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Kahler submanifolds of Wolf spaces

D.V. ALEKSEEVSKY, A.J. DI SCALA and S. MARCHIAFAVA
November 3, 2003

Abstract

We report on several results about Kahler submanifolds of a symmetric
quaternionic Kahler manifold, i.e. a Wolf space or its non compact dual: a
twistor construction of such Kihler submanifolds, the classification of Kahler
manifolds which can be immersed as parallel Kahler submanifolds, the classifi-
cation of parallel Kahler submanifolds. An alternative elementary proof of the

non existence of non totally geodesic parallel maximal Kihler submanifolds of
the Wolf space Go(C™*?) is also given.

1 Introduction

Nowadays it is well known that quaternionic Kdhler manifolds are interesting
Einstein manifolds, [Bes], Chapter 14, where there is a rich interplay between several
basic structures, such as complex and quaternionic, and also between mathematics
and physics, [QSMP].

This report concerns a research on submanifolds of a quaternionic Kahler manifold
undertaken by the three authors in the last years. See in particular the papers [AM2],
[AM3], [ADM]. Recent results on Kédhler submanifolds of quaternionic symmetric
spaces are presented.

2 Basic facts about Kahler submanifolds of a quater-
nionic Kahler manifold

Let (M*,Q,§) be a quaternionic Kihler manifold. We recall that (M*", )
is a Riemannian manifold of dimension 4n, with Levi-Civita connection V9 Q is a
V9-parallel quaternionic structure, i.e. a rank-3 subbundle of the bundle of endo-
morphisms locally spanned by a triple of locally defined anticommuting g-orthogonal
almost complex structures H = (Jy, Jo, J3 = J1J2); H is called a local basis of Q). A



typical example is the quaternionic projective space HP™ with a standard metric and
the natural quaternionic structure.

We recall that (M 4 @, g) is an Einstein manifold and its curvature tensor has a
decomposition

(1) E = vRypn + W
where Ryp- is the curvature tensor of the quaternionic projective space HP", i.e.

Rupn (X, V) = %(X AY DT X ATY = 320X, V) )

(,)=y9(, ) is the Riemannian scalar product of M , v is a constant which is called the
reduced scalar curvature, such that K = 4n(n + 2)v is the scalar curvature, and
W is the quaternionic Weyl tensor, which verifies the identity [W(X,Y),Q] =0
and has all contractions equal to zero.

A Wolf space is a compact, simply connected, quaternionic Kihler symmetric
space. It has the form W = G/K where G is a compact centerless Lie group and
K is a certain subgroup (unique up to conjugacy) which is a local direct product
K = K - Sp(1), where Sp(1) is the multiplicative group of unit quaternions, see
[Bes|, pag. 408 . Main examples are

Sp(n+1)
mpr = 2T
Sp(n) - Sp(1)
SU(n +2) SO(n+4)
S(U(n) x U(2)) ’ S(0O(n) x O(4))
Moreover there are 5 exceptional spaces like G5/SO(4), F,/Sp(1) - Sp(3), etc. .

There are two kinds of submanifolds of a quaternionic Kahler manifold (]\7[ nQ,9)
which are of primary interest:

G2 ((Cn—I—Q) — Gi— (Rn+4) —

quaternionic submanifolds, i.e. Q-invariant submanifolds (M*™, @', g), where
Q' = Qrmam, g = grmem. It is a classical result that they are totally geodesic.

(almost-)complex submanifolds with respect to an (almost-)complex struc-
ture compatible with @, i.e. Ji-invariant submanifolds (M?™,.J;, g) where
Ji € T(Q)um is a section such that J? = —Id and JSTM =TM, g = grm-

The almost-complex submanifold (M?™, J, g) is called Kdhler if J; is parallel
with respect to the Levi-Civita connection of g; in such a case (M?*™,J = Sy 9)
is a (complex) Kéhler manifold.

