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Rend. Mat. Acc. Lincei
s. 9, v. 12:205-228 (2001)

Geometria algebrica. — Limit Weierstrass schemes on stable curves with 2 irreducible
components. Nota (*) di Marc Coppens e Letterio Gatto, presentata dal Socio E.
Vesentini.

Abstract. — We are concerned with limits of Weierstrass points under degeneration of smooth curves
to stable curves of non compact type, union of two irreducible smooth components meeting transversely at
m ≥ 1 points. The case m = 1 having already been treated by Eisenbud and Harris in [8], we analyze the
situation for m > 1.

Key words: Stable curves of non compact type; Limits of Weierstrass points on reducible curves; Limit
Weierstraßschemes.

Riassunto. — Limiti di schemi di Weierstrass su curve stabili con 2 componenti irriducibili. Si studiano
limiti di punti di Weierstrass per degenerazioni di curve lisce a curve stabili di tipo non compatto, unione di
due componenti lisce irriducibili che si intersecano trasversalmente in m ≥ 1 punti. Il caso m = 1, essendo
di tipo compatto, è già stato trattato da Eisenbud e Harris in [8], sicché nella presente Nota verrà analizzata
la situazione per m > 1.

1. Introduction

1.1. In the celebrated paper [8], using techniques introduced in [7], Eisenbud
and Harris study how Weierstrass points on general smooth curves degenerate when
the smooth curve degenerates, in a flat proper family, onto a stable curve of compact
type. The purpose of this paper is to show how relatively easy technical tools provide
a considerable amount of new informations when the special fiber of the family is
a stable curve of non-compact type which is the union of two irreducible smooth
components intersecting in m > 1 points (the case m = 1 being covered by the theory
of Eisenbud and Harris). We recall here that a stable curve C0 is said to be of compact
type if its (generalized) jacobian is compact or, equivalently, if all of the irreducible
components of C0 are smooth curves and if its dual graph, whose vertices correspond
to the irreducible components and an edge joins two vertices if the two components
have a point in common, is a tree. We review below some basic – and eventually very
classical – definitions, in order to set the framework and the general motivations of this
research.

1.2. On any projective smooth complex curve of genus g (a compact Riemann
Surface) some distinguished points live, called Weierstrass points. A Weierstrass point is
a ramification point of the canonical linear system, KC , and it lies in the zero scheme

(*) Pervenuta in forma definitiva all’Accademia il 21 giugno 2001.
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of a section W, said to be the wronskian, of the line bundle K
⊗ g (g+1)

2
C . More precisely,

the zero scheme Z (W) associated to the wronskian, in the following said to be the
Weierstrass scheme, induces a well defined cycle on the curve C , namely:

[Z (W)] =
∑
P∈C

wt(P )P ;

where wt(P ) is the Weierstrass weight of the point. A point P is a Weierstrass point if
and only if wt(P ) > 0 and, of course, wt(P ) = 0 for all P ∈ C but finitely many (see
e.g. [2, 13, 14, 18, 19]).

1.3. In [24], C. Widland and R. Lax extend this general theory to the case of
complete irreducible Gorenstein curves C . Things work almost the same if one replaces the
canonical bundle with the dualizing sheaf ωC of C , that is invertible by the Gorenstein
assumption. Again, one may define a wronskian W, and this gives rise to a Weierstrass
subscheme of C of lenght (g − 1)g (g + 1). The theory of Widland and Lax for
irreducible Gorenstein curves behaves nicely under degeneration, as shown in [22].
Even if one is interested only in the classical theory (C smooth), studying Weierstrass
points on singular curves can be useful: smooth curves degenerate to special types of
singular curves.

1.4. What about reducible curves? It is very natural to start thinking about the
easiest situation, by considering reducible curves with only nodes as singularities. This is
reasonable and interesting because, first of all, noded curves are Gorenstein (hence carry
an invertible dualizing sheaf). Secondly, the nodal reducible curves that are stable (i.e.
projective, connected, reduced and such that each smooth rational component intersects
the rest of the curve in at least 3 points) are the building blocks for the so-called
Deligne-Mumford compactification of the moduli space M g , Mg , of smooth curves of
genus g ≥ 2 [5]. However, trying to straightforwardly extend the definition of Lax and
Widland on a stable reducible curve, one gets in trouble very soon. This is because, if
the stable curve has a non-rational irreducible component, then any reasonable substitute
of the wronskian would vanish identically on that component of the curve, turning the
notion of Weierstrass point meaningless. We are left to deal with some more delicate
problem: suppose that we are given a smoothing of a stable reducible curve C0, i.e. of
a family of smooth curves degenerating to C0. How do the Weierstrass points on the
general (smooth) fiber degenerate onto the special fiber? Or, put otherwise, and using
the current terminology of the literature, what are the limits of Weierstrass points of smooth
curves degenerating to a stable reducible curve ?

1.5. In [8], using the celebrated theory of limit linear series as formulated in [7],
Eisenbud and Harris investigate, amongst other things, how the Weierstrass points
degenerate under specialization to a (reducible) stable curve C0 of compact type. In their
investigation of 1-parameter degenerations, Eisenbud and Harris consider proper flat
families of semistable curves of genus g ≥ 3, π : X−→S with S = Spec(C[[T ]]) such
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that:

1. the geometric generic fiber Xη is smooth;
2. the total space X is smooth;
3. the special fiber X0 has C0 as a stable model.

These data induce, in a unique way, a linear system g g−1
2g−2(X ) on each irreducible

component X of X0, whose ramification points in the smooth locus of X0 are precisely
the limits of Weierstrass points of Xη degenerating to the smooth part of the component

X . Such a collection of linear systems g g−1
2g−2(X ) is called a canonical limit linear system

on X0; the linear system g g−1
2g−2(X ) is called the X -aspect of this canonical limit linear

system. Those aspects satisfy suitable ramification conditions at each node of X0. Now,
fix the dual graph (being a tree) and the genera related to the vertices and take C0

having that graph. For general C0, the aspects on the irreducible components of C0 are
independent from the family, hence the limits of the Weierstrass points are completely
determined by C0. Moreover the nodes are not limits of Weierstrass points on nearby
smooth curves.

1.6. At p. 499 of their paper [8], the Authors ask the question: «What are the limits
of Weierstrass points in families of curves degenerating to stable curves not of compact type ?». As
already mentioned, the purpose of this paper is trying to deal with such a question for
the case of a stable curve C0 that is the union of 2 smooth irreducible components X and
Y . The main difference with respect to the situation studied by Eisenbud and Harris is
that, even in the most general case, as soon as the curve C0 is not of compact type, the
limits of Weierstrass points depend on the smoothing family. For instance, if C0 is the
union of two smooth curves, X and Y , each of genus ≥ 1, intersecting transversally at
two points A and B, there is a 1-dimensional family of limits. More precisely, if P0 is
any smooth point of C0, there exists a family π : X−→S such that S = Spec(C[[T ]]) =
= {0; η}, with a Weierstrass point Pη ∈ Xη such that P0 ∈ {Pη}. This fact, very well
known from ten years at least, is worked out in all the details in the paper [3, p. 333],
as a standard application of the theory of Harris and Mumford [21, p. 56 and ff.] of
the compactification of Hurwitz schemes by means of admissible covering. Because we
shall use such tools, we advise the reader to look at the papers [3, 21], especially at the
quoted pages, for foundational material. So, from the paper [3] one knows that a general
stable curve with two irreducible components with two nodes admits a 1-dimensional
family of limits of Weierstrass points. What about if the two curves intersect in m > 2
points? In this situation the theory of admissible covering does not say very much:
we only may conclude, arguing as in [3] for curves with two nodes, that there exists
a family of limits of Weierstrass points which is at least 1-dimensional. Admissible
coverings are not suited to refine such an information, because they only allow to follow
the degeneration of a Weierstrass point at a time. So, the main result of this paper is:

Theorem 3.2. Fix m, gX ≥ 1, gY ≥ 1 and let C0 be a general union of 2 irreducible
components X and Y of genus respectively gX and gY , intersecting transversally at m
points.Then the space parametrizing limits of Weierstrass schemes on C0 has dimension m − 1.
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Relying on this theorem we are finally able to find the limits of Weierstrass points
on one component of a stable curve with two irreducible components such that one of
them has genus 1 (Theorem 5.3).

