
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A watchdog processor to detect data and control flow errors / Benso, Alfredo; DI CARLO, Stefano; DI NATALE, Giorgio;
Prinetto, Paolo Ernesto. - STAMPA. - (2003), pp. 144-148. (Intervento presentato al convegno IEEE 9th International
On-Line Testing Symposium (IOLTS) tenutosi a Kos, GR nel 7-9 July 2003) [10.1109/OLT.2003.1214381].

Original

A watchdog processor to detect data and control flow errors

Publisher:

Published
DOI:10.1109/OLT.2003.1214381

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1499938 since:

IEEE Computer Society

A watchdog processor to detect
data and control f low errors
Authors: Benso A., Di Carlo S., Di Natale G., Prinetto P.,

Published in the Proceedings of the IEEE 9th International On-Line Testing Symposium, (IOLTS), 7-9
July 2003, Kos , GR.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1214381

DOI: 10.1109/OLT.2003.1214381

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

!Politecnico di Torino

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1214381
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1214381
http://dx.doi.org/10.1109/OLT.2003.1214381
http://dx.doi.org/10.1109/OLT.2003.1214381

A Watchdog Processor to Detect Data and Control Flow Errors

Alfredo Benso, Stefano Di Carlo, Giorgio Di Natale, Paolo Prinetto

Politecnico di Torino
Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24, I-10129, Torino, Italy
Phone +39-011-564-7007 – Fax +39-011-564-7099
Email: {benso, dicarlo, dinatale, prinetto}@polito.it

Abstract
A watchdog processor for the MOTOROLA

M68040© microprocessor is presented. Its main task
is to protect from transient faults caused by SEU’s
the transmission of data between the processor and
the system memory, and to ensure a correct
instructions’ flow, just monitoring the external bus,
without modifying the internal architecture of the
M68040©. A description of the principal procedures
is given, together with the method used for
monitoring the instructions’ flow.

1. Introduction
Electronic systems for military, avionic and

aerospace applications require high reliability and
availability [1] [2]. Fault-tolerance and Fault-
Avoidance have always been an essential attribute to
keep them working in harsh environments.

Radiations and electromagnetic interferences (EMI)
are typical causes of faults. EMI can enter a system in
two ways, through the system wiring harness or
directly into the electronic modules. The interference
gives rise to Radio Frequency (RF) currents and
voltages causing the system or module to
malfunction. EMI can be generated by two sources:
external EMI sources (from commercial broadcast
equipment or mobile telephones to Citizen's Band
radio) and internal modules that can generate high
frequency interferences transmitted through the
system wiring harness or radiated to other modules.
The amplitude of these fields range from a few volts
per meter to a reported 200 V/m measured on public

roads in the UK [3]. The effects of these noises do
not damage any component, but temporary change
the state of the system. This type of faulty behavior is
called Transient Fault [4]. Because of their random
and non-recurring nature, transient faults are difficult
to detect and isolate, hence they become a source of
major concern, especially in critical real-time
applications.

The use of high integration technologies in safety
critical systems imposes the designer to introduce on-
line error detection mechanisms to prevent the
catastrophic effects of radiations and electromagnetic
interferences.

Many solutions for on-line error detection and
correction have been proposed in literature. Mainly
they are classified into circuit level solutions based
on codes for memories, parity bits for data buses,
residue codes for ALU’s [5] and system level
techniques based on fault-tolerant data structures and
replication [6] [7]. All of these approaches are
effective in protect systems against transient errors
but usually introduce high overhead and require
major changes in the system layout making difficult
their use in commercial or already designed circuits.

An alternative solution is the use of so called
watchdog processors. A watchdog processor [8] [9]
is a small and simple coprocessor used to perform
concurrent system-level error detection by
monitoring the behavior of a main processor. Error
detection and correction by means of a watchdog is a
two phases process. In the first phase (setup phase)
the watchdog is provided with information about the
processor or process to be checked. During the
second phase (checking) it monitors the processor

and collects the relevant information concurrently.
Error detection is done by comparing the information
collected at run-time with the information provided
during the setup phase. The watchdog can be added
to any system without major changes.