One of the main reasons of interest into Kdahler submanifolds is that they are
minimal, in fact pluriminimal ( or (1-1)-geodesic), i.e. the complexification of h, the
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second fundamental form, has type (2,0) + (0,2), i.e. A1) = 0), see Ohnita [O]. The
stronger condition of pluriminimality is a consequence of the following identity which
is satisfied by the second fundamental form h, see Funabishi [Fu],

hMX, 1Y) - J1h(X,Y) =0 VX, Y € TM.
In fact it implies that
h(X,Y)+ h(S X,J1Y)=0 VX, Y e TM

which is equivalent to the fact that any almost complex surface (M',J') of M is
minimal. In turn the pluriminimality implies that the mean curvature vector of M
vanishes.

3 Maximal Kahler submanifolds

In the following we will be interested in submanifolds of a quaternionic Kéhler
manifold (M*", Q,q) of non zero scalar curvature, K # 0, and we will assume always
to be in such a case.

Then it results that, [Fu], [AM2],

the almost complex submanifold (M?™, J;) is Kéhler iff it is totally complex, i.e.
Jo(TM)LTM where J, € Q is a complex structure which anticommutes with .J;.

As an immediate consequence, a Kéhler submanifold (M?™,J;,g) has at most
dimension 2n and in this case is called maximal.

Remark 3.1 R.C. Mc Lean, [McL], and F.E. Burstall, [Ko2], called complex-
Lagrangian such a maximal Kahler submanifold.

A twistor construction of maximal Kahler submanifolds, which generalizes a fa-
mous Bryant’s construction of superminimal surfaces of S*, was given in [Tak], [AM3].
Let say some words on this subject.

In 1982 R. Bryant [Br| gave an explicit construction of superminimal confor-
mal immersions of compact Riemann surfaces into the 4-sphere S* which led to sev-
eral developments. The key idea of the construction is to use the twistor fibration
7 : CP? — S* = HP! which is a Riemannian submersion with fiber $? = CP!,
and whose horizontal distribution A is a holomorphic contact structure. An oriented
surface M? C S* has a natural lift L = J(M?) into CP? defined by the complex
structure of M2. The surface M? is superminimal if an only if its lift is a holomor-
phic Legendrian submanifold of CP3, that is a horizontal holomorphic 2-dimensional
submanifold. This reduces a description of superminimal surfaces M? C S* to a de-
scription of holomorphic Legendrian submanifolds of CP3. R. Bryant constructed the
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holomorphic local coordiantes u, p, ¢ such that the contact distribution A is the kernel
of the 1-form 6 = du — pdg. In terms of these coordinates a legendrian submanifold
has the foom L = Ly = {u = f(q),p = g—g} where u = f(q) is a holomorphic function.
Then the projection M? = 7(Ly) is a superminimal surface of S*.

The generalization of the Bryant construction for a quaternionic Kéhler (M**, Q,9)
goes as follows.

Let Z 5 M be the twistor fibration, where Z = S(Q) is the sphere bundle of
compatible complex structures of @) (for details see [Sal]). It carries a natural complex
contact structure and the maximal Kihler submanifolds of M*" come by projection
7 from the Legendrian submanifolds of such complex contact structure.

The construction of the correspondence between maximal Kahler submanifolds
and Legendrian submanifolds works as follows. If the scalar curvature of (M, Q,9)
is non zero (like in the case of 4-sphere) there is a correspondence between holomor-
phic, horizontal submanifolds IV of the twistor space equipped with the holomorphic
contact structure and Kéhler submanifolds M*™ of M*™: the natural liftt N = J; (M)
of a Kéhler submanifold M>™ of M*™ to the twistor space Z and conversely the pro-
jection M?*™ = 1(N) to M*" of a holomorphic horizontal submanifold N C Z is a
Kahler submanifold. Like in the case of S*, the explicit construction of Legendrian
submanifolds L C Z (i.e. maximal holomorphic horizontal submanifolds) and hence
maximal Kéhler submanifolds M?* C M*" reduces to the construction of Darboux
coordinates u,py, ¢* such that a (local) contact 1-form @ with H = Kerf has the
form 0 = du — ), prdg®. A direct generalization of Bryant’s formulas provides such
Darboux coordinates for the twistor space Z = CP?"*! of the quaternionic projective
space M*" = HP". This allows the construction of Kihler submanifolds of HP";
hence, due to results of F.E. Burstall, [Bu], which proved that quaternionic twistor
spaces of Wolf spaces of the same dimension are birationally equivalent as complex
contact manifolds and explicit computations of P. Kobak, [Kol], one can construct
the Kéahler submanifolds of any Wolf space explicitly.