1.7. The quoted paper by Cukierman [3] should be enough to convince the reader
that the limits of Weierstrass points move in positive dimensional families, so clarifying
the relevance of Theorem 3.2. However, it may be worth to work out the first case
unsettled by the theory of Eisenbud and Harris, namely the union C0 of two elliptic
curves meeting transversally in two points A and B, at least to give the feeling of the
occurring phenomena. We warn the reader, by the way, that the result we are going to
informally explain, using here an ad hoc procedure, is nothing but a particular case of
the stuff presented in the rest of the paper, which, in a sense, generalizes the following
ideas.

Let C0 = X ∪ Y and choose arbitrarily a smooth point P0, say P0 ∈ Y , to fix the
ideas. We claim that P0 is limit of a Weierstrass point on nearby smooth curves. In
fact there exists (a unique!) C ∈ Y such that 3P0 ∼ A + B + Q (∼ meaning linear
equivalence). Moreover h0(X; OX (A + B)) = 2 so that there is a 2 : 1 covering of the
projective line such that A + B is a fiber of such a covering. By attaching a smooth
rational component at C , we get the following admissible covering:

Y

P 1

Q

B

A

P
0

total ramification

1

X

2:1

extra P

P

1 {
3:1

Fig. 1.

The picture above, by the theory of Harris and Mumford, is the degeneration of
a family of ramified coverings of degree 3, Ct−→P

1, where Ct are smooth curves of
genus 3, with a total ramification point Pt (hence a Weierstrass point) degenerating to
P0 ∈ C0. In other words P0 ∈ C0 is a limit of a Weierstrass point. Such a result is
of course a particular case of our Theorem 3.2, but this example gives the reader the
feeling of what happens for curves of non compact type.

At this point is not very much work to study where are located the other limits of
the Weierstrass points on Y , corresponding to the smoothing family gotten from the
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choice of the point P0. Similar results hare been obtained also in [10]. Here we should
use a local analysis performed by [4, pp. 48-49], which ensures us that we may find
a germ of stable curve X−→ Spec(C[[T ]]) such that X0 = C0, Xη smooth and Pη a
Weierstrass point on Xη degenerating onto P0, such that the total space X of the family
is a smooth surface. This allows us to use elementary intersection theory on a smooth
surface. One easily check that the natural restriction map:

π∗ωπ ⊗ k(0) ∼= H 0(C0; ωπ(X )|C0
)−→H 0(Y; OY (2A + 2B)) ;

is an injection. Hence the pair (π∗ωπ(D) ⊗ k(0); OY (2A + 2B)) defines a g 2
4 on Y ,

which ramifies at P0 (see Example 4.6). Moreover such a g 2
4 contains the linear system

|A + B| + A + B, a g 1
4 on Y with two base points (namely A and B). To show

that the 12 ramification points of the g 2
4 above are the limits of the Weierstrass points

of Xη degenerating onto Y , fact that is a particular case of our Theorem 5.3, we
shall argue by translating the question in a problem of plane quartic curves. In fact,
π∗ωπ(X ) ⊗ k(η) = H 0(Xη; ωXη

), so that we get a morphism:

φ : X−→P(π∗(ωπ(X ))) ;

such that φη(Xη) is a smooth quartic curve in P
2
η, degenerating to a quartic φ0(C0)

which is the image of C0 in P
2 via the linear system π∗ωπ ⊗ k(0) (the g 2

4 previously
described). The image turns out to be a quartic curve with a tacnode at a point
φ0(A) = φ0(B), whose normalization is isomorphic to Y and where the component X
of C0 has been contracted into the singularity.

According to the theory of Lax and Widland, the weight of a tacnode on a curve
of arithmetic genus 3 is 12. We conclude that 12 Weierstrass points of X

η
degenerate

onto the component X (contracted into the tacnode) while the other 12 degenerate
to the points which are made via φ0 onto the f lexes of φ0(C0), where the given g 2

4

is precisely cut out by the linear system of lines. This concludes the proof that the
ramification point of the g 2

4 (Y ) are contained in the limit Weierstrass scheme.

1.8. The paper is organized as follows. In Section 2 we set the notation, the basic
definitions of limit Weierstrass schemes, and state a few results without proof but giving
precise references to the literature. There, we also discuss the general problems inspiring
our investigations.

In Section 3 we state and prove the main theorem of the paper (Theorem 3.2) about
the dimension of the space of limits Weierstrass schemes.

In Section 4, after defining the notion of a suited divisor for the relative dualizing
sheaf of a 1-parameter family π : X−→S , whose total space X is smooth, we study
special cases where we start from a degeneration to C0, having an elliptic component,
and we try to find a linear system of dimension g − 1 on the irreducible components
of C0 such that the limits of Weierstrass points are related to the ramification points of
that linear system. In other words, we try to mimic the construction of canonical limit
linear series of [8]. For instance, in our previous example of the union of two elliptic
curves with two nodes, X was a suited divisor for the component Y . This example is
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generalized in our Example 4.6. We also define the aspects of a limit Weierstrass scheme
and attack the general problem of determining them in the case of stable curves with
2 components. We define the notion of suited divisor for a component of the special
fiber of a good family π : X−→S of stable curves.

Section 5 is still devoted to a deeper study of examples which in our opinion are
significant of how the construction of a general theory of limits of Weierstrass points
on any stable curve is a very delicate subject. In one case (Example 5.9) we are able
to detect simultaneously the aspects on both components of the union of an elliptic
curve and a curve of genus 2 meeting transversally in two general points. Such example
is fully compatible with our Theorem 3.2. Moreover, it shows that the nodes are
limits of Weierstrass points coming from Weierstrass points on any general smoothing
family. The estimation of the weight of the WP’s degenerating onto the nodes is, in
our opinion, a nice new application of the theory by Widland and Lax ([24]) about
Weierstrass points on Gorenstein curves. We end the paper with some remarks about
the irreducibility of the Weierstrass scheme (see Section 2 for definition)

1.9. This paper circulated for a couple of years in a preprint form. In the meantime
E. Esteves and N. Medeiros, who knew our results, studied this problem in a sistematic
and definitely deeper way, up to give a complete and satisfactory solution of it, an-
nounced in [11, 12]. Their work studies, more generally, limits of canonical series on
curves with two components: it gets our results as particular cases, in a more general
framework populated by many more new, and interesting, results.

2. Generalities and problems

2.1. We work over the field of complex numbers C. Let M g;n (resp. Mg;n) be the
coarse moduli space of stable (resp. smooth) n-pointed curves of genus g . To fix our
general set-up we need the following natural proposition, whose proof can be found e.g.
in [3, p. 335].

