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Abstract

An analytic approach for the evaluation of the fractal dimension is presented and applied
to band-limited 1/f% noise. High and low cutoff frequencies are shown to affect the scaling
exponent, which is time-scale dependent. Asymptotic expansions of the fractal dimension are
derived and compared to numerical estimations.

Keywords: 1/f* noise. Fractal dimension. Structure functions. Self-affinity.

*Additional affiliation: Science Systems and Applications, Inc. (SSAI), 5900 Princess Garden Parkway, Lanham,
MD, 20706, USA. E-mail: grivet@omar.gsfc.nasa.gov, fax: (301)286-1762.



1 Introduction

The ubiquity of processes with 1/f“ spectrum is well established. When looked at in the time
domain, these signals are very irregular and present details in a wide range of time scales. This
is the main reason that the interest in their fractal characterization has been growing during the
last years. The fractal geometry is indeed a natural framework for the description of jagged and
crinkled curves, as pointed out by Mandelbrot [1].

The main observable which can be associated with a fractal object (hereafter we will indicate
with fractal object a curve lying in the plane) is the fractal dimension D [2], a quantitative measure
of its space-filling properties. The fractal dimension is usually defined [3] as the scaling exponent
of the number of e-balls needed to cover the set with their radius. If the curve is the graph of a
function, as in the case of a time series, another parameter can be used to describe its structure,
the exponent H, which is associated with the scaling of the structure functions of the time-delayed
signal (see Section 2). It can easily be shown [4] that this exponent is related to the fractal
dimension through D = 2 — H., and to the spectral logarithmic slope through o = 1 + 2H. The
latter expression has been widely used in modelling the fractional Brownian motion since the work
of Mandelbrot [5].

Thereafter, the fractal dimension has been proposed as an alternative tool for the description
of 1/ f* signals [6]. The main problem arising from this approach is that numerical estimations of
fractal dimension are generally biased, even if many algorithms have been proposed and used so
far [7, 8, 9].

A recent paper by Theiler [10] has addressed the problem of the evaluation of the correlation
dimension for 1/f® processes, introducing low and high frequency cutoffs to ensure that the total
power does not diverge to infinity. Moreover they are intrinsic in every finite-length and sampled
time series. As an intermediate result, Theiler evaluated the theoretical exponent H in three
different scaling regimes induced by the limited band of the signal.

In this work we will consider the same process with a band-limited 1/f% power spectrum,
and will further investigate its fractal properties. We will show that the exponent H(T'), which
describes the scaling of the signal in a restricted time scales range, is not constant with 7', because
of corrective terms due to the frequency cutoffs. The zeroth order approximation coincides with the
values obtained by Theiler. Higher order asymptotic expansions of H(7') will be found for values
of a € (0,4), and will be compared to numerical estimates. Our results explain the discrepancies
between theoretical models and numerical results found by Fox [7] and Higuchi [8], and can be used
to correct the raw biased estimates of the scaling exponents.



2 Evaluation of the scaling exponents

2.1 Power Spectrum and H(T)

We consider a continuous process z, characterized by a power spectrum P(f). The exponent H is
defined (see Ref. [11], or Ref. [2] with other notations) as

ot = (|lor —wor]?) ~ T, (1)

and describes quantitatively the degree of irregularity of the curve (¢,z;). The quantity o# is called
(second order) structure function [12]. Even if many models have been proposed for generating and
describing multi-affine curves (see Refs. [13, 14] and Ref. [12] for applications to geophysical data),
we will concentrate on mono-affine fractals (i.e. fractional Brownian motion traces), for which the
qth order structure function has a linear scaling exponent with respect to ¢: (|z; — z;_7|?) ~ TH.
This allows us to link the spectral slope (related to the second order structure function) and the
graph dimension (related to the first order one) to the only parameter H.

The allowed values for the exponent are 0 < H < 1. If H — 0 the o statistic does not depend
on T and the process is delta-correlated. If H — 1 the process is smooth, while in the case H = 1/2
we have a mono-dimensional random walk. Mandelbrot and Van Ness [5] introduced this exponent
to characterize fractional Brownian motion, and showed that the corresponding power spectrum
scales with frequency according to 1/f. The relation between « and H is well known:

a=1+2H. (2)

As noted by Theiler [10] a pure 1/ f* spectrum is physically impossible, because the total power
of the process would be infinite. Therefore it is necessary to introduce a low frequency cutoff fj
and a high frequency cutoff f; in order to describe real signals (we will assume fy < f; to insure
a sufficiently long scaling range). These two cutoff frequencies can be introduced explicitly with
bandpass filtering, but every real time series has implicit frequency cutoffs, due to finite length and
sampling. This case will be discussed in section 3.

