
31 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Designing a videoconference system for active networks / Baldi, Mario; Picco, G. P.; Risso, FULVIO GIOVANNI
OTTAVIO. - In: PERSONAL TECHNOLOGIES. - ISSN 0949-2054. - 2:2(1998), pp. 75-84. [10.1007/BF01324937]

Original

Designing a videoconference system for active networks

Publisher:

Published
DOI:10.1007/BF01324937

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1405291 since:

Springer

Designing a Videoconference System

for Active Networks

Mario Baldi1, Gian Pietro Picco1;2, and Fulvio Risso1

(1) Dip. Automatica e Informatica, Politecnico di Torino

C.so Duca degli Abruzzi 24, 10129 Torino, Italy

Phone: +39 11 564 7067 Fax: +39 11 564 7099

fmbaldi,rissog@polito.it

(2) Dept. of Computer Science, Washington University

Campus Box 1045, One Brookings Drive, St. Louis, MO 63130-4899, USA

Phone: +1 314 935 7536 Fax: +1 314 935 7302

picco@cs.wustl.edu

Abstract. Active networks are receiving increasing attention due to

their promises of great exibility in tailoring services to applications. This

capability stems from the exploitation of network devices whose behavior

can be changed dynamically by applications, possibly using technologies

and architectures originally conceived for mobile code systems.
Notwithstanding the promises of active networks, real-world applications

that clearly bene�t by them are still missing. In this work we describe

the design of a videoconference system conceived expressly for operation

over active networks. The goal of this activity is to pinpoint the bene�ts

that mobile code and active networks bring in this application domain

and to provide insights for the exploitation of these concepts in other

application domains.

1 Introduction

The role of computer networks is becoming increasingly important in modern
computing. This fact poses unprecedented challenges in terms of performance
and exibility which a�ect the protocols and standards that constitute the com-
munication infrastructure underlying computer networks, as well as the tech-
nologies and methodologies used to build distributed applications.

Researchers are devising approaches coming from di�erent perspectives and
addressing di�erent layers of abstraction. However, a set of approaches that
exploit some form of code mobility is currently emerging among the others as
particularly promising and intellectually stimulating. Code mobility can be de-
�ned informally as the capability to change dynamically the bindings between
the code fragments belonging to a distributed application and the location where
they are executed. The rationale for code mobility is to reduce network traÆc
and increase exibility and customizability by bringing close to the resources the
knowledge embedded in the code [5]. This powerful concept is being popular-
ized by a new generation of programming languages and systems that provide

abstractions and mechanisms geared towards the task of relocating code. These
technologies, often referred to collectively as mobile code systems, are targeted
at the development of applications on large scale distributed systems like the
Internet.

Concurrently with these developments, other researchers are investigating
means to introduce exibility in computer networks by assuming the availability
of next-generation network devices whose behavior can be changed dynamically
according to users' needs. These active networks are receiving a great deal of at-
tention in industry and academia and seem naturally suited to leverage o� of the
developments in the �eld of code mobility. In fact, technologies and architectures
conceived for building distributed applications exploiting code mobility can be
used for supplying dynamically the network devices with application-dependent
code that changes their behavior. In this scenario, networks become active be-
cause they take part in the computation performed by the applications rather
than being concerned only with the transfer of data.

Researchers presently interpret the idea of active network at least with two
di�erent nuances. The �rst, broader interpretation of the term is that the dis-
tinction between network nodes and end-systems becomes blurred in terms of
functional characteristics. This approach is embodied for example in the work de-
scribed in [6] and [19]. In this setting, network devices, e.g., routers, can execute
mobile code implementing a distributed application which can bene�t by direct
access to functionality and information at lower layers in the network stack. This
programmable switch approach [16] does not a�ect the way current lower and mid
layer protocols are designed and deployed. On the other hand, the second inter-
pretation aims at modifying the heart of network protocols, by extending the
control information contained in network packets with code describing how to
process the packets at the intermediate nodes along the path to the destination.
Protocol deployment is then performed on demand, without requiring software
preinstallation and upgrade, and yet is under the control of the applications. A
packet augmented in this way, also called capsule [16], is reminiscent of what the
mobile code community calls a mobile agent|an autonomous unit of mobility
containing code and state. Toolkits are being developed [17, 7] to support the
creation and deployment of capsules.