4 Kahler submanifolds of Wolf spaces (and their
duals)

4.1 Totally geodesic maximal Kahler submanifolds

The maximal totally geodesic Kahler submanifolds of symmetric quaternionic
spaces and their duals were classified by Takeuchi for cases HP™, Go(C"*?) and
G{(R*™), [Tak]. The cases of exceptional spaces could be obtained by putting to-
gether results in a recent paper of Wolf, [W], and the paper [ADM].



4.2 Parallel Kahler submanifolds

In [Tsu2], K. Tsukada classified all parallel (non totally geodesic) maximal Kéhler
submanifolds of the quaternionic projective space HP™ and proved also that in its
dual, the hyperbolic quaternionic space HH" there are no such submanifolds.

The remarkable fact concerning a maximal Kahler, or equivalently, totally complex
submanifold (M?",.J;) is that locally its normal bundle can be identified with the
tangent bundle by means of a section .J; orthogonal to J; in the bundle @):

Jo :T+M S TM

and the Gauss-Codazzi equations can be expressed only in terms of the tangent space
TM. In particular we associate with the second fundamental form A a (local) tensor
field C on M, called shape tensor, by

C(X,Y,Z) = (JLh(X,Y), Z)
which is symmetric with respect to X, Y, Z and satisfies the following identities:
CX,Y,JZ)=C(JX,Y,Z)=C(X,JY, Z)

Passing to the complexification, it results that C defines a parallel line bundle
which is independent from the local section Jy and (M, J;) is a Kdhler manifold
with parallel cubic line bundle of type v, where v is the reduced scalar curvature of
(M, Q,5).

Looking to this property allowed to classify the Kihler manifolds M?" which can
be immersed into a quaternionic Kihler manifold M*" as maximal parallel Kéihler
submanifolds, [AM2]. They are the following Hermitian symmetric manifolds or their
duals:

reducible : Qn_1 x CP!, CP! x CP!,CP! x CP! x CP!

irreductble : SPQ/UQ X (CPI,CPI,SPP,/U?,,SUG/S(UP, X Ug),SOlz/Uﬁ,E7/T1 . E6

4.3 Parallel maximal Kahler submanifolds of Wolf spaces

We recall the following definition. .

A submanifold M C M of a Riemannian manifold M is called curvature invari-
ant (respectively, normal curvature invariant) if each tangent space T,M, x € M,
is curvature invariant with respect to the curvature tensor Rof M , L.e.

R(T,M,T,M)T,M C T,M



(respectively, if each normal space T, M,z € M, is curvature invariant, i.e.
R(TEM, TEMYTEM Cc TEM ).

It is a straightforward and well known consequence of the Codazzi equation that
a parallel submanifold is curvature invariant. Moreover, the Gauss equation implies
that a parallel submanifold of a locally symmetric space is itself a locally symmet-
ric space. Nevertheless, it is not true that a curvature invariant locally symmetric
submanifold of a symmetric space is parallel e.g. a flat surface in R*® different from
a plane or cylinder. However, for maximal Kahler submanifolds of Wolf spaces the
following result holds.

Theorem 4.1 ([ADM]) A locally symmetric mazimal and curvature invariant Kdhler
submanifold M*" of a quaternionic Kihler symmetric space is parallel.

For a parallel maximal K&hler submanifold of a quaternionic Kahler manifold M
a stronger result holds: it is also normal curvature invariant, due to the fact that the
curvature identities of M*" imply that

(R(JoX, JoY) o Z, JoT) = (R(X,Y)Z,T)

for any complex structure Jo € @ (see [AM2]).
This remark allows to apply some results of Naitoh and prove the following theo-
rem.