We will consider hereafter a signal characterized by a power spectrum given by:

P(f) = fO_av f S f07
= f—oz7 f0<f<f17 (3)
= 07 fol

This insures that the variance is finite and well defined:
(@) = [ PUdr < . (4)

Given the power spectrum (3), it is straightforward to write an expression for the variance o2 of
the delayed signal. We have:



of = (v = 2-1)?) = 2(af) = 2wereg) = 2(2f)[1 - AT)], (5)
where A(T) is the autocorrelation function of the process, and can be expressed as the inverse
Fourier transform of the power spectrum. The expression for o is then:

sin(27 fol')

a%=4AmPUhm%mﬁWVIZﬁW<L‘ 27 foT

bil
)+4/ Fosin?(x fT)df.  (6)
Jo
The asymptotic behavior of o has been evaluated by Theiler [10], using the same model of the
spectrum. He showed that

ar T7 T<<1/f17

~ T AT <1 fo, (7)
~ const, T > 1/fo,

from which the correct fractal scaling can be noted in the intermediate time range. From these
expressions we can see that the exponent H is dependent on the time 7', and cannot be considered
a global measure over all time scales. Moreover, from (6) we know that, for fixed a, the relation
H, = H,(T) is smooth. In the following we will further investigate this relation, showing that the
transition between different scaling regimes affects the evaluation of the exponent H. To emphasize
the time-scale dependence, we define the function H(7') as the logarithmic derivative of o7p:

T d

H@U:Z%-Eﬂf (8)

This can be interpreted as the local slope of o7 when plotted in a double logarithmic plot (a similar
definition was introduced by Higuchi [8]). The scale dependence of the fractal dimension can be
easily obtained through D(T) =2 — H(T), so we will restrict our attention to the exponent H(T).
In the following we will evaluate the function H(7') in the three different regimes investigated by
Theiler (T'< 1/ f1, 1/fi < T < 1/fo, T > 1/ fo), and we will show how the two cutoff frequencies
introduce corrective terms to the theoretical values

H = 0, 0<ac<l,
= a-1), 1<a<s3, (9)
1, 3<a<4

2.2 Short time scales: T'< 1/ f;

The argument of the sine functions in (6) is small, being £ = 7 fT < 1, Yf € [ fo, f1]. Consequently
we can approximate the integral using the expansion sin?¢ ~ €2 — ¢4/3, and the other term using

(1 —sin&/&) ~ €2/6 — £*/120. From (6) we obtain, if a # 3,



11—« 1 o 11—« 11—«

2 N - 0
op ~ g (2n T )? —3(3_ )(2 T fol')? — m@ T ) + 6005 —a)

(2rfoT)".  (10)

Taking the logarithmic derivative as indicated in (8) we have

H(T) ~ (f% ST - S m T — e (ar T 4 S (o foT ))

fi=a afl=a fi=a -1 (11)
< (S AT - SR RTY - g CrAT) + s en )

This expression can be simplified extracting the theoretical value H = 1, and considering that
fo € fi. The exponent H(T') then reads

33—« 1

H(T)~1- : (2w 1T)?. 12
( ) 12(5-0{) 1_g(f_0)3—oz ( fl ) ( )
3\ f1
The expression for H(T') in the case o = 3 can be easily obtained from (12) taking the limit for
a— 3,
2r 1T)?
Hoy s(T)~1— 1( LT) : (13)
4[4 +log(fi/ fo)]

2.3 Intermediate time scales: 1/f; < T < 1/fy

This is the proper fractal scaling regime. The graph (¢, z,) is fractal only if 1 < a < 3. If a > 3 the
high frequency contribution is too small to crinkle the curve, while if & < 1 the theoretical value of
H saturates at 0. However, we will investigate values of a ranging from 0 to 4, analyzing the three
different cases separately.

e Case l<a<3

For these values of the parameters the integral in (6) exists even when the integration interval
tends to (0,00). The low and high frequency cutoff contribution can easily be evaluated splitting
the integral into

sin(27 fol')

a—1 _ _
27Tf0T ) + 4T Io[Oé] Il IQ, (14)

op =2f 7 (1 —

where



Lla] = /OOO u™ sin?(ru)du (15)