Active networks and, more generally, code mobility are promising ideas. Nev-
ertheless, despite the great deal of interest and e�ort in these research areas,
contributions that characterize precisely and possibly quantitatively the advan-
tages of the approach are only beginning to appear [11, 2], while applications that
demonstrate these advantages in real-world domains are still largely missing.

The goal of the research described in this paper is to assess the bene�ts
brought by code mobility in the context of active networks. This is achieved prag-
matically by constructing a videoconference system according to the aforemen-
tioned programmable switch approach. Videoconference is an increasingly pop-
ular distributed application which poses signi�cant challenges and constraints
and thus can be considered a reasonable testbed for our purposes. Our long
term goal is to characterize qualitatively and quantitatively the implementation

currently being completed at our university against conventional ones, in order
to identify precisely the tradeo�s involved. However, the work presented here
focuses on the design of our videoconference application and aims at identifying
and suggesting novel architectural opportunities enabled by code mobility and
active networks.

The paper is structured as follows. Section 2 discusses briey the require-
ments of a videoconference system and how these can be satis�ed by an archi-
tecture that exploits mobile code on an active network. Section 3 describes in
detail the architecture of our prototype, and identi�es two variants which feature
di�erent degrees of distribution. Section 4 provides information about the on-
going implementation. Finally, Section 5 contains brief conclusive remarks and
discusses future lines of research on the subject of this paper.

2 Videoconferencing on an Active Network

Videoconference systems can be split grossly in two categories. In peer-to-peer

conferencing systems, the participants are connected through a multicast net-
work and the videoconference ow generated by each participant is distributed
to the others exploiting multicast delivery. An evident advantage of this �rst ap-
proach is its good scalability. However, conference management is complicated by
the characteristics of the architecture, especially as far as security is concerned.
A relevant example of this category is the tool suite for MBone, the Multicast
Backbone [1].

The alternative, popular especially among commercial systems, employs a
centralized architecture based on a conference server which receives the confer-
ence streams from the clients operated by the participants and replicates such
streams back to all the clients connected. Centralization not only simpli�es the
problem of secure access, but also enables customizability. The server can per-
form additional computation on an incoming videoconference stream on behalf of
the clients instead of simply replicating the stream towards them, thus enabling
conference users to get control on the delivered quality of service. A centralized
approach is a�ected by the usual drawbacks in terms of scalability and fault-
tolerance. An example of centralized system is CuSeeMe [4], while the H.323
standard [8] de�nes an architecture that accommodates both categories.

Neither of the two solutions described seems suitable for the large scale sce-
narios that are being envisioned for the Internet. Let us consider for instance the
broadcasting of a sport event. In a multicast network, the conference streams are
not tailored to the users: the same stream is routed to all the audience members,
no matter whether they are connected through a high-bandwidth local area net-
work or a dial-up connection. Thus, the former get a quality lower than their
potential, while the latter get unpredictable quality due to the packets discarded
to tailor the rate of the data ow to their low capacity access. On the other hand,
a centralized architecture requires a huge amount of computational power in the
conference server and overloads the network since separate multimedia streams
are maintained through the network between the server and each client.

Ideally, a videoconference system should exhibit features coming from both
architectures, thus enabling user customization without preventing the scalabil-
ity of the architecture. Interestingly, the latter is, by and large, one of the goals
that motivated active networks and in general the approaches relying on code
mobility. Thus, their exploitation in solving the aforementioned problems seems
a natural step.

Our architecture is based on a conference server that we call reector. Cus-
tomizability and scalability are then provided together by:

1. enabling the users to \upload" application code into the reector, thus chang-
ing its behavior and customizing it to their needs;

2. running the reector on the intermediate nodes of the network, where it can
use the information managed by the device to become aware of the status
of the network and adapt to it;

3. enabling the reector to migrate on a di�erent node as a consequence to
adaptation.

The �rst point provides a degree of customizability even higher than the one
provided by centralized systems. Customization is not limited to changing the
parameters of the reector, rather it allows to change the code that governs its
behavior. The reector is then basically a \shell" where each client can plug-in
dynamically the code describing some customized processing. Thus, for instance:

{ Di�erent coding algorithms can coexist in a exible way. The reector does
not need to be equipped with plenty of coding algorithms in order to encom-
pass the needs of a wide range of clients. These are linked in the reector
dynamically and on demand.