2.2. Proposition. Let B ∈ Mg;n be a locally closed subset and [(C ; P1; : : : ; Pn)] ∈ M g;n

a point. Then [(C ; P1; : : : ; Pn)] belongs to the closure of B in M g;n if and only if there
exists a family of curves π : X−→S = Spec(C[[T ]]) together with n pairwise disjoint sections,
σ1; : : : ; σn : S−→X , such that :

1: X is a smooth surface ;
2: the geometric generic fiber is smooth ;
3: if X0 is the central fiber of the family, then (X0; σ1(0); : : : ; σn(0)) is semistably equivalent

to (C; P1; : : : ; Pn) ;
4: the induced moduli map m : S−→M g;n sends the generic point of S to B.

Proof [3, p. 335].
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2.3. The main reference for this subsection is [16, Section 2] (see also [9]).
Let S be a connected scheme of finite type over C. By a stable (resp. smooth)

curve of genus g over S we shall intend a f lat proper morphism π : X−→S such that
each scheme theoretical fiber is a complex stable (resp. smooth projective) curve. Let
Ω1

X=S and ωπ be respectively the sheaf of relative differentials and the relative dualizing

sheaf of the family. The latter is a line bundle over X [5, p. 76]. Let d : OX−→Ω1
X=S

and R : Ω1
X=S−→ωπ be respectively the exterior differential and the residue map. The

composition:
d

π := R ◦ d : OX−→ωπ ;

will be said the derivative along the fibers of π. Let f ∈ OX (U ) where U is an open
set such that ωπ(U ) = OX (U ) · σ. Then the k-th derivative f (k) of f with respect to
σ ∈ ωπ(U ) is recursively defined by:

(1)
{

f (0) = f

dπ(f (k−1)) = f (k) · σ :

Let L ∈ Pic (X=S ) such that h0(X;L) > 0. If λ ∈ H 0(X;L), and ψ generates L(U )
over OX (U ), set:

λ|U
= ‘ · σ; ‘ ∈ OX (U ) :

Then, for each k ≥ 0, the data:

(‘; ‘′; : : : ; ‘(k))

is the local representation of a section, denoted by Dkλ, of a vector bundle of rank
k + 1, denoted by J kL, whose transition functions are prescribed by the transformation
rules (from one to another open set) of the k + 1-tuple (‘; ‘′; : : : ; ‘(k)).

2.4. Let π : X−→S be a stable curve of genus g and assume that the general fiber
is irreducible. The Hodge bundle Eπ of the family is the rank g vector bundle over S
defined as:

Eπ = π∗ωπ :

We shall often write simply E, by skipping the subscript π when this is clear from the
contest. Let us denote by Iπ ⊂ X the inflectionary locus of the relative dualizing sheaf,
i.e. the locus of points P of X such that there exists a dualizing differential α on the
fiber X

π(P ) vanishing at P with multiplicity at least g , in the sense that Dg−1(α)(P ) = 0.
Such an inflectionary locus can be given a scheme structure as follows: it is the locus
of points P ∈ X where the natural map of vector bundles over X :

(2)

π∗
E

D
g−1

−−−−− −−− −→

→

J g−1
π

ω
π

χ�π

S

→
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drops rank. In other words, taking the top exterior power of the map Dg−1 one has:

I
π

= Z (W
π
)

where W
π

is the relative wronskian, i.e.:

(3) Wπ := ∧g Dg−1 ∈ H 0(X; ωπ
⊗ g (g+1)

2 ⊗ ∧g π∗
E

∨) ;

where we observed that ∧g J g−1ωπ
∼= ω

π
⊗ g (g+1)

2 . Let Sirr be the locus of points of S
corresponding to irreducible fibers and Xirr the induced family. Then Iπ |Xirr

cuts out

the locus of P ∈ X which are Weierstrass points (in the extended sense of Widland
and Lax, see [24]) on the corresponding fibers Xπ(P ). Moreover the inflectionary locus
Iπ contains entirely the components of the reducible fibers with some multiplicity (see
e.g. [3, p. 325] for one parameter families having a special fiber a stable curve of compact
type with two irreducible components). This has to do with the fact that, if the curve
is reducible, for each component there are non zero dualizing differentials vanishing
identically on that component.

2.5. Let C0 be now a (complex) stable curve of genus g ≥ 2. Let R be the
ring of formal power series in 3g − 3 indeterminates with C-coefficients, i.e. R =
= C[[T1; : : : ; T3g−3]]. Let MC0

= Spec(C[[T1; : : : ; T3g−3]]) be the formal mod-
uli space around C0 and let XC0

be its universal family together with the structural
morphism π : XC0

−→ Spec(R) [5, p. 81]. Let K = C((T1; : : : ; T3g−3)), so that
Xη−→ Spec(K) = η is the generic fiber of the family. One has the cartesian diagram:

(4)

Xη

iη−−−−→ XC0

πη

� �π

Spec(K)
jη−−−−→ MC0

Because of the f lat base change theorem (see e.g. [20, p. 255, Proposition 9.3]) we
have:

Eη := j∗η (E) = πη;∗ ◦ ι∗η(ωπ) = H 0(Xη; ωXη
) :

Let Wη be the wronskian section of the line bundle ωXη

⊗ g (g+1)
2 . As previously said,

such a wronskian defines a closed subscheme Z (Wη) of Xη of lenght (g − 1)g (g + 1),

hence a point in the Hilbert scheme Hilb(g−1)g (g+1)(Xη). Let

πH : H = Hilb(g−1)g (g+1)
π −→MC0

;

be the relative Hilbert scheme of 0-dimensional subschemes of the fibers of π of lenght
(g − 1)g (g + 1) (see [17]). Hence Z (Wη) is a point of Hη.

2.6. Definition The Weierstrass scheme associated to the family

π : XC0
−→MC0

is the closure W of Z (Wη) in H.
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Let πW : W−→MC0
be the restriction of the map πH to W . Let W0 be the fiber

of W over the closed point of MC0
.

2.7. Definition A limit Weierstrass scheme of C0 is a zero dimensional subscheme of
C0 corresponding to a point of W0.

The examples studied in [3] (or the example of the union of two elliptic curves
widely discussed in the introduction) prove that in general the map πW is not a flat
map. The fiber over the generic point is zero-dimensional, while the fiber over C0 may
be positive dimensional, as remarked.

2.8. The general problem we study is the following one. Fix a dual graph related
to a stable curve of genus g ; fix the genus of each vertex. Take a general stable curve
C0 of genus g belonging to the topological stratum of M g defined by such a graph.

1. Give a description of W0. More concretely: what is the dimension of the irreducible
components of W0; is W0 irreducible?

2. Let W0 be an irreducible component of W0. Take Z ∈ W0 general. If P ∈ Z is
a smooth point of C0, is the multiplicity of Z at P equal to 1? If P is a node of
C0, what is the multiplicity of Z at P ? Does there exist a fixed closed subscheme
S with support at P such that Z = S locally at P ?

3. Under what assumption on C0, does C0 satisfy general behaviour? As already men-
tioned in the introduction, in this paper we study those questions when C0 is the
union of two irreducible components.

3. The dimension of the Weierstrass scheme

This section shall be entirely devoted to prove the main result of this paper, con-
cerning the dimension of the limit Weierstrass scheme on a general stable curve which
is the union of two irreducible smooth components. We first start with a lemma which
is essentially nothing more than a (although useful) remark. Set:

Wn = {[(C; A1; : : : ; An)] ∈ Mg;n : A1; : : : ; An are Weierstrass points of C }

Then:

3.1. Lemma. Let (C0; P1; : : : ; Pn) be a stable n pointed curve such that :

1: C0 is irreducible (not necessarily smooth );
2: P1; : : : ; Pn are Weierstrass points of C0.