JoT

L = 4Ta_1/ u™ sin®(wu)du (16)
0

I, = 4Ta_1/ u™ sin?(7u)du. (17)
nT

The first integral is not dependent on 7', and can be expressed in closed form [15] with the T
function

(1 - a)cos((1 - a)F)

Io[Oé] == PN2—agl-a

. (18)

This is also the term associated to the proper fractal scaling, while the other terms are corrections
depending on 7.
The integral I; can be approximated expanding the sine function for small values of the argument

foT 4 11—« 11—«

I~4Ta—1/ 22=0 _ T oy = SO opp 2 IO oy, 19
1 ; [72u vt du = (27 foT) 12(5_&)(7#0) (19)

The integral I, can be approximated using the identity sin?¢ = [1 — cos(2¢)]/2 and integrating by
parts. The most significant terms are

1o 1 sin(2w f1T") cos(2m f1T')
L~ 2 {a—1+ 2r 1T - (27 f1T)? }

Substituting (19) and (20) in equation (14) and expanding the first term for small arguments, we

(20)

find the approximate expression for the variance of the delayed signal,

11—« 11—«

« «
35 2T G SR

2117 5 1o sin(27 f1T)
1 -« L 2 1T

o2~ AT 'I[a] -

. (21)

Taking the logarithmic derivative as indicated in (8) and extracting the theoretical value (a —1)/2
we obtain the scaling exponent

a—1
2

H(T) ~ n {(fo/fl)a‘l(l ~ cos(2n AiT)) - éa(QﬂfoT)z n ia(zﬂfoT)‘*}
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X ll E - (%)a_ —2T(1 — a)sin(an /2)(27 foT)*! — ﬁ(QﬂfOT)Q
+760(5a_ a)(%foT)“] _ (22)

This is valid if 1 < a < 3, a # 2. If @ — 2 the I' function has a singularity, cancelled by the zero
of the sine function. In this case we have

L, (Jo/ J1)(1 = cos(2x /iT)) — 327 foT)* + g5(27 foT )" ‘

Ho—a(T) ~ 2 —2fo/ fi + (27 foT) = 2(27 foT')? + 55(27 foT')*

(23)

e Case 3<a<4

In this case the expression (6) does not converge if the integration interval goes to (0, 00) because
of the singularity in the origin. The convergence for f — oo is instead rather fast, so the terms due
to high frequency cutoff can be neglected, and therefore we will set f; = co. The equation (6) can
be rewritten as

2 1—a Sin(QﬂfoT)) 2f5” 1-a
=2 1- -2 I 24
ot =2 (1- )+ 2 o, (24)
where
I3 = / u” % cos(27 fol'u)du. (25)
1
Integrating by parts the preceding expression twice we get:
2x foT)  2x foT sin(27 foT 27 foT')? e
I — cos(27 foT) N mfol'sin(27 foT) (27 foT) / W cos(2r foTu)du.  (26)
a—1 (a—1)(a—-2) (a—1)a—=2),

This operation has decreased by 2 the order of the singularity in the origin. The last integral can
be rewritten as

o0 o0 1
/ “cos(27 foTu)du = —— — 2/ *sin®(7 fol'w)du = o_3 214. (27)

It is now possible to extract the low frequency contribution splitting the integral and using Eq. (15)

I, = /OO *sin?(7 folw)du — /1 u? ™ sin?(7 foT'u)du =
0
= Iola=2)(fol)* > - Is. (28)



Finally the integral I5 can be approximated expanding the sine function for small arguments (the
first order is sufficient), obtaining

2
1y~ T (29)
Substituting (29), (27) and (25) in equation (24) we find
11—« 2
o3~ Zij {1 — cos(2m foT') + - 227rf0T sin(27 foT') + %—I—

812lo[a — 2] o (27 foT)*

R e (30
—a sin(27 fol')

+2f5 (1 T ) :

The argument of the trigonometric functions in (30) is small, so they can be replaced by their
fourth order McLaurin polynomials. The final approximated expression for o7 is

2 afy™® afy™® _ 161g[a — w2 f

T 3(a0— 3)(27rfoT)2 T 505 = a)(%fOT)4 (a— D)(a—2)

Taking the logarithmic derivative (8) and substituting expression (18) for Iyl — 2] we get

(foT)~1 (31)

(3 — a)l(1 — a)sin(ar/2)(27 foT)* ™3 + [a/60(5 — a)](27 foT')?
[a/3(a — 3)] = 2T(1 — a)sin(an/2)(27 foT)*=3 + [a/60(5 — a)](27 foT)?