{ The quality of service for the encoded videoconference stream can be changed
dynamically to �t user needs. The desired policy can be arbitrarily com-
plex and can be changed at run-time. For instance, it is possible to specify
application-dependent criteria to discard packets in presence of congestion,
as suggested in [3].

{ The videoconference ows coming to a client from di�erent participants can
be treated di�erently. For example, a participant can request the reector to
give higher priority or to guarantee a higher quality of service to some ows,
and carry the others with a lower quality. The advantage is that ows can
be discriminated according to application level information, like the identity
of the current speaker.

Point two, that actually provides the rationale for exploiting an active net-
work, deserves some elaboration. At the time of writing, network devices equipped
with a run-time support for execution of mobile code are not widely available.
However, many vendors have already announced new releases of their products
that feature hardware or software support for the Java language [14]. In the im-
plementation of our prototype we cope with this problem, characteristic of the
whole research area, by adopting the approach followed by many researchers: we
simulate an active device by running the mobile code on a workstation directly
connected to a network device.

R4

R2

R1

R5

R3

R6 R7

C1 C2 C3 C4 C9 C10 C11 C12C5 C6 C7 C8

8/6

8/6

8/6 8/6

8/6

8/6

8/4

4/4 1.5/1.5

link bandwidth / conference bandwidth

host belonging to the conference

X/Y

router+reflector

router

host

Fig. 1. Cloning reectors.

Point three is at the core of the work described in this paper. The reector
analyzes constantly the data available on the network device and can trigger a
migration to adapt to some change in the conditions of the network. We devised
two architectural solutions to enable adaptivity through migration. In both cases,
the criteria that rule adaptation are embodied in the code of a component of the
reector that is designed to be modular and interchangeable, as described in the
next section.

In the �rst solution, the reector responds by relocating itself in a position
of the network that is optimal with respect to some cost function, e.g., distance
from the clients. According to the classi�cation presented in [5], the reector
relies on a weak form of mobility where its execution state is not preserved
across migration: only its code and a portion of its data state are transferred.
This solution is suitable for conferences characterized by a limited number of
participants or by heavily clustered participants.

In turn, our second architectural solution is conceived for conferences with
a great number of participants. It relies on cloning the reector rather than
migrating it; the latter can be regarded as a special case of cloning where the
original reector is terminated. This way, multiple reectors are injected into the
network upon some special event (e.g., when a new participant joins a session),
and perform subsequent transformations of the conference streams providing for
improved scalability. For instance, Fig. 1 shows a network with two reectors
placed on two di�erent routers, R3 and R7, that are responsible for serving hosts
C4, C7, C9, and C12. Notably, the reectors have been cloned only in the positions
of the network where transformation of the videoconference streams is needed.
Moreover, whenever possible only one stream is transmitted between reectors
and separate streams are generated close to the participants, thus minimizing
the overall network traÆc generated by the conference.

Reflector

DispatcherReceiver

UserDispatcher1

Manager

UserDispatcher2

LocatorBuffer
1+1+2

Fig. 2. The components of the reector.

The next section illustrates the details of both architectures. In principle, the
two architectures can be combined e�ectively in a single system that, upon the
occurrence of some user-speci�ed condition, is capable to switch automatically
between the two modes of operation.

3 The Architecture

The design described in this section strives for modularity and recon�gurability,
in order to leverage o� of the opportunities provided by code mobility in changing
dynamically the code associated with a component. We speci�ed the design of
our prototype using the OMT [12] object-oriented notation. The full OMT design
is available in [9].

3.1 The Reector

The reector is composed of �ve classes, depicted in Fig. 2. Receiver, Bu�er, and
Dispatcher provide the \work power" of the reector and deal with receiving and
transmitting the data packets that constitute the conference streams. The classes
Manager and Locator are the \brain" of the reector. The Manager object is the
control component that governs the behavior of the reector. The Locator object
monitors information available on the device the reector is residing on and can
signal to the corresponding Manager object the need for migration or cloning in
order to adapt to events in the network. All the aforementioned components are
described in the following.