Then (C0; P1; : : : ; Pn) ∈ Wn, where the closure is taken in M g;n.

Proof. If C0 is smooth the claim is obvious. If it is not smooth take any one
parameter family (certainly existing) π : X−→S such that S = Spec(C[[T ]]), Xη smooth.
Now the zero scheme Z (Wπ) cuts exactly the locus of Weierstrass points on fibers of π.
In particular there are Weierstrass points P1;η; : : : ; Pn;η degenerating to P1; : : : ; Pn.
The family comes so equipped with n sections σ1; : : : ; σn : S−→X such that σi(η) is
a Weierstrass point on Xη and σi(0) = Pi for each 1 ≤ i ≤ n. The total space X of
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the family need not to be smooth, however all the singularities are concentrated into
the nodes of C0. Around each node (see [21]) the formal equation of X is xy − t n = 0
(i.e. there is an An−1 singularity). A minimal resolution of X gotten by repeatedly
blowing up the singular points has the effect of inserting a chain of (n − 1) (−2)-
rational curves. Hence we get a new family such that Xη is the same as before but
with (X0; σ1(0); : : : ; σn(0)) semistably equivalent to (C0; P1; : : : ; Pn). This proves,
by virtue of Proposition 2.2, that (C0; P1; : : : ; Pn) ∈ Wn.

Then, according to the notation of the previous section, let C0 be the union of
two general smooth projective curves X and Y of genus gX ≥ 1 and gY ≥ 1 with
X ∩ Y = {Q 1; : : : ; Q m} generally chosen on X and Y , so that the arithmetic genus
of C0 is g = gX + gY + m − 1.

3.2. Theorem. Let C0 = X ∪ Y be general as above. Then dimW0 = m − 1.

Proof. For the reader’s convenience we shall split the proof in several steps.

Step 1. We first show that dim(W0) ≤ m − 1. Suppose not, and assume that
dim(W0) ≥ m. Set:

Mirr
C0

= {η′ ∈ MC0
: Xη′ is irreducible};

and

M′
C0

={η′′∈MC0
: Xη′′ is of type X1∪Y1with gX1

=gX and gY1
=gY , and ](X1∩Y1)=m}:

Notice that dim(M′
C0

) = 3g − 3 − m. There are natural inclusions

Mirr
C0

,→ MC0
and M′

C0
,→ MC0

;

so that we can form the following fiber products:

W irr = W ×MC0
Mirr

C0
−→Mirr

C0
and W ′ = W ×MC0

M′
C0
−→M′

C0
;

where W is the Weierstrass scheme (Definition 2.6). Now, by the very definition of
W we have the inclusions:

W ′ ⊂ W irr = W :

Now, by [1], W irr is irreducible so that the same holds for its closure W irr. Hence:

(5) dim(W ′) < dim(W irr) = 3g − 3 ;

where the last equality follows from the fact that dim(Mirr
C0

) = 3g − 3 and that on a
irreducible curve the limit Weierstrass scheme (i.e. the subscheme of Weierstrass points)
is zero dimensional (it is fixed!). But, by the assumption, we have that:

dim(W ′) = dim(W0) + dim(M′
C0

) = m + (3g − 3 − m) = 3g − 3 ;

and this contradicts inequality (5). We have hence proven that, necessarily, dim(W0) ≤
≤ m − 1.
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Step 2. We prove now that dim(W0) ≥ m − 1 by showing that if P1; : : : ; Pm

are smooth points of C0 arbitrarily chosen, then there exists a 1-parameter family
X−→ Spec(C[[T ]]), together with n sections σ1; : : : ; σn, such that σi(η) is a Weier-
strass point on Xη, for 1 ≤ i ≤ m−1, and (X0; σ1(0); : : : ; σn(0)) is semistably equivalent
to (C0; P1; : : : ; Pm−1).

Now, an ordered (m − 1)-tuple (P1; : : : ; Pm−1) of points of C0 is nothing but a
point of the (m − 1)-fold product:

C m−1
0 = C0 × : : : × C0︸ ︷︷ ︸

(m−1) times

of the curve C0 by itself. We are hence naturally led to consider the (m − 1)-fold
product of XC0

over MC0
:

Xm−1
C0

:= XC0
×MC0

: : : ×MC0
XC0︸ ︷︷ ︸

(m−1) times

:

Let pri : Xm−1
C0

−→XC0
be the projection onto the i-th factor and

ρ : Xm−1
C0

−→MC0
(π ◦ pri = ρ)

be the structural morphism induced by π : XC0
−→MC0

. A point of pr−1
i (Z (Wπ)) is

the locus of (m− 1)-tuples (A1; : : : ; Am−1) ∈ Xm−1
C0

such that Ai is in the zero locus of
the wronskian section on Xπ(Ai ). In particular, if Xπ(Ai ) is irreducible, Ai is precisely a
Weierstrass point of Xπ(Ai ). Let us consider the intersection:

∩m−1
i=1 pr−1

i (Z (Wπ)) ⊂ Xm−1
C0

;

whose fiber over the generic point η of MC0
is a (m − 1)-tuple of Weierstrass points.

Since for each component of C0 there are non zero sections of the dualizing sheaf ωC0
which vanish identically along that component, it follows that C0 is entirely contained
in Z (Wπ), so that, in particular:

(P1; : : : ; Pm−1) ∈ ∩m−1
i=1 pr−1

i (Z (Wπ)) :

Let D be an irreducible component of ∩m−1
i=1 pr−1

i (Z (Wπ)) containing (P1; : : : ; Pm−1).
Then:

dim(D) ≥ 3g − 3 ;

while

dim(ρ(D) = dim(D) − (m − 1) ≥ (3g − 3 − m) − 1 ≥ dim(M′
C0

) :

This means that ρ(D) �⊆ M′
C0

. Let η′
0 be the generic point of ρ(D). Then X

η′
0

is a
generalization of C0 smoothing at least one node (because C0 is general). In particular
Xη′

0
is irreducible because otherwise the numerical compatibility between the genus of

Xη′
0

(g = gX + gY + m − 1) and the number of nodes would be violated. So we came
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to prove that the pointed curve:

(C0; P1; : : : ; Pm−1)

is in the closure of the locus of n-pointed irreducible curves

{(C; A1; : : : ; Am−1)} ⊂ MC0;m−1

such that Ai is a Weierstrass point, for each 1 ≤ i ≤ n. By using Lemma 3.1
we conclude that (C0; P1; : : : ; Pm−1) ∈ Wm−1 (by transitivity of the relation of in-
clusion). By using Proposition 2.2, we have hence proven that there exists a sta-
ble curve π : X−→S over S = Spec(C[[T ]]), with X a smooth surface, together
with m − 1 sections σ1; : : : ; σm−1 such that σi(η) is a Weierstrass point on Xη and
(X0; σ1(0); : : : ; σm−1(0)) is semistably equivalent to (C0; P1; : : : ; Pm−1). In other
words we proved that (P1; : : : ; Pm−1) ∈ W0, so that dim(W0) ≥ m − 1. Patching such
an equality with the one found in Step 1, we get finally:

dim(W0) = m − 1 ;

as desired.

4. Aspects of limits Weierstrass schemes

4.1. Definition Let C0 be a stable curve of genus g ; let Z be a limit Weierstrass
scheme of C0 and let X be an irreducible component of C0. Let Xsmooth = X \ (X ∩
∩(C0 \ X )). The restriction Z|Xsmooth

as a scheme is called the X -aspect of Z; it is

denoted by ZX .