H(T)~1+ (32)
Let us consider now the case o — 3%. The first two terms in the denominator have simple poles

with the same residues. The singularity can then be eliminated expanding these terms for a ~ 3.
The final result is

Hos(T) ~ 1+ —5 + 1527 foT)?
} 03 w(1) — log(27 foT ) + (27 foT)?’

where ¥ represents the logarithmic derivative of the I' function, ¥(z) = dInI'(z)/dz, and evaluated
in z =1 gives ¥(1) = —y ~ —0.577215. Note that the same result can be obtained taking the limit
for a« — 37 in Eq. (22).

(33)



e Case 0 < a<l1

In this case the contribution of the low frequency cutoff is small and can be easily evaluated
because of the convergence of (6) for f — 0. Expanding to the first order the sine function for
small arguments we obtain

0% ~ 2f % cos(2r f1')df — %(Qﬂ'foT)z. (34)
Using [16]
< _ I(1 - a)sin(af)
/0 % cos(2n fT)df = G 2’ (35)
we can write
9 11—« (1 - : s e 11—«
o3~ 1fi o ( (2:12)5111_1&042) +2 A f % cos(2n fT)df — ﬁ(Qﬂng)z. (36)

From this expression, integrating by parts, we find the approximate expression for o3,

sin(2r /1T) o o

(27Tf1 ) 3(3 — Oé)

), 2fi”
o ~ 1—

(27 foT')% (37)

17°T(1 = ) sin(ag)(QﬂflT) —2/7°

We can now evaluate the exponent H (7)),

H(T) ~ [(1—a)F(l—a)51n(a7r/2)(27rf1 )7 = cos(2n[iT) = 5y (ﬁ—g)l‘“ (zﬂfOT)z]
X [m = 20(1 — a)sin(ar/2)(27 iT)* ™ = 3525 (ﬁ—g)l‘“ (27 foT)? — 230220 T) )
(38)

Let us consider the case o — 17. Expanding the different terms in expression (38) like for the
case a — 31 and eliminating the singular terms, we obtain

1 —cos(2m f1T) — g(27 foT')?
—2U(1) + 2log(2n f1T) — :(27 foT')? — 2sin(27 1T)/ (27 f1T)’

which can be found using the same procedure (o — 1) from Eq. (22).

Ha—>1(T) ~

(39)



2.4 Long time scales: T'> 1/,

Equation (6) can be modified, if o # 1, as

sin(27 fol')
27Tf0T

Integrating by parts we can extract the significant terms,

) PP Q/fl £ cos(2m fT))df. (40)
fo

2 11—«
=2 11—
ar Jo ( 1—a

2 2117 B 2a 3~ 5 fl-a sin(27 f17T') 1—a cos(27 foT")

— -2 . 41
T, 11—« L 2r 1T afo (27 foT')? (41)
The expression for H(7T') is easily found taking the logarithmic derivative of (41),
— 1 afy*sin(2n foT)/ (27 foT) — fi =% cos(2n fiT
H(T) ~ a2 Cafy "% sin(27 fo )/E_Zfo )1_cyl cos(27 fi ) (42)
®fo ~ — N
Expression (42)is valid only if @ # 1. The exact expression in the case a = 1 can be derived

changing the middle term of (40) into 2log( fi/ fo), or taking the limit for & — 1 in (42). The result
is

sin(27 fo1')/ (27 foT') — cos(27 f1T')
2 (1+1og &) '

Hoor(T) ~ (13)

3 Analysis of finite-length sampled signals

As noted above, any real time series has implicit frequency cutoffs. The high frequency cutoff is due
to sampling, and is equal to the Nyquist frequency f; = 1/27., where T. is the sampling time. The
low frequency cutoff is due to the finite length Ti,.x of the time series, and is equal to fo = 1/Tax.
In this section we will derive the scale-dependent exponent H(7') for a signal where the time index
T is discrete and can only assume values multiple of the sampling time, T = nT,.. We will also
assume that the series is composed by N samples, i.e. Tinax = NT.. The scaling of the variance in
this case can be expressed as

onr, ~ (nT:)H. (44)
Taking the logarithm we get

log(0,7,) ~  log(nT.) (45)

The scaling exponent cannot be derived as in the previous section with a derivative, but has to be
defined as an incremental ratio,

10



(46)

_log(opunyr.) —log(onr,) 1 log [U(n+1)Tc
" log((n 4+ 1)T.) — log(nT,) log(1 + %) OnT,
Moreover, in this case we can only evaluate H,, in the intermediate fractal scaling regime 1 < n <«

N.