Theorem 4.2 ([ADM]) Any curvature invariant (in particular, any parallel) Kdhler

submanifold M?" of a quaternionic Kdhler symmetric space Mn # HP™ is totally
geodesic.

The Naitoh results used in the proof are the following.

Theorem 4.3 ([Na2]) Let M be a simply connected Riemannian symmetric space.

A submanifold M of M is parallel and normal curvature invariant if and only if it is
extrinsically symmetric.

Theorem 4.4 ([Na3]) Let M = G/K be a compact (also non compact) simply con-
nected symmetrizce space with simple isometry group G, and V is an orbit of G in
Gry(T M) which is curvature invariant and normal curvature invariant. Then any
V-submanifold is totally geodesic with the exception of the following cases:

a) M=S"=S0(n+1)/SO(n),1 <k <n,

b) M = CP™,V is the set of complex 2k-subspaces

c) M = CP™,V is the set of totaly real n-spaces

d) M= HP™,V is the set of totally complex 2n-subspaces

e) M = G/K is an irreducible Hermitian symmetric R-space (or its non com-
pact dual) (real flag manifold).



In the last paragraph we will give a more direct proof of the result stated in
Theorem 4.2 in the case of the complex Grassmannian G5 (C"*2) and its non compact
dual. It could be interesting to find an unified proof of this type for all Wolf spaces,
at least for the other non exceptional spaces G (R"**).

4.4 Classification of non-maximal parallel Kahler submanifolds
of Wolf spaces

The classification of parallel Kédhler submanifolds of a quaternionic Kahler symmetric
manifold reduces to the classification of full parallel Kahler submanifolds in Hermitian
or quaternionic Kahler symmetric spaces.

Proposition 4.5 ([ADM] Let (M*™,.J) be a geodesically complete parallel subman-
ifold of a quaternionic Kdhler symmetric space M* and M the minimal totally
geodesic submanifold of M which contains M.

1) If the shape tensor C of M wvanishes at one point then M is an Hermitian
symmetric space and M is a full parallel Kihler submanifold of M.

2) If C # 0 then M = HP™ and (M?™,J) is a Hermitian symmetric manifold with
parallel cubic line bundle, with canonical Tsukada imbedding into HP™ (as described
in [Tsu2]).

If x € M then

M = exp(OIM) OIM = T,M + h(T,M,T,M).

The proof basis on the fact that along the submanifold Mwe have a decomposition
of the curvature operator Rxy, X,Y € T,M of the manifold M according to the
decomposition (which yields to the Gauss-Codazzi-Ricci equations)

End(T, M) = End(T, M) + Hom(T, M, T;- M) + Hom(T, > M, T, M) + End(T;}+M)
Rxy = RIT + R~ + RL + R+
VX, T € T,M

and for a locally symmetric space the covariant derivatives of the tangential part L%TT,
the normal part R+ and the mixed parts R*77, RT+ of the curvature tensor Rirm

can be expressed in terms of these same tensors and the shape operatyor C' = Js o h,
see [AM2].



5 A direct proof of the non existence of non totally
geodesic parallel maximal Kahler submanifolds
of the complex Grassmannian

5.1 Curvature invariant maximal Kahler submanifolds of the

complex Grassmannian G5(C"*?) and of its non compact
dual HGy(C"*?)

We know that any parallel submanifold M of a Riemannian manifold M is cur-
vature invariant. Assume that the manifold M = G/H is symmetric. Then the
condition

R(T,M, T,MT,M C T,M
that M is curvature invariant at the point x means that the subspace T, M corresponds
to a triple system in the symmetric decomposition g = h + m. This is equivalent to
the existence of a totally geodesic submanifold M(z) = exp(T,; M) with the tangent
space T, M. We call M(x) the tangent totally geodesic submanifold of M at x .

Remark 5.1 Condition that M zs_ curvature invariant means that it admaits the tan-
gent totally geodesic submanifold M (x) at any point .

In this section we study curvature invariant Kihler submanifolds of the classical
Wolf space Go(C""?) and its non compact dual. In particular we prove the following
theorem.