This work focuses on transient errors in systems
based on the Motorola M68040© microprocessor.
This processor is used in many critical systems like
Automatic Traffic Control (ATC) of railways
systems. Instead of using high costs military
components or Triple Module Redundancy
techniques, a dedicated watchdog processor is used to
perform on-line system-level error detection. It
interacts with the processor through the system bus,
only. In order to detect and correct errors, the
watchdog monitors the bus transfers and forces the
processor to repeat unsuccessful transmissions. This
technique allows high reliability also in case of long
perturbations.

The paper is organized as follow: Section 2
describes the target fault model. Section 3 details the
mechanisms used into the watchdog to tolerate
different types of faults, whereas Section 4 gives an
overview of the watchdog implementation. At last,
Section 5 concludes the paper and presents the on-
going activities.

2. The Fault Model
In our work we deal with two main transient faults

sources: radiations and electromagnetic interferences.
The main effects of these sources are Single Event
Upset (SEU) and voltage or current glitches. The
SEU is one of the major sources of bit-flips in digital
electronics. A bit-flip is an undesired change in the
state of a memory cell. A SEU can cause the state of
a memory cell to change from 0 to 1 or 1 to 0.
Voltage and current glitches are noise induced on the
circuit’s interconnections that can lead to a
misinterpretation of a logic level. In a microprocessor
based systems these errors can be located in three
main areas:

x Memory Fault: is one of the most common
effects of noise in microprocessor systems. It
usually consists of a SEU appearing in a memory
location. Both program and data are stored in
memory and can be affected by these errors.

x Processor Fault: it is similar to the memory
fault. The internal state of the processor is altered
causing an erroneous execution of the program,
with secondary effects like memory data
corruption and incorrect operation of peripheral
circuitries. It is caused by a SEU in an internal
register of the processor.

x Bus Fault: these errors can be caused by voltage
or current glitches on the microprocessor I/O
pins or on the system buses. They result in
incorrect data transfer and, therefore, data
corruption during processing (see Figure 1).

Despite the different locations and causes of faults,
the error effects can be classified in two categories:

x Data Errors: they appear when the content of a
variable stored in memory or inside a
microprocessor register is altered.

x Control Flow Errors: they appear when the
content of a memory cell or a microprocessor
register storing an instruction is altered, and the
effect is the execution of an incorrect sequence
of instructions.

The Watchdog processor has been therefore
designed with the goal of tolerating faults responsible
of these two classes of errors.

Figure 1: An Incorrect Data Transfer

3. The Watchdog Processor
The main goal of the watchdog is to check the

correctness of the data exchanged between the
microprocessor and the external memory and to
implement a control flow checking mechanism in
order to guarantee the correct execution of a program.

The watchdog is fully transparent to the processor,
it is connected to the system bus, and monitors every
transfer directed towards and from the M68040©.
When it detects faults, it raises an interrupt in order to
stop the execution of the program and to inform the
processor that something is wrong.

The two main strategies that have been
implemented to address data and control flow errors

will be analyzed in the following sections. Section
3.3 describes the strategy used to detect bus faults.

3.1. Data protection

Data stored in memory can be affected by transient
faults during the execution of a program. To detect
and correct data values, the watchdog has an internal
memory where it stores a copy of the variables used
by the program. In particular:

x Each write operation of a variable performed by
the processor to the memory is intercepted on the
bus by the watchdog, which reads the value of
the variable and creates a copy of it (shadow
variable) inside its internal memory.

x Each read operation performed by the processor
is intercepted by the watchdog that checks
between the value on the bus and the shadow
value stored in its internal memory.

In this way every fault appearing in a variable
stored in the system memory is detected. Obviously it
is not possible to duplicate all the application
variables inside the watchdog; only a subset of them
can be duplicated through the watchdog mechanism.
This subset is composed by the most critical variables
(MCV) of the program. A variable is defined critical
if, when affected by a fault, it can cause the program
to terminate correctly but producing wrong results.
The methodology to select the best subset of critical
variables is explained in [10]. The addresses of the
MCVs can be programmed in the watchdog before
starting the execution of the target application.

The size of the memory used to store the MCVs
allows trading-off between area overhead and
reliability.