Receiver Instances of this class are responsible for handling the input videocon-
ference streams. Each instance of Receiver contains a separate thread of control

that receives the multimedia streams from all the clients. The receiver stores the
packets in the element of a bu�er pool corresponding to the sender of the packet,
identi�ed using information in the protocol headers. The audio and video com-
ponents are handled as two separate streams which are received on two distinct
sockets; thus, two instances of Receiver are spawned in each reector. The re-
ceiver is a key element as far as performance is concerned and keeping it simple
is desirable to achieve good performance.

Bu�er Instances of this class contain circular lists of packets. The number of
bu�ers contained in the reector is usually twice the number of clients currently
connected to it, in order to separate the processing of audio streams from the
one for video streams. Each Bu�er object is accessed concurrently by Dispatcher

instances, that can read the packets stored in it by the Receiver object in charge
of the bu�er. Each bu�er provides methods to return the packet stored at a given
position as well as to determine the index of the packet most recently stored.
Clearly, the length of the bu�er is a key parameter in the con�guration of the
reector, and depends on the bit rate and maximum delay tolerated by each
client.

R
E

C
E

IV
E

R

A1
A2
B3
A3
A4

A6A5A4

B6B5B4

B8

A8
A1

B5

B2

B1 A2
B3A3

B4

B2

B4

B1

B5

BufferUserA

BufferUserB

to client

from client

to client

Dispatcher2Dispatcher1

A7

B7

A4

Fig. 3. Exploiting customized Dispatcher objects.

Dispatcher Instances of Dispatcher have their own thread of control and are re-
sponsible for the processing that transforms input streams and replicates them
to all the clients. The class Dispatcher, in Fig. 2, implements a default behavior
that always retransmits the most recent packets in the audio and video bu�ers.
Clients can supply their own classes specialized from Dispatcher, in order to
bene�t by additional, customized processing and possibly adapt to the network
conditions. The selection of a customized Dispatcher object may take place at
setup time, but it can also be performed during the conference, by exploiting
mobile code mechanisms such as remote dynamic linking. The customized pro-
cessing embodied in a Dispatcher object may be as simple as an application-aware

discarding of frames in order to adapt to network load, or as complex as a re-
coding of the stream, e.g., to convert it from MPEG to H.261. This scheme can
exploit e�ectively layered encoded video because in presence of bandwidth re-
duction, e.g. due to congestion, the dispatcher can send to clients only the high
priority layers and discard the others with little computation overhead.

Figure 3 illustrates how customized Dispatcher objects can �lter out di�er-
ently the same conference streams. In the �gure, the leftmost Dispatcher object
privileges the stream coming from client A, while the rightmost treats both
streams the same way, although with reduced bandwidth.

Locator The object of this class has a separate thread of control and is respon-
sible for gathering information on the status of the network. It can react to a
change in network conditions by suggesting either migration or cloning of the
reector. The new location chosen is supposed to optimize a given cost function,
and is communicated to the Manager object that triggers the actual relocation.

A cost function could, for instance, minimize a weighted combination of rele-
vant indexes like traÆc on selected links, overall traÆc on the network, maximum
or average delay experienced by conference participants, and economic cost. The
data used by the locator to take its decision can be obtained either by monitor-
ing the network or directly from the databases of the network node on which it
is running. In the �rst case, the locator could probe for example the round trip
delay of the path to clients using the ping mechanism. In the second case the
locator exploits directly the information contained in the router on which it is
executing, e.g., the status of its queues, the traÆc statistics of its interfaces, or
the topological database of a routing protocol.

The amount of intelligence and computational complexity embedded in the
Locator are implementation dependent. Customized Locator classes can be cre-
ated to cope with di�erent videoconferencing scenarios, and substituted to the
default one. Also, the locator can be recon�gurable by applications and users
that can tune its parameters and thresholds to better suit their needs. In par-
ticular, the strategy for relocation, i.e. migration vs. cloning, can be speci�ed
dynamically.

Manager As shown in Fig. 4, the instance of Manager coordinates the operations
of the reector to which it is associated with and is in charge of communications
with clients. Typical tasks of the Manager include joining new members to the
conference, accepting incoming code for the dispatchers, dealing with security
issues, and taking care of the migration or cloning of the reector.

The manager handles control communications with the clients through a
control connection for sending feedback about the operations of the reector
and receiving requests, e.g., to change transmission parameters. These requests
are interpreted and then satis�ed by invoking the appropriate methods on the
Dispatcher. The control connection is used, in particular, to inform the clients
upon relocation of the reector so that they can redirect their streams to the
new location, as described in the next section.