Proposition 5.2 Any curvature invariant, mazimal Kdihler submanifold M?" of the
complex Grassmannian Go(C**?) or of its non compact dual HGo(C"?) is totally
geodesic.

It should be interesting to prove the analogous proposition for G (R***) by the
same methods.

5.2 Basic facts of the geometry of G5(C"*?)

Let M“" be the complex Grassmannian Go(C"?) with reduced scalar curvature v or
its non compact dual HG,(C"+?2).

We denote by J the standard complex structure. It is known that for any admis-
sible basis (Ji, J2, J3) of the quaternionic structure of M*" one has

TJo=JouT (TJ)?=1 TrtJJy=0 (a=1,2,3)
Moreover
(TX,V)HX,JY)=0 (Jo X, V)H(X, J,Y) =0, (a=1,2,3) VX,V € TM*"
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The curvature tensor of M*" with reduced scalar curvature v is a multiple by %
of the curvature tensor of G5(C"*?) with reduced scalar curvature 4, which has the
following expression

(2)
RX,Y)Z =, )X —(X,2)Y + 3, [(JaY, IV X = (Jo X, Z2) 1Y — 2(J, X, Y)JaZ]
HIY, Z)TX —(IX,Z)JY —2TX,Y)TZ
+ 30 [(JaT Y, 2)JuT X = (JuT X, 2)JuT Y |

The quaternionic Weyl tensor of the Grassmannian is

W(X,Y)Z =(TY, 2)TX — (TX, 2)TY — 20TX, V)T Z
+ X0 [(JaT Y, 2)JT X = (JoT X, 2)JuT Y |
In the following we will refer to the manifold M = G5(C*2) with reduced

scalar curvature 4. The extension of results to the other Grassmannians and their
non compact duals will be immediate.

Definition 5.3 A complete totally geodesic submanifold M of a Riemannian man-
ifold M*" is called maximal if it is not contained in a proper totally geodesic sub-
manifold.

We recall the following theorem by [Tak].

Proposition 5.4 Up to isometries, any maximal totally geodesic Kahler submanifold
of Go(C"2) belongs to one of the following submanifolds:

A) the submanifolds

CPP x CP? — Go(CPHat2) (p+qg=n)

immersed by using the identification CPT! @ CIt1 = CPT92 and sending a pair
of lines (£,0'), ¢ C CPTL ¢ C CI*) one in each factor, to the corresponding
plane ¢ ® V' C CPY9t2_ In particular, if for example ¢ = 0, the submanifolds

CP™ = CP" x CP® — Go(C"*?).

These submanifolds are complex with respect to the structure J, i.e. JTM =
TM.

B) the submanifolds

Ga(R™?) — Go(C77772) (p+q=n)

immersed by using the identification C**% = R**2 ® C by sending a real 2-plane
into its complexified.



These submanifolds are totally real with respect to the structure J, i.e. JTM =
TM*.

Proposition 5.5 Assume thatT' is a curvature invariant, totally complex, 2n-dimensional
subspace of the tangent space V = T,Go(CPT42). Then there are two possibilities:

1) Jgr=1
2) JT' LT

Up to transformations of the isotropy group, in case 2) the subspace T' is unique, in
case 1) there exist n+1 different subspaces T".

The proof follows from the previous remark 5.1 and proposition 5.4.

Remark 5.6 The complex Grassmannians Go(C™*?), (m < n) which are naturally
imbedded into Go(C"?) are Kdhler manifolds with respect to the complex structure
J but they are not Kdahler submanifolds with respect to the quaternionic structure Q).
In fact they are quaternionic submanifolds.

Problem. It would be nice to give examples of maximal Kahler submanifolds of
G5 (C™*?) which belong to some V-geometry without being curvature invariant.

5.3 Proof of Proposition 5.2

We recall that for a curvature invariant, maximal Kahler submanifold of a locally
symmetric quaternionic Kéhler manifold the following identity holds (which follows
from [AM2, 2.5.2], since VRT =0, and (1):

4) CxW(Y, Z2)U + J,W (J,CxY, Z)U + LW (Y, J,Cx Z)U — W(Y, Z)CxU = 0.

