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Wavelet-Based Adaptive Solution for the
Nonuniform Multiconductor Transmission Lines

S. Grivet-Talocia and F. Canavero,Member, IEEE

Abstract—A time-domain technique for the solution of arbi-
trary nonuniform multiconductor transmission lines (NMTL’s)
is presented. The technique is based on a weak formulation
of the NMTL equations obtained through spatial expansion of
the voltage and current vectors into biorthogonal wavelet func-
tions. Wavelets allow adaptive representations of the solution by
using few expansion coefficients, with any fixed approximation
order. The set of significant expansion coefficients is determined
automatically from the solution, which can be computed very
efficiently. A numerical example illustrates the high adaptivity of
the method.

Index Terms—Distributed parameter circuits, multiconductor
transmission lines, time domain analysis, wavelet transforms.

I. INTRODUCTION

M ANY interconnections of practical interest are char-
acterized by cross sections which are not translation-

invariant. Examples can be impedance matching networks or
cables in complex geometries, like automobiles or airplanes.
The nonuniform multiconductor transmission lines (NMTL’s)
represent a good model for the simulation of the electrical
behavior of these structures, avoiding the need for full-wave
simulations based on method of moments (MoM), finite differ-
ence time domain (FDTD), or finite-element method (FEM).
This applies of course only when the longitudinal variations
are not too large, so that the quasi-TEM mode assumption
remains applicable.

This letter presents a novel method for the transient simula-
tion of arbitrary lossy NMTL structures. The method is based
on a weak formulation of the NMTL equations, which leads
to a class of numerical schemes of different approximation
order according to the particular choice of some trial and
test functions. We will use wavelet functions because the
waveforms of high-speed digital signals can be represented
with small approximation errors and very few expansion
coefficients in a wavelet basis. The optimal sparsity of wavelet
representations is indeed a well-known result from the theory
of nonlinear approximations [1]. As the spatial domain is
intrinsically bounded, we will use biorthogonal boundary
adapted wavelets constructed from B-spline functions. The
details of this construction can be found in [2], while the main
properties are listed in the next section.

The main advantage of the numerical scheme is that the
representation of the solution is automatically adapted when
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time advances. Given a fixed accuracy, the solution is stored
with the fewest possible wavelet expansion coefficients, which
are the only ones used for the actual calculations. This results
in a small computational effort in the determination of the
solution compared to intrinsically nonadaptive methods like
FDTD. In addition, the weak formulation of the NMTL
equations allows the treatment of arbitrary lines with even
varying phase speed. The accuracy of other methods like
FDTD is severely limited for such structures by numerical
dispersion.

II. WAVELET BASIS

Given a function defined on a domain we
can introduce a sequence of approximation spaces

indexed by arefinement level Increasing values of define
better and better approximations of the initial function
In the following, the levels and define the coarsest and
finest approximations, respectively.

The basic idea behind wavelets is to express the approxi-
mation through ahierarchical representation, obtained by
decomposing the space into a coarse approximation space

plus some detail spaces :

(1)

The basis functions of these detail spaces are called
wavelets, while the basis functions of the approxima-
tion spaces are calledscaling functions. Note that these
functions are labeled by two indexes, the first representing
the refinement level and the second distinguishing different
functions at the same level.

The advantage of this decomposition is that a good approx-
imation of can be obtained by simply adding to a coarse
approximation some detail functions. However, not all
the details need to be added, but only those leading to an
improvement in the approximation error. The theory shows
that the location and the number of needed details can be
automatically determined by looking at the magnitude of the
wavelet expansion coefficients. In summary, we will use the
representation

(2)
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where few coefficients are effectively used in the super-
position. The cutoff criterion is absolute thresholding, i.e., a
term is retained only if The particular value of
tunes the accuracy of the representation.

The scaling functions and wavelets can be orthogonal, with
the decomposition of (1) obtained through orthogonal sums.
This setting is widely used in the literature [3]. However,
it can be shown that orthogonal wavelets cannot be at the
same time symmetric and compactly supported [4]. Symmetry
is convenient for the implementation of numerical schemes,
while a compact support is essential when complicated bound-
ary conditions are to be enforced. These two features can be
recovered if orthogonality is released in favor of the more
general bi-orthogonality [4]. This requires to introduce dual
scaling functions and wavelets mainly used for the
computation of the expansion coefficients in (2).

III. M ATHEMATICAL FORMULATION

Let us consider the NMTL equations

(4)

with and indicating the voltage and current
vectors at location and time The line is assumed to
have conductors, and the per-unit-length parameters

and are matrices whose entries
are arbitrary functions of the space variableWithout loss
of generality we will consider the length of the line to be
normalized, i.e., For simplicity, the line is supposed
here to be terminated by Thévénin loads

(5)

The approximate voltages and currents along the line are
sought for in terms of expansion coefficients in the hierarchical
basis functions of (2). We collect all these coefficients into
the vector Testing the equations with the dual scaling
functions and wavelets leads to a set of ODE’s
representing the spatial discretization of the original NMTL
equations. A straightforward substitution allows to incorporate
the load equations (5) in the system by eliminating the border
voltage coefficients in favor of the border current coefficients.
This operation is only possible when the basis functions
are boundary adapted [5]. The final system of ODE’s, after
explicitation of the time derivatives, reads

(6)

This can be solved with a suitable integration method. We
used here a fifth-to-sixth-order Runge–Kutta scheme [6].

The typical structure of the system matrixis depicted in
Fig. 1. This matrix is highly sparse. In addition, the arrayis
also highly sparse, because many of the wavelet coefficients
result below the thresholdand are disregarded. Therefore, the
product can be computed very efficiently with an optimized
code.

Fig. 1. Structure of the system matrix��� stemming from the wavelet spatial
discretization of the NMTL equations.

Fig. 2. Voltage at the left (solid line) and right (dashed line) terminations of
a line with exponentially decreasing phase speed.

IV. NUMERICAL RESULTS

A validation of the TDSE method through a detailed anal-
ysis of the approximation errors can be found in [5] and [7],
and will not be repeated here. This section shows instead
the simulation of a lossless line with nonuniform propagation
speed in order to point out the high adaptivity of the proposed
scheme. The (normalized) per-unit-length parameters are as
follows:

H/m F/m

These parameters lead to an exponentially increasing nom-
inal characteristic impedance (from 1 up to 2 and to an
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Fig. 3. Location of the significant voltage wavelet coefficients for a line with
exponentially decreasing phase speed.

exponentially decreasing nominal phase speed

We consider a nonmatched line with nominal reflection
coefficients at the left and right ends equal to
and respectively. With these load conditions, the
input voltage pulse undergoes significant reflections at the
line ends. The voltage waveform used in the following is a

1-V step function with rise time equal to 0.3 s. The resulting
voltages at the left and right terminations are plotted in Fig. 2,
while the location of the significant wavelet coefficients (using
a threshold ) is plotted in Fig. 3. It should be
noted that these coefficients trace the characteristic curves of
the transmission line equations, tracking the location of the
singularities (i.e., the points where the derivative of voltage
and current is discontinuous). These curves are significantly
bent, with a tangent at a fixedequal to The figure
clearly shows the sparsity in the overall representation of the
solution and the high adaptivity of the method.
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