R
E

C
E

IV
E

R

MANAGER LOCATOR

BUFFER

BUFFER

DISPATCHER

DISPATCHER

Change Position

Plug-in Dispatcher

Change Parameter
Multimedia
Streams
from Clients

Accept Flow
from Host H

Control
Connection

Multimedia
Streams
to Clients

Fig. 4. Managing the videoconference.

3.2 Migrating the Reector

The movement of the reector should be as transparent as possible to users,
to avoid even temporary service disruptions. This is especially important if the
locator component is aggressive and movements are frequent. Temporary service
disruption could take place if there is a time frame in which the reector is no
longer operational in the old location and is not yet operational in the new one.
In order to avoid this situation, migration takes place in two phases:

1. The manager object generates a clone of the reector (Fig. 5a) which is sent
on the network node chosen by the locator. As soon as the new reector be-
gins its execution on the hosting node, it sends a noti�cation to the manager
of the old reector, which in turn informs the clients about the new loca-
tion of the reector (Fig. 5b). After the clients receive this noti�cation they
start transmitting their streams to the new location (Fig. 5c). The execution
state of the reector is lost, and only a portion of the data space is carried
with it. In particular, the bu�ers are not transferred at destination, as they
contain volatile information that is better handled by the old reector. In
contrast, the client pro�les are transferred with the reector clone, in order
to maintain the information about the clients currently connected.

2. When all the clients have redirected their ows to the new reector, the latter
sends a control message to the Manager object of the original reector, which
terminates the process running at the old location (Fig. 5d).

3.3 Using a Capsule to Join the Conference

The minimum setup for a conference includes an instance of Reector and two
clients. Each clients receives the conference streams from the reector. However,
clients can be either active or passive depending on whether they originate their
own streams or not. The startup of a conference session is determined by a client
that \rings" another one, the conference owner. The identity of the conference

R
E

C
E

IV
E

R BUFFER

BUFFER

DISPATCHER

DISPATCHER

MANAGER LOCATORChange Position

Create Remote Clone at B

Reflector at A

R
E

C
E

IV
E

R BUFFER

BUFFER

DISPATCHER

DISPATCHER

MANAGER LOCATOR

Reflector at A

R
E

C
E

IV
E

R BUFFER

BUFFER

DISPATCHER

DISPATCHER

MANAGER LOCATOR

Reflector at B

R
E

C
E

IV
E

R BUFFER

BUFFER

DISPATCHER

DISPATCHER

MANAGER LOCATOR

Reflector at A

R
E

C
E

IV
E

R BUFFER

BUFFER

DISPATCHER

DISPATCHER

MANAGER LOCATOR

Reflector at B
Kill

R
E

C
E

IV
E

R BUFFER

BUFFER

DISPATCHER

DISPATCHER

MANAGER LOCATOR

Reflector at A
Running

R
E

C
E

IV
E

R BUFFER

BUFFER

DISPATCHER

DISPATCHER

MANAGER LOCATOR

Reflector at B

Notify New Location

d.

b.a.

c.

Fig. 5. Migrating the reector.

owner must be known a priori through some sort of o�-line announcement1. The
conference is associated with an access control list that identi�es the conditions
under which a client can be allowed to join a conference. If the calling client
matches the access control list, the conference owner injects a reector in the
network and the conference begins. Other participants can join the conference
in a similar fashion by calling the conference owner.

This approach does not scale to large distribution events like an Internet TV
broadcast, because the conference owner would be overwhelmed by join requests.
Also, the component that keeps the conference access control list and that should
be responsible for handling new join requests is actually the reector. However,
the diÆculty is that the position of the reector is changing over time and its
address cannot be bound to the conference announcement.

A solution to this problem involves the use of a capsule, i.e. an active packet
that contains a join request for the client that created it and travels autonomously
towards the conference owner, thus actually implementing a mobile agent. At
each node, the capsule object checks whether a reector is running there, and
possibly hands the join request to it. The reector handles the join request by
matching it against the access control list and and noti�es the sender of the
capsule about acceptance or rejection of the request. The capsule contains also

additional information about the client needed to setup the connection, like the
capability to provide a customized dispatcher.