4.2. Let C0 be a stable curve of genus g > 2. A good family for C0 is a semi-stable
generically smooth curve π : X−→S over S = Spec(C[[T ]]), such that:

1. X is a smooth surface;
2. the geometric generic fiber is a non-hyperelliptic smooth curve of genus g > 2;
3. the central fiber X0 has C0 as a stable model.

4.3. Assume that each component of C0 is smooth. Let Z be a limit Weierstrass
scheme for C0. As it follows from Theorem 3.2 it is possible to find a good family
π : X−→S for C0 such that the associated limit of Weierstrass scheme Z ′ on X0 satisfies
Z ′

X = ZX for each irreducible component X of X0 corresponding to an irreducible
component – also denoted by X – of C0. Let D be a divisor of X supported on X0. It
turns out that the OS -module π∗(ωπ(D)) is a bundle of rank g . In fact π∗(ωπ(D)) is a
finitely generated torsion free C[[T ]]-module and hence free by [23, p. 147]. Associated
to the rank g -bundle π∗(ωπ(D)) we have a wronskian on the generic fiber which is equal
to the wronskian Wη of π∗(ωπ) on the generic fiber. Consider π∗(ωπ(D))(0), the fiber
of π∗(ωπ(D)) to the closed point on S ; it is isomorphic to H 0(X0; ωπ(D)|X0

). If the
restriction map:

(6) ρX : H 0(X0; ω
π
(D)|X0

)−→H 0(X; ω
π
(D)|X ) ;
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is injective, then ω
π
(D) defines a linear system of dimension g − 1 on X . This linear

system has an inflection divisor R on X .

4.4. Proposition. R∩ Xsmooth = ZX .

Proof. One constructs the wronskian of the family X−→S with respect to the
sheaf ωπ(D). In other words, one considers the wronskian section WD of the bundle
∧g J g−1

π ωπ(D) ⊗
(
∧g π∗(π∗ωπ(D))

)∨
. Such a wronskian defines a divisor Z (WD) on X .

The closure of Z (WD) \ X0 restricted to X0 is the limit Weierstrass scheme Z ′ on
X0. Since ρX is injective on π∗(ωπ(D))(0), the curve X is not contained in Z (WD)
and Z (WD) ∩ X = R. Also, at points of Xsmooth we have Z (WD)|X = Z ′. Hence
R∩ Xsmooth = Z (WD) ∩ Xsmooth = Z ′ ∩ Xsmooth = Z ∩ X = ZX .

4.5. Definition Let π : X−→S , X and D as in 4.3 and assume that the map ρX of
formula (6) is injective. Then D will be said to be suited for the component X in the
family π.

4.6. Example The union of an elliptic curve X and a smooth irreducible curve Y with gY > 0
meeting at m points. The general situation we start with is as follows: C0 = X ∪ Y , X
and Y smooth, gX = 1 and gY > 0. Set X ∩ Y = {Q 1; : : : ; Q m}. Moreover the
following notation shall be used: Q i = Q i;Y in Y and Q i = Q i;X in X .

Take P1; : : : ; Pm−1 general on Y . From Theorem 3.2 we know that there exists
a limit Weierstrass scheme Z on C0 with {P1; : : : ; Pm−1} ⊂ Z. For this Z, let
π : X−→S be as at the end of Theorem 3.2. Let us choose a point in the (m−1)-tuple
(P1; : : : ; Pm−1), say P1. Using the theory of admissible coverings (see [21] and [4])
there is a family π′ : X ′−→S ′ of nodal curves associated to π such that for the special
fiber X ′

0 there is an admissible covering f : X ′
0−→D0 of degree g = m + gY , with D0

of genus 0 and having a total ramification point P ′
1 on some component Y ′ of X ′

0

corresponding to the point P1 on Y ⊆ C0. Let fY : Y −→P
1 be the associated covering

for Y . Since no points of Y are identified in C0 and since C0 contains no rational
curves, P1 is a total ramification point for fY . In case deg(fY ) < m + gY , then the
way to link P1 ∈ Y ⊂ X0 with Y ′ is by means of a chain of rational curves. These
rational curves are connected to all components of f −1(f (Y )). Since P is a smooth
point on C0, all those curves have to disappear in the stable model of X0. Hence
the components of f −1(f (Y )) different from Y are rational curves, not linked to Y .
Suppose fY (Q 1;Y ) �= fY (Q 2;Y ). Take some rational curve L with f (L) = f (Y ) and
Q ∈ f −1(f (Q 1;Y ) ∩ L). Using a chain of rational curves, Q 1;Y must be connected to
Q 1;X . In the admissible covering, Q is connected to some Q ′ on a rational curve L′ with
f (X ) = f (L′). Arguing as above, using a point on f −1(f (Q 2;Y ))∩L, one finds that the
chain of rational curves connected to P would not be a tree. This is a contradiction,
hence fY (Q 1;Y ) = : : : = fY (Q m;Y ). But then m′P ∼ Q 1;Y + : : : + Q m;Y + F
for some effective divisor F on Y and some m′ < m + gY . Because P1 is general
with respect to {Q 1;Y ; : : : ; Q m;Y } this is impossible. Therefore deg(fY ) = m + gY .
Assume fY (Q 1;Y ) �= fY (Q 2;Y ) Because P1 is general with respect to {Q 1;Y ; : : : ; Q m;Y }
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it follows that f −1
Y (fY (Q 1;Y )) contains a point Q =∈ {Q 1;Y ; : : : ; Q m;Y }. Hence Q 1;Y

(resp. Q 2;Y ) is linked to Q 1;X (resp. Q 2;X ) by means of a chain of rational curves.
Using f it follows that Q is linked to a component of f −1(f (X )). Since Q is not
linked to a point of X , it is linked to a rational curve L in f −1(f (X )). Using the
chain of rational curves linking Q 2;Y to Q 2;X , one finds that some point of L is
linked to a point f −1

Y (fY (Q 2;Y )) ⊂ Y . This contradicts again the fact that C0 is the
stable model of X ′

0. It follows that Q 1;Y + : : : + Q m;Y belongs to some fiber of fY
and because of the general choice of P1 with respect to {Q 1;Y ; : : : ; Q m;Y }, we find
(m + gY )P1 ∼ Q 1;Y + : : : + Q m;Y + F , for some effective divisor F of degree gY with
Q i;Y =∈ F . In the admissible covering, identifying Q i;Y with Q i;X using a chain of
rational curves, the points of F are connected to points on lines L with f (L) = f (X ).
The union of those rational curves has to be a disjoint union of trees since they have to
disappear in the stable model of C0. We obtain a picture for the admissible covering as
follows, drawn in the case that the support of the divisor F is made by distinct points.
Were it not so, the picture would be drawn with the obvious modification (adding
ramifications to the rational components of self-intersection −1 attached to F ). It is
also possible that some more trees of P

1’s are attached to X or Y due to non ordinary
ramification points).

Y

P 1

P1

X

total ramification

P

.
.
.
..

A

A

A
1

2

s

Q
Q

Q1

2
m

m:1

extra P1
's { g:11

Fig. 2.

From the description at the end of the proof of Theorem 4 in [21], we know that,
for each point Q i there is some t ≥ 0 such that X has an At singularity around Q i . The
t may be not the same for all the Q i ’s. However, looking at the admissible covering of
fig. 2, we see that at each node there is a simple ramification. This says, following [4,
pp. 48-49], that the above admissible covering may be smoothed in a family:

(7)

−−−−− −−− −→

→

χ P

S
→
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such that around each Q i , the surface X is formally given by xy − t = 0. Hence our
good family smoothing the curve C0 such that P1 is a limit of a Weierstrass point
admits a smooth total space. We may hence safely use the intersection theory on a
smooth surface where all the Weil divisors are Cartier.