3.2. Control flow checking

A bit flip in the application binary code stored in
memory or occurring during an instruction fetch may
cause a wrong execution of the program. Control-
flow checking has become a widely studied approach
to concurrently detect these classes of errors. The test
aims at detecting erroneous sequences of instructions
in a program execution [11] [12].

The main idea is to split the application program
into elementary blocks with single entry. A generic
program is represented by a so-called Flow Control
Graph (FCG) (Figure 2) in which each Branch Free
Block represents a sequence of consecutive
instructions without branches whereas each Control
Node represents a branch instruction.

V3

Block2
[b]

Block3
[c]

V5

Block4
[d]

End

Begin

Block1
[a]

Control Node

Branch Free Block

Figure 2: Control Flow Graph

To check the control flow of a program the
watchdog has solve two problems:

x Verify that the instructions inside a branch free
block are correctly executed;

x Check the branch free blocks are executed in a
correct order.

The first problem is addressed by calculating a
signature for each branch free block. It is computed
signing the opcode of the instructions of the branch
free block. A golden signature is calculated off line
and stored in the watchdog internal memory. At run
time the watchdog computes again the signature of
each block and compares it with the golden one.

The second problem has been addressed in [13].
The authors proposed a signature scheme based on
the regular expression formalism. The set of the
allowed sequences of branch free blocks is
represented using a complex regular expression. Each
branch free block is coded using a label. The
sequences of labels obtained by the execution of the
branch free blocks are valid if they are recognized by
the regular expression. The watchdog, by inspecting
the sequence of instruction addresses on the address
bus, is able to build the sequence of executed branch
free block (i.e. the sequence of labels representing the
blocks) and to check its correctness. It stores in its
internal memory a table mapping each label with the
address of the first instruction of the related branch
free block.

If one of the two signature mechanisms detects an
error, the watchdog sends to the M68040© a bus
error acknowledgment and updates its status register
on an idle state, waiting for a reset.

3.3. Bus protection

Data Protection and Control Flow Checking are

able to detect faults occurring on the system bus but
they require modifying the target application. This is
sometime not possible. To allow flexibility, the
watchdog is able to implement a general bus
protection strategy based on Automatic Repeat
Request (ARR). Transient error occurring on the bus,
are supposed to be extinguished until a limited
number of bus cycles. When the ARR is activated,
the watchdog starts to monitor the bus transfers
between the M68040© and the system memory and
ask the processor to repeat each transmission multiple
times. The Watchdog stops to request new transfers
when at least two consecutive transmissions return
the same data. The watchdog receives all the
information necessary to implements the ARR from
the external bus and from the M68040© and not need
any modification of the application.

The ARR introduces a very high time overhead.
Nevertheless it can be activate only when the target
application cannot be modified or the level of
reliability need to be very high. Furthermore the
flexibility of the watchdog allows activating the ARR
only for very critical portion of the program allowing
to lower the final time overhead.

4. Watchdog implementation
The watchdog has been described in VHDL. It

receives all the information necessary to operate from
the external bus and from the M68040©. The
M68040©’s pins directly connected to the watchdog
are TS (Transfer Start), TA (Transfer Acknowledge),
and TEA (Transfer Error Acknowledge).

Every executable program that wants to make use
of the watchdog has to transfer to its internal memory
all the addresses of the chosen set of MCVs, the
signatures and the structure of the program control
flow. After that, the watchdog is initialized and the
execution of the target application can begin to be
monitored.

The watchdog is able to monitor the following
operations:

x Read and Write of generic data (no MCV or
signature): the watchdog realizes that the data the
M68040© is reading or writing is not a MCV or
a signature and so it works in order to ensure the
correctness of the data transfer, without
involving the data stored in its internal memory;

x Read and Write of MCV: when the watchdog
realizes the data to be read is a MCV, after
activating the bus-switch, it forces on the
external bus the datum stored into its shadow
memory. Whenever a MCV is to be written, the

watchdog updates the MCV of the internal
shadow memory. In both the two cases, if the
watchdog detects an error at the very moment the
M68040© reads or writes a datum, it sends to the
processor an error signal, recognized as a bus
error;

x Check of signature (control of instruction flow):
In the last case, if the data (correctly read) is a
signature, it is subjected to a second check. The
signature just read must be one of the possible
ones, taking into account the whole structure of
the program previously stored into the shadow
memory. Only if the read signature is not one of
the possible ones that can be received, the
watchdog sends an error acknowledgment to the
M68040© and stops working, otherwise it
continues regularly.

