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Abstract—After several years of studies and experiments, the
days of the new IP, identified as version 6, are coming; the
growing pressure is mostly due to address shortage (especially in
Far East countries), the imminent introduction of new 3G mobile
devices, and routing scalability problems. While most of the
modern operating systems and network devices (routers) are
already IPv6-capable, one of the biggest problems is related to
the huge amount of work involving application migration. This
paper studies some issues related to the migration of applications
to IPv6: (i) how difficult the porting is and (i) how to make an
application IPv6-compatible when its source code is not
available. This paper presents solutions to the latter problem that
“retrofit” off-the-shelf server applications. Such solutions can
also be deployed in response to the pressing demand to promptly
make native IPv6 service available to IPv6-enabled clients.

Keywords: IPv6 applications, IPv6 socket interface, RFC 3493.

I. INTRODUCTION

Pv6 is the new network-layer protocol poised to replace the

old IPv4, defined about 30 years ago. IPv6 was born in the

mid-90s to cope with address space shortage. Massive
deployment of private addressing and address translation and
proxy mechanisms introduced while waiting for IPv6
specification and implementations to be available, has
decreased the urgency to introduce the new protocol.
However, in the last few years the pressure to adopt it has
increased, mostly due to address shortage (especially in Far
East countries), the future introduction of new 3G mobile
devices, and routing scalability problems. Furthermore, the
U.S. Department of Defense has recently decided that all its
new hardware and software must support IPv6, which is a big
boost for the adoption of this protocol.

In recent years we have seen huge efforts from operating
systems and network devices companies to introduce IPv6
support into their products. Although some issues remain to be
solved, we can consider IPv6 support in operating systems as
an almost completed task. Modern operating systems (BSD,
Linux, Solaris, Windows XP) have excellent IPv6 stacks,
although some of the applications provided with them are still
[Pv4-only. From the network device manufacturers (mostly
router vendors) point of view, most of the devices can be

equipped with an IPv6 stack. Most vendors (notably Cisco,
Juniper, Extreme Networks) offer acceptable support for I[Pv6,
although some of the devices are still implementing [Pv6
forwarding fully in software, while IPv4 packets are handled
by specialized hardware. Moreover, some helper protocols are
still missing.

Having achieved a reasonable support in operating systems
and network infrastructure, the next step is the migration of
applications. This is the most difficult task because of the
huge amount of network-based applications, which means
tons of code that has to be changed — hence a large number
of programmers involved. Such effort is comparable to the
one related to the Y2k (Year 2000) problem only a few years
ago, when most applications had to be verified.

This paper explores the problem of modifying applications
to make them compatible with IPv6. Section II describes and
provides a quantitative evaluation of the efforts required to
insert IPv6 support into an application, provided that the
source code is available. A few special cases are presented in
Section III, specifically applications based on some external
framework (e.g. Java and .NET) and applications that must
compile on platforms with or without IPv6 support. Section
IV focuses on applications on which source code is not
available, particularly servers. For instance, a typical
corporate information system includes both applications
custom developed in-house and off-the-shelf software, and the
process of making them IPv6 compatible is different in these
two cases. Section V presents the case study referred to a
University information system whose most important services
have been modified in order to accept native IPv6
connections. Finally, Section VI summarizes the work and
gives some conclusive remarks.

II. MIGRATING APPLICATIONS THROUGH SOURCE CODE
MODIFICATIONS

Although this seems to be the easiest case, the modification
of the application source code requires a lot of work in order
to support both IPv4 and IPv6 (i.e. dual-stack applications).
For instance, RFC 3493 (Basic Socket Interface Extensions
for IPv6) [1] proposes some limited changes to the BSD
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socket API, but the devil lays into the details. For instance,
most of the “standard” system calls (e.g. socket (),
connect (), bind (), accept (), send (), recv (), and
more) remain unchanged. However, often the programmer has
to retrieve the required parameters in a different way;
therefore the code is to be modified.

The comparison of the code in Figure 1 (written in C
language according to the traditional API syntax) and Figure 2
(written according to the new syntax defined in RFC 3493)
may be an excellent example. Both code fragments refer to a
server socket during its opening phase and the binding of all
local addresses. As shown in Figure 1, the programmer
specifies the address family (AF_INET, i.e. IPv4) directly
into the socket () call. This procedure changes in Figure 2
because the programmer cannot know if the server has an
IPv4 stack, an IPv6 one, or both. To avoid this problem, the
programmer uses the getaddrinfo () function that returns
a linked list of addrinfo structures, which hold the list of
addresses we can bind to. Then, the programmer can open a
socket waiting on one of the addresses (either IPv4 or IPv6)
available on the machine. Although the prototype of the
socket () function does not change, the code around it
looks pretty different. This means that the source code must be
visually inspected and adapted where needed.