According to the result of previous proposition we consider separately the two possible

cases.
1) JTM =TM. By assuming Z = JY = U in (4) we get the identity

=3 Z|P[Cx, TN Z + (LT Z, Z) \[Cx, TNT Z
—(Cx,TNTZ,2)TZ + (N [Cx,TZ,Z) " Z + (N [Cx,T|\TZ,Z)JZ = 0.

Note that [Cx, J| is symmetric and anti-commutes with J; and J. Hence, for any
eigenvector Z of [Cx, J|, that is [Cx, J]|Z = AZ, it results

—\BIZIPZ + 21T Z, Z) 1 T Z) = 0

From A # 0 it would follow that Z is an eigenvector of J;J; since the eigenvalues of
J1J are £1 it is excluded and, hence, A = 0. In conclusion [Cx, J] = 0.
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Let consider the splitting T,M = T, M, & T,M_, where
Tle :{X‘JJlX:X} , Tprl :{Y|‘7J1Y: _Y}

One has JyT,M, = TyM,, JT,M, = T,M,,a = 1,—1. Moreover, let show that the
subspaces T, M,,a = 1, —1 are left invariant by any operator Cx, X € T, M, i.e.

CxT,M, CT,M,, a=1,-1,VX €T,M.

In fact, if X, € T,M,,X ;1 € T,M_, it follows that the sectional curvature of the
plane m = {X,, X } in the ambient space vanishes, as it is straightforward to verify;
hence, since T,,M,,a = 1, —1, are the eigendistributions of the parallel operator JJi,
it follows that both are parallel. Then M?" splits as M?" = M; x M_,. By the
Gauss equation, we obtain that Cx, X_ = 0, which implies the claim. On the other
hand, if X € T,M = T,M,, a = lora = —1, belongs to one factor then one has
Cx,J]| =a|[Cx, J1] =0,{Cx, Ji} = 0. Then Cx = 0 on each factor and the proof of
the first case is complete.

2) JTM =TM*. In this case (4) takes the form

(JoTZ,U)[Cx, JLTVY — (3T Z, UYJ1[Cx, JoTVY +{(J3TY,U)J:[Cx, J2T|Z
—(LJY,U)Cx, LT Z +([Cx, LI, U) 2T Z — ([Cx, LI Z,U) JoTY
1 2[Cxt, TBIY, 21 TU — (L[Cx, BTN, UNJsT Z + (Ji[Cx, Jo T2, UV JsTY = 0.

By assuming U = JoJZ,Y = J,Z in (4), and taking into account that [Cx, JoJ|
and J; commute, we get the identity

21211’ Cx, oIV Z + 2([Cx, LI Z, hT Z) 2T Z
+2[Cx, JoTZ, JoT Z)J3T Z + 2[Cx, T 2| W Z,Z)Z = 0.

By computing on an eigenvector Z of the symmetric operator [Cx, JoJ|.J1, for which
say [Cx, JoJ|J1Z = AZ, one gets

N2\ ZNPZ +{Z, JoT ZY Jo T Z +{Z, J3T Z)Js T Z] = 0

From A # 0 (by taking the scalar products by JoJZ, J3J Z respectively) it would
follows that (Z, bJ Z) = (Z,J3J Z) = 0, which contradicts Z # 0. Hence

(5) [Cx, JoJ]=0.

Now let remark that J;, which anticommutes with 7.J,, interchanges the +1, —1
eigenspaces of the symmetric operator J.Js. On the other hand, for any X € T'M the
operator C'x leaves invariant each eigendistribution, as it follows from the identity
(5). So Cx o J; = 0. This completes the proof of the theorem. O
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5.4 Totally geodesic maximal Kihler submanifolds of G5(C"*?)
and of its non compact dual HGy(C"?)

In this subsection we give an elementary proof of the first statement of Proposition
5.5, which evoids to refer to the classification of totally geodesic maximal Kéhler
submanifolds of G5(C**?) made by Takeuchi.

Let M2 be a totally complex submanifold of M4 = Go(C*2) and J,T,M =T, M,
T,Go(C?) = T,M & J,T,M.