In case the capsule object does not run into the reector on its way to the
conference owner, this is eventually reached and forwards the capsule to a re-
ector, whose position is known to the conference owner through its control

1 As an example, consider MBone conference announcements which are distributed

through sdr and contain the multicast address of the conference. In the framework of

our conference system the announcement would contain the address of the conference

owner.

connection. In case the conference has not yet started and no Reector instance
is executing in the network, the request is handled directly by the conference
owner as described above. Sending the join request as a capsule is particularly
e�ective when the cloning approach is exploited. The existence of many reectors
and their displacement increase the probability that the capsule runs into one of
them and consequently the join request is handled closer to the client that issued
it. The approach can be further extended by allowing a joining client to send
the capsule to other conference participants besides the owner. This increases
the reliability of the system since the possibility of joining the conference is not
conditioned by the status of the conference owner.

4 The Prototype

A prototype of the videoconference system described here is being implemented
at our university using the Java language. The support for code mobility is
provided by the �Code toolkit developed in parallel by one of the authors [10],
which provides a exible mobile code infrastructure with limited overhead.

The implementation of the client relies on the public domain tools vic and
vat to generate respectively the video and audio streams. The streams playback
is performed by an application developed using the specialized API of the Java
Media Framework (JMF) [15]. In addition, a console written in Java allows the
user to communicate with the reector and manipulate the parameters of the
session. A new version of the client integrating the console with the visualization
and playback of the conference streams will be implemented as soon as standard
capture and encoding support are made available within the JMF. Authentica-
tion and access control features are currently not implemented, as we decided
to focus on the assessment of the impact of customizability and mobility rather
than security.

5 Discussion and Further Work

The work reported here investigates the opportunities opened by code mobility
in the context of active networks. The paper focuses on design aspects, describ-
ing an original architecture for a videoconference system based on a conference
server that migrates or clones itself in order to adapt to events in the network.
The proposed architecture provides improved scalability and allows clients to
customize the server's behavior by exploiting mobile code.

Our work is inspired by the work described in [11], which describes the imple-
mentation of a chat server that migrates to adapt to the position of the partici-
pants. In that work, the focus is on the optimization achieved by network-aware
positioning of the server with respect to a traditional �xed displacement. In
our work the potential of code mobility and active networks has been exploited
also in terms of user customization which can be strategic in the videoconfer-
ence application domain. Also, the aforementioned work is mainly concerned
with mechanisms needed to probe and monitor resources. In our work, we focus

on the exploitation of code mobility; however, devising and comparing di�erent
strategies for relocation to be embedded in the Locator component of the system
is the subject of ongoing research. This encompasses individuating and de�ning
which mechanisms and information must be provided at the application level
and which information can be assumed to be provided by the active network
device|still an open issue in active network research.

The variant of our architecture that encompasses cloning the reector is
also similar to Active Multicasting [18]. Active multicast nodes process packets
belonging to video streams based on the knowledge about the video encoding
deployed. Application speci�c "Quality of Service (QoS) �lters" enable intelli-
gent degradation of the quality of the stream perceived by low end receivers.
QoS �lters can be assimilated to the dispatcher modules deployed in our ap-
proach; the main di�erence is that the former are statically implemented inside
network nodes, while the latter are dynamically installed on the reector by the
application. The behaviour of active multicast nodes is changed by varying the
parameters of QoS �lters (and other components) through a signalling protocol.
The Resource reSerVation Protocol (RSVP) is extended to carry such parame-
ters. Also, while active multicast needs a permanent support to be installed on
the node of the network, in our approach the assumption about the presence of
an underlying, general purpose active node enables the possibility to install and
remove dinamically the support for application-level multicasting, which in our
application is represented by the reectors being cloned. Finally, our approach
in principle leaves open the possibility to alternate the use of the distributed
solution employing cloning with the centralized one employing a single roam-
ing reector, thus paying the overhead imposed by the a distributed multicast
structure only when the size of the conference requires it.

The performance of a videoconference system depends strongly on the real-
time properties of the transmission services it is based on. This work has not
tackled issues related to the provision of quality of service guarantees over an
active network and to locator mobility in such a scenario (e.g., the impact on
resource reservation of the reector position changing over time). These topics
represent an interesting and broad area for future studies.