To evaluate the fault tolerance of the system, a
testing program has been written. The testing
program is endowed with a setup phase in which the
MCVs are set and the signatures are properly chosen.

The execution length of the testing program is of
30,22us, but this value is increased by the presence of
the watchdog up to 50,22us due to the RETRY
cycles. Faults are injected on the bus and the system
memory by means of simulation.

All the simulations differ each other for the
duration of the single fault (fault’s length), ranging
from 10ns to 200ns.

The fault injector is able to understand different
execution of the testing program. A Wrong Execution
is caused by undetected errors that can either modify
the expected results or stop the execution of the
program. Detection means that an error that has just
occurred cannot be corrected by the watchdog.
Correct Execution includes both those executions not
affected by the injection of faults and also those
executions in which errors have been corrected.

Figure 3 shows the whole trend of the testing
program’s results w.r.t. the injection’s length.

Figure 3: Fault injection results

5. Conclusions
This paper presented a watchdog processor for the

M68040© microprocessor. The main goal of the
proposed architecture is to detect errors caused by
radiations and electromagnetic interferences. The
watchdog interacts with the processor through the
system bus, in order to check the integrity of the most
critical variables and the correct control flow of the
executed application. We are currently finalizing the
design in order to have an optimal synthesizable
description of the circuit. The following step will be
the implementation of fault injection experiments to
demonstrate the capabilities of the implemented
mechanisms.

6. References
[1] B. W. Jonson, “Design and Analysys of Fault Tolerant

Digital Systems”, Addison Wesley Publishing
Company 1989.

[2] D. K. Pradhan, “Fault-Tolerant Computer System
Design”, Prentice Hall, 1996.

[3] L.S Blanchard and D. Whitehead, “A study to assess
the possible effects on radio based services of
electromagnetic emission from the proposed increase
of electrically powered public ad private transport”,
Deliverable 5: Final Report, UK Transport Research
Laboratory, October 2000.

[4] M. Z. Ziaullah Khan and J. G. Tront, “Detection of
upset induced execution errors in microprocessors”,
IEEE International Test Conference, 1991, pp. 82–86

[5] D. P. Siewiorek, R. S. Swarz, Bedford, “The Theory
and Practice of Reliable System Design”, MA:

Digital, 1982, ch. 3.

[6] R. E. Staehler, “Organization and objectives”, Bell
Syst. Tech. J., vol. 56, pp. 119-124, Feb. 1977.

[7] A. L. Hopkins, T. B. Smith, J. H. Lala, “FTMP – A
highlyreliable fault-tolerant multiprocessor for
aircraft ”, Proc. IEEE, vol 66, pp. 1221-1239, Oct
1978.

[8] A. Mahmood, E. J. McCluskey, “Concurrent error
detection using watchdog processors-a survey”, IEEE
Transactions on Computers, Volume: 37 Issue: 2 , Feb
1988 Page(s): 160-174

[9] D. J. Lu, “Watchdog processor and VLSI”, National
Electronic Conferenc, Volume: 34, Chicago, Oct 27-
28, 1980, Page(s): 240-245

[10] A. Benso, S. Chiusano, P. Prinetto, L. Tagliaferri, A
C/C++ Compiler for Dependable Applications, The
International Conference on Dependable Systems and
Networks (FTCS-30), New York (NY), USA, June
2000, pp. 71-78

[11] S. S. Yau, F. Ch. Chen, “An Approach to Concurrent
Control Flow Checking”, IEEE Transaction on
Software Engineering, Vol. SE-6, No. 2, pp. 126-137,
1980.

[12] R. Leveugle, T. Michel, G.Saucier, “Design of
Microprocessors with Built-In On-Line test”, 20th
International Symposium on Fault-Tolerant
Computing (FTCS-20), pp. 450-456, 1990.

[13] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, L.
Tagliaferri, Control-Flow Checking Via Regular
Expressions, IEEE Asian Test Symposium (ATS
2001), Kyoto (J), November 2001, pp. 299-303