Let D = X , and consider the sheaf ωπ(X ). Then:

ωπ(X )|Y = ωY (2(Q 1;Y + : : : + Q m;Y )) ;

and

ωπ(X )|X = OX :

Suppose s ∈ H 0(X0; ωπ”(D))|X0
and s|Y = 0. Then, since s(Q i) = 0 and deg(s|X ) = 0,

it follows that s|X = 0, i.e. s = 0. Hence X is suited for Y in the family π.

5. Determining aspects on stable curves

5.1. Let then X ∪Y be a stable curve union of two irreducible smooth components
of genus gX = 1 and gY > 0 respectively, intersecting transversally at m ≥ 2 points
Q 1; : : : ; Q m as in Example 4.6 and let π : X−→S be any good smoothing family.
Then the divisor D of Example 4.6 is suited with respect to the component Y . Hence
H 0(X0; ωπ(D)|X0

) is, via the restriction map ρY a g = (gY + m)-dimensional vector

subspace of H 0(Y; ωY (2(Q 1 + : : : + Q m))), hence a g g−1
2g−2 on Y .

5.2. Proposition. The g g−1
2g−2 on Y so defined is a base point free linear system on Y .

Proof. As already said π∗(ωπ(D))(0) is a g = (gY + m)-dimensional vector subspace
of:

H 0(Y; ωY (2(Q 1 + : : : + Q m))) = H 0(Y; ω
π
(D)|Y ) :

Take a global section σ of π∗(ωπ(−Y ))(0) such that σ(Q i) = 0 for some i. Since
deg(σ|X

) = 0 it follows that σ is identically zero on X , so that σ(Q i) = 0 for all i. Hence

the g g−1
2g−2(Y ) is determined by a g dimensional subspace of H 0(Y; ωY (2(Q 1 + : : :+Q m)))

whose sections enjoy the property that the vanishing at any of the Q i ’s implies the van-
ishing at all of them. All such g -dimensional subspaces of H 0(Y; ωY (2(Q 1 + : : :+Q m)))
can be gotten as follows. Let Z (Q 1; : : : ; Q m) be the subspace of H 0(Y; ωY (2(Q +
+ : : : + Q m))) spanned by all the sections vanishing simultaneously at Q 1; : : : ; Q m.
This is a g − 1 dimensional subspace of H 0(Y; ωY (2Q 1 + : : :+Q m)) and, as a matter
of fact, it turns out to be:

Im(H 0(Y; ωY (Q 1 + : : :+Q m)))−→H 0(Y; ω(2(Q 1 + : : :+Q m))) ;

or, what is the same, the g g−2
2g−2 linear series with base points:

|ωY (Q 1 + : : :+Q m)| + Q 1 + : : :+Q m :

Let σ0; :::; σg−2 be such that Z (Q 1; :::; Q m)= span{σ0; :::; σg−2}. Then π∗(ωπ(−Y ))(0)
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is necessarily of the form span{σ0; : : : ; σg−2; σg−1}, where σg−1(Q i) �= 0. Each such
linear system is clearly base point free.

5.3. Theorem. For the good family π : X−→S as above, the ramification locus of the
g g−1

2g−2(Y ) defined by π∗(ωπ(D))(0), is contained in the Y -aspect W0(π)Y of the LWS.

Before proving the claim it is worth to spend few words of comment. We already
proved that if P

η is a generic Weierstrass point degenerating to P0 ∈ Ysmooth, then it is

in the support of the ramification scheme of the g g−1
2g−2. Conversely, Theorem 5.3 will

show that each smooth ramification point of the g g−1
2g−2(Y ) is limit of a WP. However

one cannot exclude a priori that also some (or all of them) of the Q i ’s (i.e.; the nodes of
C0) occur in such ramification locus. The proposition says that, in this case, there are
sections of WP’s degenerating to such points. We shall show that, for general families,
all the ramification locus of the g g−1

2g−2(Y ) lies in the smooth locus of Y .

Proof. We use the fact that the locally free rank g sheaf π∗ωπ(D) induces a morphism
φ of X to P

g−1 over S . Such a morphism φ «contracts» the component X to a point of
P

g−1, so that the image of Y through the morphism φ0;Y induced by φ is an irreducible
curve of geometric genus gY with a m-branched singular point. What we get by means of
φ is a flat family of projective curves over S whose generic fiber is a geometrically smooth
curve of genus g . The arithmetic genus of φ0;Y (Y ) is g as well, and the hyperplane
series coincides with the linear series defined by the dualizing sheaf of φ0;Y (Y ), which
is hence invertible. In other words, N = φ0;Y (Q i) is a Gorenstein singularity having
m = ](X ∩Y ) as δ invariant. Now, by general semicontinuity arguments, the inflection
points of the hyperplane series on the geometric generic fiber degenerate to inflection
points of the same series on the special fiber. By the general theory of Weierstrass
points on Gorenstein curves (cf. [24]), it follows that there are at least mg (g − 1)
smooth Weierstrass points of φ(X )η, degenerating to the singular point N . The total
weight of the other limits is due to the sum of:

1. the total weight of the ramification points of Ysmooth with respect to the hyperplane
series and

2. some extraweight E (cf. [15]) at the singular points which arises if some of the
branches is inf lectional with respect to the hyperplane series.

Such a total weight is precisely the total weight of the ramification points of the
g g−1

2g−2(Y ) [15] which is, by applying the Brill-Segre formula, exactly g (g − 1)(gY + 1).
Notice that mg (g − 1) + g (g − 1)(gY + 1) = (g − 1)g (g + 1), as it should be, which
means, in particular, that the part of the Y -aspect of the LWS contained in Ysmooth is
completely contained in the ramification locus of the g g−1

2g−2(Y ).

5.4. Corollary. The total weight of the Weierstrass points degenerating onto Xsmooth is
bounded by mg (g − 1) + E .
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Proof. The proof is obvious. We only remark here that some of the generic Weier-
strass points degenerating on X could end at the nodes Q 1; : : : ; Q m, possibility which
occurs in many interesting cases. Of course, if the curve X ∪Q 1

; : : : ;∪Q m
Y has general

moduli, then E = 0.

5.5. Thanks to Example 4.6, we know that Theorem 5.3 is not empty, i.e. that
there exists a family of semi-stable curves π : X−→S whose special fiber has X ∪Y
as a stable model, with gX = 1, and smooth total space X . This can be easily
seen by considering the smoothing coming from an admissible cover. Choose P0 ∈
∈ Y \ {Q 1; : : : ; Q m} arbitrarily. Then one can smooth X ∪ Y in a family such that
P0 ∈ Y \ {Q 1; : : : ; Q m} is the limit of a Weierstrass point on nearby smooth curves
by considering the admissible covering drawn in fig. 2, modulo some extra rational
components coming from possible non-ordinary ramifications.