From the programmer’s point of view, details matter. For
instance, even the code related to the bind () function must
be changed because the old-programming style uses a variable
of type sockaddr_in as a parameter. Vice versa, the new
programming style uses some members of the addrinfo
structure, returned by the getaddrinfo (). Furthermore,
the old programming style defines the port number as a
number, while the new one defines the same value as a string.
These are only a few examples of the differences between the
old BSD API and the new one defined in RFC 3493.

The function getaddrinfo () has been introduced in the
new socket API and plays a key role in providing protocol
independence. This function is, perhaps, the most important
change in the socket API.

#define PORT 2000

void server ()

{

int SockDescr;

struct sockaddr_in SockAddr;

// Descriptor for the network socket
// Address of the server socket descr.

if ( (SockDescr= socket (AF_INET, SOCK_STREAM, 0)) < 0 )
{

error ("Server: cannot open socket.");

return;

}

memset (& SockAddr, 0, sizeof (SockAddr));
SockAddr.sin_family = AF_INET;
SockAddr.sin_addr.s_addr= htonl (INADDR_ANY); /*
SockAddr.sin_port = htons (PORT);

all local addresses */
/* Convert to network byte order */

if (bind(SockDescr, (struct sockaddr *) &SockAddr, sizeof (SockAddr)) < 0)
{

error ("Server: bind failure");

return;

}

/* Other code follows */

Figure 1. Opening a server socket with the traditional
socket API.

#define PORT "2000"

void server ()

{

int SockDescr;

struct addrinfo Hints, *Addrinfo;

// Descriptor for the network socket
// Helper structures

memset (&Hints, 0, sizeof (Hints));
Hints.ai_family = AF_UNSPEC; // or AF_INET / AF_INET6
Hints.ai_socktype = SOCK_STREAM;
Hints.ai_flags = AI_PASSIVE; /* ready to a bind() socket */
if (getaddrinfo(NULL /* all local addr */, PORT, Hints, AddrInfo) != 0)
{

error ("Server: cannot resolve Address / Port ");

return;

// Open a socket with the correct address family for this address.
if ( (SockDescr= socket (AddrInfo->ai_family,
AddrInfo->ai_socktype, Addrinfo->ai_protocol)) < 0 )

error ("Server:
return;

cannot open socket.");

if (bind(SockDescr, AddrInfo->ai_addr, AddrInfo->ai_addrlen) < 0)

error ("Server: bind failure");
return;

/* Other code follows */

Figure 2. Opening a server socket with the new RFC 3493
APIL

A. Identifying the changes

We realized the porting of two open-source applications —
Freeamp and Gnucleus — in order to understand and quantify
the efforts required to transform an IPv4-based application
into a dual stack one. FreeAmp is a free MP3 player, available
for Windows and most of the Unix platforms, which plays
MP3 files received across the network from a stream server.
Gnucleus is a peer-to-peer file sharing application based on
the Gnutella protocol and is available for Windows only.

These applications use the socket interface basically for
three different tasks: address resolution, session establishment
and data reception. The code related to the first point has been
modified by making use of the getaddrinfo () function,
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Function IPv4 | IPv6 | Changes | Lines of
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150 88 (> 59%) 36 30 (> 83%)

Table 1. List of the functions that had to be modified in FreeAmp and Gnucleus.

inserting dual-stack capabilities into the code. The code
related to the session establishment has been modified to use
some of the values obtained through the previous call to
getaddrinfo (), thus avoiding hard-coded parameters.
The code related to data reception has been modified only in
case of UDP streams because the recvfrom() function
needs a parameter containing the address of the host data are
to be received from. This parameter has to be changed
because the old sockaddr structure is not large enough for
IPv6 addresses and it has to be replaced by a
sockaddr_storage one. This problem does not exist for
TCP-based streams because the function recv (), used in
that case, does not require this parameter.

B.  Quantifying the effort

In order to estimate the quantity of code that needs to be
changed to convert an existing IPv4 application to a dual-
stack application, we considered the number of socket calls in
source files. This aimed at determining the portion of the
socket interface that does not support IPv6 and, consequently,
needs to be changed. However, some functions imply writing
bigger quantity of code than others. For example, resolver
functions (i.e. name to address and related) like
gethostbyname () or gethostbyaddr () imply filling
out socket address structures that are different in IPv4 and

IPv6. The criterion chosen to quantify the entity of the change

is “lines of code per function”, i.e. the amount of lines of code

that need to be modified for each function, which is explained
as follows:

e Resolver functions: the change is considered being
approximately as 4 lines of code for each function
because we have to change both the function call and the
code before it (for filling out the socket address

structure).
e connect () and bind() functions: like resolver
functions, they require socket address structures.

