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The Time-Domain Vector Fitting
Algorithm for Linear Macromodeling

Stefano Grivet-Talocia

Abstract The Time-Domain Vector Fitting (TD-VF) algorithm
for macromodeling of linear multiport systems is presented. A
rational approximation for the system matrix transfer function
is easily derived from transient input/output port responses.
Several validations illustrate the high accuracy of the method.
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1. Introduction

This paper presents an extension to the so-called Vector-
Fitting (VF) algorithm recently proposed in [1]. This al-
gorithm provides very accurate rational approximations to
matrix transfer functions of linear systems starting from
frequency-domain samples. This method was originally
proposed for the analysis of lossy transmission lines, but
the technique is general and applicable in principle to the
macromodeling of any multiport linear system. The main
advantage of VF is use of a two-stage linear least squares
approximation for the estimation of the system poles and
residues matrices.

The extension herewith presented is denoted Time-
Domain Vector Fitting (TD-VF). This indicates that the
proposed algorithm works entirely in the time domain. A
rational approximation to the system matrix transfer func-
tion is derived from a set of input-output transient port
responses using a combination of digital filtering and lin-
ear least squares solutions. We will show that the resulting
TD-VF algorithm is simple, accurate, and efficient.

The material is here presented with focus on the
methodology and not on specific applications. However,
an application to the macromodeling of an electronic
package structure characterized via full-wave electromag-
netic analysis will be presented in the numerical results
section. This example will show that very accurate macro-
models can be obtained via TD-VF even for large struc-
tures with a large number of ports.

2. Frequency-Domain Vector Fitting

Here we briefly review the basics of the standard Vector-
Fitting algorithm. More details can be found in [1]. Let
us consider a scalar transfer functionH(s), wheres is the
Laplace variable, to be approximated by a rational func-
tion

H(s) ' H∞ +

N∑

n=1

Rn

s − pn

(1)
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with unknown poles{pn} and residues{Rn}. The dataset
characterizing the Device Under Modeling (DUM) is a set
of frequency samplesH(jωk).

Standard VF avoids solving the nonlinear fit condi-
tion (1) by introducing the following weight function

σ(s) = 1 +

N∑

n=1

kn

s − qn

=

∏N

n=1(s − zn)
∏N

n=1(s − qn)
(2)

with fixed (a priori) poles{qn} and unknown residues
{kn}. For best performance, the poles should be chosen
to span uniformly the frequency bandwidth over which the
approximation is sought for. Then, the following condition

σ(s)H(s) ' c∞ +

N∑

n=1

cn

s − qn

(3)

is enforced in least-squares sense at the given frequency
points, using the available dataH(jωk). The solution pro-
vides the coefficients{cn}, which are not used for further
processing, and the residues{kn} of σ(s). The VF con-
dition (3) implies that the poles of the best rational ap-
proximation toH(s) must cancel with the zeros of the
weight function, i.e.,{pn} = {zn}. The latter can be
easily derived from{kn} as the eigenvalues of matrix
A − b cT , whereA = diag{qn}, b = (1, . . . , 1)T , and
cT = (k1, . . . , kn). See [1] for details. This procedure is
called “poles relocation”. Once the poles{pn} are known,
a second least-squares solution to Eq. (1) provides the
residues. As a result, a rational approximation is computed
using a two-stage linear least squares solution, thus avoid-
ing use of possibly critical nonlinear optimization tech-
niques for the direct solution of (1).

3. Time-Domain Vector Fitting

The TD-VF algorithm restates the rational approxima-
tion (1) in time-domain, using as raw data for the DUM
characterization a pair of transient excitationx(t) and re-
sponsey(t) waveforms known at discrete timestk. These
waveforms are related in the Laplace domain through
Y (s) = H(s)X(s).

The main VF condition (3) can be restated in input-
output form as

σ(s)Y (s) '

{
c∞ +

N∑

n=1

cn

s − qn

}
X(s) . (4)

Applying inverse Laplace transform and using (2), this
conditions translates into

y(t) +
N∑

n=1

knyn(t) ' c∞x(t) +
N∑

n=1

cnxn(t) , (5)

where the sequencesxn(t) are defined via the convolution
integrals

xn(t) =

∫ t

0

eqn(t−τ)x(τ)dτ , ∀n , (6)
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Fig. 1. Macromodeling of a four-port test structure. Transient re-
sponsesy11(t) (continuous line) andy34(t) (dotted line) and their
approximations (dots) obtained via TD-VF.

and similarly foryn(t). Due to the exponential nature of
the convolution kernels in (6), the actual implementation
can be performed via recursive convolutions or, equiva-
lently, with first-order digital filters.