Let us first consider the case 1 < a < 3. The expression for the variance of the delayed series
can be derived from Eq. (21) substituting 7" = nT.,

11—« 27Tn 2 o 11—« 27Tn 4 2](‘1—0(
2 L A(nT,) T, @)y ( ) 0 ( ) 1 4
on ~ AL hole] = 5 AN ) Yo v ) tioa (47)
Combining (47) and (46) we obtain

1/2
log(14 1/n)

o 85 () g () ]

- i e )

In this scaling regime we can write (n + 1)% ~ n? + gnf~1 for 3 > 1, so that

1/2
log(1+4 1/n)

X log {1 + [4(Tc)a_llo[a](a o2 - % (%ﬂ)? on + % (2%)44713]

o [ronrma- g (s ] T)

The big fraction in the logarithm function is O(1/n), so we can expand the two logarithms recalling
that log(1 4 1/n) ~ 1/n. The final expression for H,, is

o~ (2)“‘1 9(%_”)2+&(%_n)4
" 2 N 6 \ N 120 \ N

11

Hy,




l_a s %)H — 2I(1 - o) sin(ar/2) (%Tn)a_l ey (2%)2

+ 60(5a_ a) (2;71)4] _1- (50)

This expression is the discrete equivalent of (22). Note that if we substitute 7" = n7T, directly in (22)
we obtain one more term coming from cos(27 f;1). This term is present only in the continuous
case because it is a direct consequence of taking the derivative (8). It is then straightforward to
derive H, for the other values of a, eliminating this term and passing to discrete values of time.
For o« — 2 we get, from (23),

" L, 2_1(%_”)2+L<2ﬂ_n>4 _iH(%_n)_%(%_n)ZL(%_n)“
e T TN T3 \UN 60 \ N N N 3\N 90 \ N
(51)

The case a > 3 is not modified, because we neglected the high frequency contributions since the

beginning. From (32) we obtain

v [Meepere (22, e (2]

l3(aa— 3) QF((:;_—OI))(SLH(—&;)/Q) (2;7@)“—3 * 60(5a— a) (2;7@)2] E 52

If & — 3 we have, from (33),

—1+ &(2mn/N)?

Hrams ~ U4 TGy Tlog(2mn/N) + L (270/N )2 (53)
If o < 1 we have, from (38),
7 (1 - a)T(1 — a)sin(ar/2)(7n)*~! - [a/3(3 — a)](2/N)=2(27n/N)? (54)
" 2/(1—a) = 2T(1 — a)sin(an/2)(mn)>~! = [a/3(3 — a)](2/N)t=(2xn/N )2’
while if @ — 1 we get from (39)
1— (27n/N)?
Mot ™y O T S Tog(mn) = L2an/N )2’ (55)

12



4 Numerical results

We considered a sampled process with power-law spectrum (3). There are no explicit low and high
cutoff frequencies, so the band is determined, like in the previous section, by sampling and finite
length. The time axis is normalized to [0, 1], while each time series has N = 4096 samples. These
choices lead to a Nyquist frequency equal to f; = 2048, while the lowest frequency is fo = 1. For
each value of a we calculated M = 20 different realizations of the process applying inverse FFT
to the spectrum. The phases were considered random variables uniformly distributed in [0, 27].
Each time series thus obtained has been processed to evaluate the function o7 = ((2; — z¢_7)?)/?
in the range 1072 < T < 0.2. This is the proper fractal scaling regime. The scale-dependent
exponent f(7') has been obtained with a local linear regression over 3 points of {log T, log(o7)}.
Then the mean value and the 95% confidence intervals of H(7') have been evaluated averaging over
the M realizations. The results show that the asymptotic expansions (Fig. 1) match very well the
numerical estimations of (H (7)) (Fig. 2). Fig. 3 shows, for different values of «, the theoretical
values of H, the asymptotic expansions and the statistics of the numerical estimates.

The very good agreement between asymptotic expansions and numerical estimates of H(T)
suggests that these expansions can be used to correct the numerical estimates, in order to cancel the
time-scale dependent bias due to finite length and sampling. Fig. 4 shows the corrected estimates,
compared to the theoretical values, for different values of . These plots have been obtained, for
fixed T', searching for the value of a such that the asymptotic expansion H,(T') is equal to the
numerical estimate H(T). As the expressions for H,(T) are not invertible in «a, the corrected values
of H(T) have been found numerically through an iterative zero-finding procedure [17]. Note that
the asymptotic expansions viewed as functions of «, for T fixed, are smooth and non-decreasing.
This insures the existence and unicity of the solution for the inversion procedure.