We should notice, now, that Theorem 5.3 shows that the g g−1
2g−2(Y ) defined by

π∗ωπ(−Y )(0) is a g -dimensional vector space contained in:

H 0(Y; ωY (2(Q 1 + : : :+Q m))) ;

and containing the g g−2
2g−2(Y ) := |ωY (Q 1 + : : :+Q m)| + Q 1 + : : :+Q m. All the vec-

tor subspaces of H 0(Y; ωY (2(Q 1 + : : :+Q m))) enjoying this property form a (m − 1)-
dimensional family, as can be easily checked. This result is compatible with Theo-
rem 3.2. The natural question to ask is now if it is true that any such a vector
subspace is the g g−1

2g−2(Y ) associated to some good family. The affirmative answer is
provided by the following:

5.6. Proposition. Let V be any vector subspace of

H 0(Y; ωY (2(Q 1 + : : :+Q m)))

containing the g g−2
2g−2 :

|ωY (Q 1 + : : :+Q m)| + Q 1 + : : :+Q m :

Then there exists a good family π : X−→S such that the ramification locus of such g g−1
2g−2 is

contained in the Y -aspect of W0(π).

Proof.

1. Pick m − 1 distinct points on Y , P1; : : : ; Pm−1 in general position. Then
there exists one and only one g g−1

2g−2 as in the statement, admitting them as ramifica-
tion points. Since we are working in characteristic zero, we can use a simple wron-
skian argument. Choose a basis {v1; : : :; vgY +m−1; w1; : : :; wm} of H 0(Y; ωY (2(Q 1 +
+ : : :+Q m))), such that:

Im
(

H 0
(
Y; ωY

(∑
Q i

))
−→H 0

(
Y; ωY

(
2

(∑
Q i

)))
= span{v1; : : : ; vgY +m−1}:

Then any V as in the statement can be expressed as the

span{v1; : : : ; vgY +m−1; w};
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where:

w = a1v1 + : : : + agY +m−1vgY +m−1 + b1w1 + : : : + bmwm ;

and at least one of the bi ’s is not zero.
Let us denote by Wr(v1; : : : ; vgY +m−1; w) the wronskian determinant associated to
the given basis of V . By linearity and antisimmetry, it can be expressed as:

Wr(v1; : : :;vgY +m−1;w)=b1 Wr(v1; : : :;vgY +m−1;w1)+ : : :+bmWr(v1; : : :;vgY +m−1;wm):

Since the zero locus of each Wr(v1; : : : ; vgY +m−1; wi) is a finite set of points, the
wi ’s can be chosen in such a way that:

Wr(v1; : : : ; vgY +m−1; wi)(Pj ) �= 0 1 ≤ i ≤ m and 1 ≤ j ≤ m − 1 :

It is hence meaningful to solve the linear system in the unknowns bi :
m∑

i=1

bi Wr(v1; : : : ; vgY +m−1; wi)(Pj ) = 0 ;

which in our general situation has maximal rank. In fact, assume that
m∑

i=1

bi Wr(v1; : : : ; vgY +m−1; wi)(Pj ) = 0 ;

are independent relations for 1 ≤ j ≤ j0 ≤ m − 1. The relations give rise to linear
systems of type V having ramification in P1; : : : ; Pj0

. Since a general point Pj0+1

is not a ramification point of a chosen such linear system V , it follows that:
m∑

i=1

Wr(v1; : : : ; vgY +m−1; w)(Pj0+1) = 0 ;

is one more independent equation.
As a consequence, the above system yields a m-tuple (b1; : : : ; bm) ∈ C

n \ {0}
uniquely defined up to a multiplication by a non-zero complex number. This m-
tuple defines uniquely

V = span{v1; : : : ; vgY +m−1; w};

i.e. a g g−1
2g−2 which ramifies in P1; : : : ; Pm−1, as required. This concludes the proof

of Step 1.
2. By Theorem 3.2 we know that there exists π : X−→S such that {P1; : : : ; Pm−1} ⊂

⊂ W0(π)Y . We should check that, generically, the total space X of the family is
smooth. To see it, it suffices to consider a Weierstrass point P

η on the geometric
generic fiber X

η
degenerating to P0 ∈ Y . Then X

η
can be exhibited as a g : 1 rami-

fied covering of P
1
C((T )), having Pη as a total ramification in Xη. In the given family,

such a covering degenerates to an admissible covering on the special fiber, having a
total ramification in P0. The special fiber of the family of admissible coverings so
constructed has to be of the form of Pict. 3.1, as shown in Example 4.6.
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Theorem 5.3 together with Proposition 5.6 implies then:

5.7. Theorem. Let C0 = X ∪ Y be a stable curve over Spec(C), such that gX = 1 and
](X ∩ Y ) = m ≥ 2. Then a subscheme of Ysmooth of length 2g (g − 1) + (gY − 1)g (g − 1)
is contained in a LWS W0(π) of a suitable good family π : X−→S , if and only if it coincides
with the ramification locus of a g g−1

2g−2 contained in |ωY (2(Q 1 + : : :+Q m))| and containing
|ωY (Q 1 + : : :+Q m)| + Q 1 + : : :+Q m.

To better show the content of the above propositions, it seems worth, now, to
discuss two examples, which show that there are types of stable curves whose nodes
are always limits of WP’s. This fact should be contrasted with what happens for stable
curves of compact type: if such curves are «sufficiently general», the nodes are not limits
of Weierstrass points (see e.g. [4, 8]).

5.8. Let C0 = X ∪ Y be a stable curve of genus m + 1, which is the union of two
elliptic curves meeting transversally in m ≥ 2 points. We already know that given any
g g−1

2g−2 on Y as in Theorem 5.3 then there exists a good family π : X−→S such that

(π∗ωπ(D)(0) ⊆ H 0(Y; OY (2(Q 1 + : : :+Q m))) coincides with such series. Also we know
that the same family induces (uniquely!) on X a g g−1

2g−2(X ) having the same features.

Generically, a g g−1
2g−2 on Y can be chosen in such a way that it does not ramify at the

nodes Q 1; : : : ; Q m. Then on the smooth locus of X and Y , if the family π : X−→S
is chosen in a sufficiently general way, degenerate 2m(m + 1) generic Weierstrass points.
The total weight of the LWS is m(m + 1)(m + 2), so that m(m + 1)(m−2) Weierstrass
points in the generic fiber must degenerate onto the nodes. This can be seen also by
considering the embedding of π : X−→S in P

m
S by means, for instance, of π∗ωπ(D).

The image of the special fiber in P
m
C

is an integral Gorenstein curve of arithmetic genus
m + 1 and a m-branched singular point having m as δ-invariant. Hence, the total
weight of the Weierstrass points degenerating on X is given by the weight of such a
node, which is m2(m + 1). Since only 2m(m + 1) Weierstrass points degenerate on
Xsmooth, it follows that m(m + 1)(m − 2) should degenerate onto Q 1; : : : ; Q m.

Notice that in the above example, once we choose a g g−1
2g−2 on Y , we can find a good

family smoothing it which induces uniquely a g g−1
2g−2(X ) on X . However it is not yet

clear to us the shape of such g g−1
2g−2(X ), beside the already mentioned properties. Clearly,

the space of the g g−1
2g−2(X ) which fits in the same LWS together with the fixed g g−1

2g−2 is
zero dimensional. But it is not clear the link between the two. In spite of this fact,
there are examples where our knowledge of the aspects of the LWS is more precise, as
the following example shows.

5.9. Example In this example C0 = X ∪Y (as in fig. 3) is such that X ∩Y = {A; B},
gX = 1, gY = 2, and A + B is not a canonical divisor for Y and that A − B is not
2-torsion on X . Let P0 ∈ Y \ {A; B} be a point arbitrarily chosen. Then we claim
that:

1. (a) There exists a good family π : X−→S such that P0 ∈ Y is the limit of a WP Pη

on Xη.



224 m. coppens - l. gatto

A B

Y

X

0

0

C  = X   

g (C  ) = 4   

gY = 2   

gX = 1   

Y∪

Fig. 3.