Equation (5) is the main TD-VF condition. Enforcing
this condition at discrete timestk, using the available
data for excitation and responses, and solving in least-
squares sense provides the residues{kn}, and thus the
poles{pn}. If necessary, the poles relocation via (5) can be
iterated until convergence. Very few iterations are usually
needed. The residues{Rn} and the direct coupling con-
stantH∞ are finally computed by solving a second linear
least squares problem

y(t) ' H∞x(t) +
N∑

n=1

Rnx̂n(t) , (7)

equivalent to (1), where the filtered sequencesx̂n(t) are
obtained as in (6) by replacing the initial poles{qn}
with the actual poles{pn}. The extension to the multi-
input multi-output case of the above TD-VF procedure
is straightforward, requiring a componentwise application
of (5) and (7).

4. Numerical examples

In order to validate the TD-VF algorithm a large num-
ber of synthetic passive multiports with known poles and
residues have been generated. We have performed tests
with a number of ports ranging from one up to 16, and with
a dynamic order ranging from two up to 41. For each case,
a set of synthetic responses have been generated. The exci-
tation signal was set to a Gaussian waveform with a 20dB
bandwidth encompassing all poles (in order to excite all
independent modes). These responses have been fed to the
TD-VF algorithm, which in all cases led to poles estimates
that are within machine precision from the original ones
in up to three iterations. As a result, also the residues are
very accurate, thus leading to undistinguishable approx-
imate responses with respect to the original ones. As an
example, we report two relevant waveforms for a 21-th or-
der four-port low-loss structure in Figure 1. The same tests
were repeated with different excitation signals, in particu-
lar with random multi-sine waveforms. The same accuracy
was achieved in the results.

0 1 2 3 4 5 6

x 10
−10

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Crosstalk (scattering) responses

Time [s]

Fig. 2. Macromodeling of a commercial 14-pin package. Near-end
(continuous line) and far-end (dotted line) crosstalk scattering waves
and their 17-th order approximations (dots) obtained via TD-VF.

We present now the results for a more realistic ap-
plication. A commercial 14-pin surface mount package
has been meshed and analyzed through a full-wave elec-
tromagnetic solver based on the Finite-Difference Time-
Domain method [2]. The structure has 28 ports, since each
pin leads to one port on the die side and one port on the
board side. As a result, a complete set of28 × 28 re-
sponses (transient scattering waves) have been obtained,
using a unitary Gaussian pulse as excitation with a 20dB
bandwidth of 30 GHz. The TD-VF algorithm was able to
fit all responses with a 17-th order macromodel, with a
maximum deviation between reference and approximate
responses below4 × 10−3. Figure 2 shows the crosstalk
scattering waves induced on a pin adjacent to the excited
one. The approximation is excellent. We remark that this
rational representation of the matrix transfer function can
be synthesized into an equivalent multiport circuit for the
entire structure via standard techniques. This equivalent
circuit takes into account all relevant signal degradation
effects due to the package like mutual couplings, radia-
tion and conductor losses, etc. Therefore, such equivalent
circuit can be used for accurate system-level simulations
including the typical nonlinearities of the termination net-
works (drivers and receivers). Such task would be not fea-
sible using a FDTD-based full-wave solver. Finally, we re-
mark that, due to the geometrical complexity of the pack-
age, the FDTD simulation required more than three hours
for a single run (28 runs were necessary to record the com-
plete set of port responses), whereas the simulation of the
generated equivalent circuit required only less than 5 min-
utes on the same machine.

5. Conclusions

In summary, the presented Time-Domain Vector Fitting
algorithm appears to provide very accurate rational ap-
proximations for linear structures with a possibly large
number of ports and dynamic order. This makes TD-VF
an interesting technique for the characterization of lin-
ear structures in several application areas. We conclude



AEÜ Int. J. Electron. Commun.
58 (2004) No. 1, 1–1 S. Grivet-Talocia: The Time-Domain Vector Fitting Algorithm for Linear Macromodeling 3

by noting that other techniques for linear macromodeling
from time-domain port responses are available in the lit-
erature. Among these, the most relevant are the so-called
Subspace-based State-Space System Identification (4SID)
techniques [3] and the Generalized Pencil-Of-Function
(GPOF) methods [4]. As a preliminary discussion, we re-
mark that both these methods are based on the construc-
tion of Hankel matrices storing the time samples of the
port responses. These matrices can grow very large in case
of high-order structures with many ports. The proposed
TD-VF method allows to circumvent this problem since it
is based on less storage and computing power demanding
steps. A detailed comparison is outside the scope of this
short paper but will be the subject of a future investiga-
tion.
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