However, often these structures have already been filled

by the previous step (resolving an address happens
before connecting or binding a socket) and only some
additional manipulation is required. For this reason they
have been considered being 2 lines of code.

e getsockopt () and setsockopt () functions: they
are used to get (and set) flags that modify the behavior of
the socket. Some of these options are related to the
transport layer (e.g. TCP options), while others deal with
network-level issues (e.g. join a specific multicast
group). While the former do not need to be changed in
IPv6, the latter uses different option codes in IPv4 and
IPv6, therefore the code must be duplicated. These
functions require a “lines of code factor” equal to 2.

e The entity of change for the rest of the socket functions
is considered one line of code since no particular
modification is required before calling them.

The result of the profiling can be seen in Table 1: in
FreeAmp 88 lines of code (corresponding to the 59% of the
lines of code related to the socket interface) have been
changed; in Gnucleus, we had to change 30 lines of code
(corresponding to the 83% of the lines of code related to the
socket interface).

C. Additional problems

The previous section does not consider the amount of work
required to localize the code that needs to be changed. This is
relatively easy in case of “pure” socket functions (a “keyword
search” often suffices), although the proper engineering of the
code (i.e. strong modular organization) helps considerably.
For instance, the Gnucleus code was definitely better than the
FreeAmp one: an insight is given by the number of lines of
codes related to the socket interface, which are 150 in
FreeAmp and 30 in Gnucleus.

Furthermore, there are a couple of problems are related to
the management of both IPv4 and IPv6 connections at the
same time and that are not included in previous numbers. For
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instance, a client may try to contact a server (which has both
IPv4 and IPv6 addresses) through the IPv6 address. If the
application on the server host is able to accept only IPv4
connections (despite the IPv6 support within the server’s
operating system), the connection will be dropped after a
timeout. To avoid loss of connectivity, additional code must
be inserted into the client that forces it to connect through the
IPv4 address as well (fallback mechanism)'. A similar issue
exists for server applications as well: the application must be
able to accept sessions on both IPv4 and IPv6 sockets, which
means that the waiting socket (and the corresponding waiting
thread) must usually be duplicated for every address family.

Unfortunately, there are additional parts of code that need
to be changed. For instance, the code related to a custom
graphical control that is used to insert an IP address must be
changed. Perhaps, the most critical point is related to the code
that manages the “presentation” of network addresses. For
instance, the code that parses an input string (for example an
URL) must take into account that the input string can be a
literal name (e.g. “foo.bar.com”), an IPv4 address (e.g.
“192.168.0.17) or an IPv6 address (e.g. “fe80::2”). In
this case, the problem gets worse when also the “port”
identifier can be specified, since the most common separator
between address and port is the “:” sign in IPv4 (e.g.
“192.168.0.1:807), which is instead a intra-address
separator for IPv6. Additionally, all the code that “prints”
addresses (e.g. logging, printing) must be modified in order to
support the new address format.

Applications that define a custom protocol for transferring
data on the network deserve additional attention. For instance,
Gnucleus exchanges the IP addresses of its peers between
different machines. Obviously the format of Gnucleus packets
must be changed in order to carry IPv6 addresses as well, but
this could have serious consequences due to legacy
compatibility. In other words, if we design a new (and simple)
packet format, we incur into interoperability problems with
older applications because we need to define a new “version”
of the protocol. However, maintaining the compatibility could
trigger the definition of a very elaborate packet format, which
is preferable to avoid.

It can be concluded that the most part of the socket
interface has to be changed in order to add dual-stack
capabilities to an application. Unfortunately, this is only the
simplest part of the job: the amount of code that needs to be
changed outside standard socket API usually depends on the
application and it can range from almost nothing to a
considerable amount. The problem is that this code is very
difficult to locate because a “keyword search” cannot be used
in this case.

D. IPv6-only applications

An alternative approach to dual-stack applications consists

' The IPv4-mapped address, defined in [10] allows connecting to an IPv4
host through an IPv6 address (although it can be disabled by means of the
IPV6_V60ONLY socket option). However, this does not solve the problem and
the fallback mechanism is always needed.

in creating IPv6-only applications. This is much simpler
because there is no requirement of being address-independent;
therefore the programmer can simply use IPv6-specific
structures instead of the IPv4 specific ones originally part of
the code. However, this approach cannot avoid the most
critical problems, i.e. the ones presented in Section II.C,
which must be addressed explicitly.

However, the choice of creating an IPv6-only application
only because it has lower complexity is a shortsighted
approach; only dual-stack applications guarantee a smooth
transition to the new network protocol.