Another open issue is a better integration of the Real-time Transport Proto-
col (RTP) [13] in our prototype. RTP is presently the protocol for multimedia
transport most widely used on the Internet, and is engineered for conferences
whose attendance ranges from a few clients up to 10,000; more clients cannot be
managed due to implosion of control messages. In fact, each participant sends
periodically to all the others a report containing its identity and possibly infor-
mation about the quality of the stream it receives. This information can be used
by the sources as a feedback of the quality of service perceived by the receiver.
Clearly, this solution is impractical for a very large conference. In the cloning
variant of our architecture, control message implosion is reduced because each
reector acts as a virtual participant for other reectors, and thus \hides" the
clients directly attached to it at the same time providing direct feedback about
the quality of transmission.

Finally, we are in the process of analyzing quantitatively the bene�ts and the
tradeo�s of our design, along the lines of [2]. This encompasses the de�nition
of an analytical model for comparing the performance (e.g., in terms of traÆc
or latency) of our architecture with respect to conventional solutions, as well
as the validation of such a model through direct measurements on the actual
implementation.

Acknowledgments This work has been partially supported by Centro Studi e
Laboratori Telecomunicazioni S.p.A. (CSELT), Italy. The authors wish to thank
Valerio Malenchino from CSELT for his insightful comments during the devel-
opment of the work described in this paper. Also, the authors wish to thank
Margarita Millet Sorolla for her work on the implementation of the prototype.

References

1. The MBone Information Web. Web page http://www.mbone.com.

2. M. Baldi and G.P. Picco. Evaluating the Tradeo�s of Mobile Code Design

Paradigms in Network Management Applications. In Proc. of the 20th Int. Conf.

on Software Engineering, pages 146{155, April 1998.

3. S. Bhattacharjee, K. Calvert, and E. Zegura. On Active Networking and Conges-

tion. Technical Report GIT-CC-96/02, Georgia Institute of Technology, 1996.

4. Cornell University. CU-SeeMe. Web page http://cu-seeme.cornell.edu.

5. A. Fuggetta, G.P. Picco, and G. Vigna. Understanding Code Mobility. IEEE

Trans. on Software Engineering, 24(5):342{361, May 1998.

6. J. Hartman et al. Liquid Software: A New Paradigm for Networked Systems.

Technical Report 96-11, Univ. of Arizona, June 1996.

7. M. Hicks et al. PLAN: A Programming Language for Active Networks. Technical

report, Univ. of Pennsylvania, November 1997.

8. ITU-T Recommendation H.323. Visual telephone systems and equipment for local

area networks which provide a non-guaranteed quality of service, November 1996.

9. M.A. Millet Sorolla. Realizzazione di un'applicazione su rete attiva. Master's

thesis, Politecnico di Torino, Italy, February 1998. In Italian.

10. G.P. Picco. �Code: A Lightweight and Flexible Mobile Code Toolkit. In Proc. of

the 2nd Int. Workshop on Mobile Agents (MA'98), September 1998.

11. M. Ranganathan, A. Acharya, S. Sharma, and J. Saltz. Network-Aware Mobile

Programs. In Proc. of the USENIX 1997 Annual Technical Conf., January 1997.

12. J. Rumbaugh et al. Object-Oriented Modeling and Design. Prentice Hall, 1991.

13. H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport

Protocol for Real-Time Applications. RFC 1889, January 1996.

14. Sun Microsystems. The Java Language: An Overview. Technical report, Sun

Microsystems, 1994.

15. Sun Microsystems. Java Media Framework, January 1997. Available at

http://java.sun.com/products/java-media/jmf.

16. D. Tennenhouse et al. A Survey of Active Network Research. IEEE Communica-

tions, 35(1):80{86, January 1997.

17. D. Wetherall, J. Guttag, and D. Tennenhouse. ANTS: A Toolkit for Building an

Dynamically Deploying Network Protocols. In Proc. of IEEE Open Architectures

and Network Programming (OPENARCH'98), pages 117{129, April 1998.

18. R. Wittmann and M. Zitterbart. Active multicasting for heterogeneous groups. In

4th IFIP Int. Conf. on Broadband Communications '98, April 1998.

19. Y. Yemini and S. da Silva. Towards Programmable Networks. In IFIP/IEEE Int.

Workshop on Distributed Systems: Operations and Management, October 1996.