We recall that the (global) fractal dimension D can be shown [4] to be equal to D = 2 — H.
In a recently published work [6] Labate et al. evaluated the fractal dimension D of signals with
1/ f% spectrum using the Variation algorithm [9]. They found that the relation D = D(«a) does not
follow exactly the rule D = (5 —a)/2 but there are deviations for values of « far from 2. The same
problems were encountered by Fox [7] and Higuchi [8] using different algorithms. We tried to explain
this fact with our expansions, defining a scale-dependent fractal dimension D,(7") = 2— H,(T) and
plotting it versus «a for fixed values of the parameter T'. We obtained the plot in Fig. 5, which is very
similar to the results in Refs. [6, 7, 8]. We suggest then that the deviations of numerical estimates
from the theoretical values of the exponent H or fractal dimension D are a direct consequence of
implicit frequency cutoffs due to the finite length and sampling.

13



5 Conclusions

We presented an analytical approach for the evaluation of the time-scale dependence of the fractal
dimension for signals with 1/f® spectrum. In order to consider signals with finite total power we
constrained the spectrum to zero in high frequencies range and to a constant for low frequencies.
These cutoff frequencies can be explicitly introduced with bandpass filtering, but are implicit in
every finite-length and sampled signal. We showed that these cutoffs introduce corrections to
the fractal scaling properties of the curve, and that these deviations are time-scale dependent.
Moreover, we used the asymptotic expansions to correct the numerical estimates, showing that the
time-scale dependent bias due to finite length and sampling can be easily cancelled.

The corrective terms can also explain why numerical estimates of global fractal scaling exponents,
like the fractal dimension or the exponent H., are generally biased. The standard procedure for
these estimations is the linear regression in a double logarithmic plot of some measure, varying with
the chosen algorithm. The scaling exponent is then the slope of the line providing the best fit to the
points. This fitting is generally performed globally over many time scales, loosing any information
relative to the time dependence of the scaling exponent. We performed a local regression in order
to investigate this time-scale dependence, and we found that the numerically evaluated scaling
exponent H(T) matches very well the asymptotic expansions derived in this work. This suggests
that some of the numerical problems commonly found in estimating the fractal dimension of time
series can be explained with the presence of frequency cutoffs due to the finite length and sampling
of the signal.
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Figure 1: Asymptotic expansions of the scaling exponent. Shown are the H,(7") curves for different
values of a.

Figure 2: Numerical evaluations of the scaling exponent. Shown are the (H, (1)) curves for different
values of a.

Figure 3: Scaling exponent H,(T'): comparison between numerical estimates (circles) and asymp-
totic expansions (continuous curves). The dotted lines indicate the 95% confidence intervals of
numerical estimations. The dashed lines are the theoretical values H(T) = (a — 1)/2for 1 < a <3,
H(T)=0fora<1land H(T)=1for a > 3.

Figure 4: Corrected values of H,(7') (continuous curves) and theoretical values (dashed curves),
for different values of a.

Figure 5: Scale-dependent fractal dimension D,(7T) = 2 — H,(T') obtained from the asymptotic
expansions, plotted as a function of spectral slope a for different time scales T = nT,, where T,
is the sampling time. The total number of samples is N = 4096. The thick curve represents the
theoretical values of (global) fractal dimension: D = (5—a)/2for 1 <a <3, D =1for a > 3 and
D =2fora< 1.



H(T)

11

0.3 + a=1.5 B
0.2 - -
ao=1.0

0.1 - .

-

0.0 - a=0.5 —
0.1 1 et S
10° 10 10"

Figure 1



<H(T)>

11

1.0
0.9
0.8

0.7 -
0.6 -
05 -

0.2 -

0=2.0

0=1.0
0.1 - \,\/\ .

o0 o005

0.1 4

10

Figure 2




0.20

0.10

10

Figure 3




H(T)

11

1.0
0.9
0.8

0.7 -
0.6 -
05 -

03 -
0.2

0.1
0.0

0.1 4

a=3.5

a=2.0

a=1.5

10

Figure 4



2.1

D(alpha)

0.9 : ‘
0.0 1.0

2.0 30
alpha

Figure 5