(b) All the limits of the Weierstrass points in the smooth locus of Y are the ram-
ification points of the unique g 3

6 (Y ) contained in |ωY (2A + 2B)|, containing
|ωY (A + B)| + A + B and ramifying in P (existing by Proposition 5.6 and the
remarks preceding it).

2. The X -aspect of the LWS contained in Xsmooth does not depend on the choice of
the point P0 ∈ Y and hence on the smoothing family choosen. It coincides with
the ramification locus of the linear system |2A + 2B|.

3. The total weight of the Weierstrass points degenerating to A and B is 8.

Proof of 1. To prove 1, we first construct a 4 : 1 admissible covering of a reducible
rational curve D0 by means of C0, such that P0 ∈ Y is a total ramification point. In
order to do that, notice that, by the Riemann-Roch formula, one has:

h0(Y; 4P0 − A − B) = 1 − 2 + 2 + h0(ωY (A + B) − 4P0) ≥ 1 ;

so that there exists P �= Q , such that 4P0 ∼ A + B + P + Q . Hence we may cover
P

1 with a map fY : Y −→P
1
Y such that f −1

Y (∞) = 4P0 and f −1
Y (0) = A + B + P + Q .

Moreover, we have:

h0(X; A + B) = 2 ;

meaning that there exists a holomorphic function of degree 2, fX : X −→P
1
X such that

f −1
X (0) = A + B. Adding extra rational components lying over P

1
X , setting D0 = P

1
X ∪P

1
Y ,

one gets the admissible covering of fig. 4.

Y

P

P

1

4:1

P

Q

B

A

P
0

total ramification

1

X

2:1

extra P
1 's {

Fig. 4.
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We claim that such an admissible covering can be smoothed in a family:

(8)

−−−−− −−− −→

→

χ P

S
→

with X a smooth surface. This follows from the analysis performed in [4, pp. 48-
49], where the Author investigates under which conditions the smoothing of admissible
covering gets an At (t ≥ 1) singularity around the nodes of the special fiber. In our case
the smoothing surface, around each node A and B of the special fiber is formally given
by xy−t = 0 (cf. [4, pp. 48-49). That there is a unique g 3

6 (Y ) fulfilling the property 1 b
above, has already been proven in Proposition 5.6. Notice that the divisor X is suited
with respect to Y . In fact ωπ(X )|X = 0, and twisting ωπ by OX (X ) and restricting it on
the special fiber is meaningful, because we checked that X is smooth. It follows that the
aspect g 3

6 (Y ) is a sublinear series of |ωY (2A + 2B)| containing |ωY (A + B) + A + B|
(cfr. proof of Proposition 5.6) and it ramifies at limits of WP’s (by Theorem 5.3).
Hence it ramifies at P0. But there is only one such g 3

6 (Y ), so that it is the same
we started with. A simple application of the Brill-Segre formula tells us that the total
weight of the Y -aspect of the LWS is 36. This concludes the proof of Claim 1.

Proof of 2. To prove 2, first of all recall that we may freely use the intersection
theory on a smooth surface, since the family smoothing the admissible covering of
fig. 4, has a smooth surface as a total space. Now notice that deg(ωπ(−2X )|X ) =
= deg(OX (3A + 3B)) = 6. Hence, deg(ωπ(−2X )|Y ) = deg(ωY (−A−B)) = 0. Moreover,

since A + B �∼ ωY , we have H 0(Y; ωY (−A − B)) = 0. Now, π∗ωπ(−2X )(0) can
be identified with a vector subspace of H 0(X; OX (3A + 3B)). But any section σ ∈
∈ π∗ωπ(−2X )(0) is such that σ|Y

= 0, so that σ(A) = σ(B) = 0. This means that our

g g−1
2g−2(X ) has a base point in A and a base point in B. Hence it coincides, by dimension

reasons, with |2A + 2B| + A + B on X . Notice that neither A nor B is a ramification
point of the base point free linear series |2A + 2B| on X . For if, say, B were such
a ramification point we would have 2A ∼ 2B, contradicting the hypothesis according
which A − B is not 2-torsion. By Theorem 5.7, Q ∈ Xsmooth is a limit of a WP on Xη

if and only if it is a ramification point of |2A + 2B| proving the claim 2. Notice that
the base points A and B of the g g−1

2g−2(X ) contributes each by 4 to the total weight of
its ramification locus. Nevertheless we cannot conclude yet, for this reason, that some
Weierstrass points on the smooth fiber degenerate into the nodes of C0.

Proof of 3. As for Claim 3 we argue as follows: π∗ωπ(X ) induces a morphism φ of
X in P

3 over S . The image of the geometric generic fiber is a canonical smooth curve
of genus 4, while the image of the special fiber is a curve of degree 6 with a 2-branched
singular point whose δ-invariant (by genus reasons) is equal to 2. In other words, the
morphism φ contracts the component X (where the degree of the restriction of ω

π
(X )

is 0). What one gets, in the special fiber, is a Gorenstein curve of arithmetic genus 4.
The contribution of the singular point to the total weight is 2 ·4 ·3 = 24 (see, e.g. [24]),
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which corresponds to the total weight of WP’s degenerating onto the component X .
But on X we found only 16 limits, located in the smooth locus. Hence 8 WP’s on
Xη should degenerate into the nodes. One may expect that in the general situation the
limits falling into the nodes distribute uniformly into the two nodes, namely 4 on one
node and 4 to the other one. This is actually the case, for general smoothing, as it is
shown by Esteves in [10].

Some remarks and few words of warning seem to be necessary. First of all notice
that the limit positions of Weierstrass points in the good family we started with in the
previous example, have been completely determined. Also, such limits are parametrized
by a 1-parameter family of g 3

6 on Y , and this is compatible with Theorem 3.2. On the
other hand the reader may wonder about the behaviour of the limits on the component
X . In fact, they are fixed, apparently contradicting the well known fact that each point
of X can be limit of a Weierstrass point. As a matter of fact, if P ∈ X is arbitrarily
chosen, we can easily construct either the admissible covering 5a or the admissible
covering 5b, by imitating the procedure shown to construct that of fig. 4.

Y

P 1

3:1

extra P1

P1

X

4:1

total ramification

extra P1

total 
ramification Y

P 1

3:1

P1

X

4:1
A

B
B

P A
P

a) b)
Fig. 5.

However, the surface arising from the smoothing of the admissible cover drawn
in fig. 5a has an A1 singularity at A, as well as, similarly, the surface arising from
smoothing the admissible cover of fig. 5b has an A1 singularity at B. This follows from
the local analysis that, again, may be found in [4, pp. 48-49].

This means that the above procedure of twisting the dualizing sheaf does not make
sense in this case, because the divisors involved are not Cartier. Before using the same
technique, one should blow up the surface at the singular point. One gets in such
a way a new π : X−→S with same geometric generic fiber, with X smooth but with
special fiber a semistable model of C0, namely:

X XY Y

A

B

A'

B' B"

A"
L

L

a) b)
Fig. 6.

gotten by inserting the rational component L at one of the nodes.
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It is worth of remarking, before concluding the paper, that we implicitly proved
that, in general, the space of the limit Weierstrass scheme is not irreducible. This is
because there is a 1-dimensional family of Weierstrass schemes all whose X -aspects are
the ramification locus of |2A + 2B|, which is a component of the space of Weier-
strass schemes (because of Theorem 3.2), so there need to be another 1-dimensional
component such that a general element of it contains a general point P of X .
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