≤ lim inf

h

∫
Ω
Ph(x, uh) dx .
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In a similar way, we can prove that∫
Ω
P∞(x, u) dx ≥ lim sup

h

∫
Ω
Ph(x, uh) dx ,

so that ∫
Ω
P∞(x, u) dx = lim

h

∫
Ω
Ph(x, uh) dx .

Therefore we have

lim
h

[∫
Ω
[Ph(x, u) − P∞(x, u)] dx − ⟨µh, u⟩

]
= 0

uniformly on bounded subsets of H1
0 (Ω) .

Let us consider

f̂h(u) =

{
1
2

∫
Ω |Du|2 dx +

∫
Ω P∞(x, u) dx ∀u ∈ Kh

+∞ elsewhere
.

It is easy to see that (f̂h) satisfies (i), . . . , (vii) . From Proposition (4.3) we conclude

that (fh) satisfies (i), . . . , (vii) .

As in the previous section, let us set

for ρ > 0 : Sρ =
{
u ∈ H1

0 (Ω) :
∫
Ω u

2 dx = ρ2
}
,

for any h ∈ N : f̃h := fh|Kh∩Sρ
.

Theorem 5.2 Let c ∈ R be an essential value of f̃∞ . Let us assume that K∞ and Sρ

are not tangent at any point of f̃ c∞ .

Then for every ε > 0 there exists h ∈ N such that for every h ≥ h the functional f̃h

has an essential value in ]c− ε, c+ ε[.

Proof. The assertion follows from Lemma (5.1) and Theorem (4.5).

Finally, let us mention that, in more particular situations, it is possible to give

sufficient conditions for nontangency and for the existence of essential values. Moreover,

it is possible to show that for any essential value c of f̃h there exists (λ, u) ∈ R×H1
0 (Ω)

such that
u ∈ Kh ∩ Sρ∫
Ω [DuD(v − u) + ph(x, u)(v − u)] dx ≥ λ

∫
Ω u(v − u) dx ∀v ∈ Kh

fh(u) = c

,

where ph(x, s) =
∂Ph
∂s (x, s) . For all this aspects, we refer the reader to [6, 10].
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[3] G. Čobanov, A. Marino and D. Scolozzi, Evolution equation for the eigenvalue

problem for the Laplace operator with respect to an obstacle, Rend. Accad. Naz. Sci.

XL Mem. Mat. 14 (1990), 139–162.

[4] J. N. Corvellec, M. Degiovanni and M. Marzocchi, Deformation properties

for continuous functionals and critical point theory, Topol. Methods Nonlinear Anal.

1 (1993), 151–171.

[5] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti

Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975), 842-850.

[6] M. Degiovanni and S. Lancelotti, Perturbations of even nonsmooth function-

als, Differential Integral Equations 8 (1995), 981–992.

[7] M. Degiovanni and M. Marzocchi, A critical point theory for nonsmooth func-

tionals, Ann. Mat. Pura Appl. (4) 167 (1994), 73–100.

[8] A. D. Ioffe and E. Schwartzman, Metric critical point theory 1. Morse regu-

larity and homotopic stability of a minimum, J. Math. Pures Appl., in press.

[9] G. Katriel, Mountain pass theorems and global homeomorphism theorems, Ann.
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