Lemma 5.7 If JT,M = T,M or JT,M =T,M* then T,M is curvature invariant.

Proof. It is a straightforward verification by using (1) and [AM2, (3), prop. 2.14] .
U

In fact these are the only possible cases for a curvature invariant, maximal Kahler
submanifold.

Proposition 5.8 T,M is curvature invariant if and only iof T T,M = T,M or JT,M =
T+M.
p

Proof. 'The proof of the necessity of the condition is done into three steps.
Step 1) If JT,M NT,M # 0 then JT,M =T,M. Let assume that there exists
a non-zero Z € T,M such that Y = JZ € T,M. Then

W(X,T2)Z = {2, 2)TX +(TX, 2)Z — AT X, Y)Y + (L TX, Z) ] Z

Hence —(Z,Z)JX € T,M, thatis JX € T,M for any X € T,M.
Step 2) If JT,M NT,M~* # 0 then JT,M = T,M~*. Let assume that JY €
T,M*, ||Y]| = 1. Then, since

—_~

WX, Y)Z =—(TX, 2)TY + (hIY,Z)T ] X +(JTY, Z)T J: X
LTX, DVWTY — (BIX, 2V BTY — (T X, Z)JsTY

it follows that
1
(TX, Z)TY —(TX, L Z)WTY + (T, h2)T X + (TY, s Z)T 1, X| =0.

Let consider on T, M an orthonormal base (E1, Es, ..., Ey,) such that JY = J,E;
and Ey = J1F;. Then

(TX,ZYJE, +(JIX,J1Z)JJ Ey
+ 50, [(By 2T X, BB+ (B, WZNTLX BB E =0
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Equivalently we have the following identities:
<\7X7 Z> + <E1,Z><\7Xa El) + <E17 J1Z><k7J1Xa El) =0

and
<E1,Z><t7Xa Ez> + <E1, J1Z><\7J1X: EZ> =0 (Z = 35 .- .,271)

For Z = F, and Z = J,E; we get respectively
(TX, Er) + ”El“Q(an E)=0 , (UX,JiE)+ ||E1||2<jX, J1E1) =0
and
|E X TX,E)=0 , i=3,...,2n

Hence JX € T,M+ VX € T,M.
Step 3) There are only two possibilities: JT,M = T,M or JT,M = T,M*. One
has

WX, Y)Y = =3(FX,V\TY —(JY,iY\TILX — (TY, LbY)T X — (JY, J;Y)T J: X
HIX, VYT LY +{(TX, LYYT LY +{(TX, JY)T LY .

Then one finds

A(TX,Y)? +(TX, JlY)Q] JY =
—(TX,Y) [W(X, Y)Y - W(X, ,Y) LY
(6) HTX, LY) [W(JlX, Y)Y - W(LX, LY) LY
12 (TX, LYWTY, LYY — (TX, YNTY, JY)| T JX
NTX,YWTY, JY) +(TX, LYNTY, LYY T Js X .

Let assume that JT,M NT;"M = 0. Then for any Y # 0 (JX,Y)* +(J X, J;Y)?
is not identically zero (otherwise JT,M = T;-M). Let X be a tangent vector such
that (7X,Y)2+(J X, J1Y)? # 0. Then (if n # 1) there always exists a tangent vector
Z such that (7 Z,Y)?+(JZ, J1Y)? # 0 with CX # CZ: in fact let Z = X + h where
h is a small vector C-independent from X. Then by comparing the two identities
giving JY by means of X or Z we obtain that

(TX, ZWYWTY, 1Y) = (TX, YNTY, 1Y) =0
(TXYNTY, JY) +(TX, hYWTY, LY) =0

and also
(TZ, ZWYNTY, LY) = (TZ,YNTY, J,Y) =0

(TZYNTY, LYY+ (T Z, LY WTY, JY) =0

It then follows that

13



But, since [J.J> is a symmetric operator, the identity

(TLY,Y) =0
implies that
(T LY, X) =0 VX,Y € T,M,pe M
that is
(TY, bX)=0 VXeT,M
hence JY LT,M+ and it results JT,M = T,M. O
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