E. Cross-platform compatibility

Cross-platform compatibility problems arise when using the
new (i.e. the one devised for the deployment of IPv6) socket
interface. The most significant differences are between Win32
(namely, the socket implementation in Windows XP Service
Pack 1) and Unix. For instance, some of the functions aimed
managing the list of the installed network adapters,
if_nameindex (), if_nametoindex () and
if indextoname () are not available on Windows,
although they can be emulated by means of platform-specific
functions. Other examples include inet_ntop() and
inet_pton (), which are used to translate an address from
binary to “presentation” form and vice-versa, and are not
available because the same result can be obtained by using the
getaddrinfo () function with specific flags. Additional
differences — e.g. in Win32 closing a socket requires
closesocket () instead of close (), a socket descriptor
is a unsigned integer instead of a signed one, the
socket library must be initialized by means of the
WSAStartup () and cleaned with the WSACleanup () —do
not make writing cross-platform code easier.

Although far less significant, several differences exist
between different Unix flavors as well. For instance, FreeBSD
allows a single server socket to accept both IPv4 and IPv6
connections?, while most of the other systems require two
sockets. Linux by default generates a SIGPIPE signal
whenever an error occurs on sending data on stream-oriented
sockets, while other don’t. Other examples may follow.

In conclusion, cross-platform compatibility is still an open
issue even using the updates proposed by RFC 3493 in the
socket interface.

III. APPLICATIONS WITH SOURCE CODE AVAILABLE: SPECIAL
CASES

This section presents special cases that can occur in
applications with source code available.

A. Migrating applications based on external libraries with
network-related functionalities

Java or .NET-based applications provide a typical case of

% Indeed, this is very useful in order to create a program that accepts both
IPv4 and IPv6 connections seamlessly. Vice-versa, a program that wants to
accept both IPv4 and IPv6 connections must open two distinct server sockets
on other operating systems.
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applications based on external libraries, where the underlying
framework usually provides network-related functions.
Applications based on Remote Procedure Calls (RPC) provide
another example.

When network related functions are provided by an
underlying framework, the porting is easier because the
application will become almost IPv6-compatible as soon as its
underlying framework becomes IPv6-compatible. Some
problems may arise in case the application is to use new
features, such as new API functionalities. In this case the task
is much harder than before because each application has to
detect the API version at execution time and use new features
only if the run-time support makes them available.

The same considerations apply to applications that are
based on some kind of general-purpose programming library
(like Microsoft MFC, wxWindows, QT, etc.): the IPv6
support could be introduced almost transparently when the
library becomes IPv6-compatible.

However, less apparent problems, particularly the ones
highlighted in Section 1I.C (e.g., the input of network
addresses and application-specific protocols), still remain and
must be checked carefully because they are outside the
responsibility of the framework the applications are based
upon.

B. Migrating applications that detect IPv6 support at

compile time

Several applications (mostly on UNIX) are distributed as a
source code. The user downloads the source tarball, compiles
it, and launches the application. However, from the
application perspective this adds a new problem: does the
operating system (on which the compilation occurs) support
IPv6? The application must be provided with both old (BSD-
style) and new (RFC 3493-style) code, and the most
appropriate one must be selected at compilation time. Some
tools (the GNU autoconf and automake) help in handling
this issue; they define specific flags that will be used by the
compiler to enable the correct version of the source code
(usually through #define primitives). However, some of the
work must still be done by hand, for example because the
IPv6 support may be present, but limited to an old draft (e.g.
it may support only sockaddr_1in6 structures instead of the
more general sockaddr_storage).

IV. MIGRATING APPLICATIONS FOR WHICH SOURCE CODE IS
NOT AVAILABLE

Given the large number of operating systems (and the
growing number of applications) that support IPv6 and the
benefits stemming from the deployment of IPv6, system
administrators should introduce support for this protocol in
their networks and favor native IPv6 access to their servers.
However, rarely end users have the source code of their
applications, and often applications are not (yet) ready for
IPv6. This section presents the most important techniques that
are currently available to “patch” old applications in order to
make them [Pv6-compatible without needing to manipulate

their source code. This is considered particularly significant in
the effort of porting server applications.

A. Network scenario

While there is no conceptual difference between modifying
the source code of a client application versus a server
application, different methods must be used when the source
code is not available.

The most common scenario in the next future is depicted in
Figure 3. A network site (e.g. a Company intranet) has [Pv4
and IPv6 support, some of the clients have IPv6-capable
operating systems and some applications are already able to
exploit an IPv6 transport. The most impelling requirement for
a network administrator is to update the server infrastructure
(web servers, mail servers, etc.) in order to permit native
access to IPv6 clients, leaving the porting of clients’
applications as a next step.

IPv4/IPv6
Server application

A 2001:760:400::1
30.192.19.81

server A

IPV4/IPv6

Client application
PP IPv4

Client application

Figure 3. The most common IPv6 deployment scenario in
the next future.

The work presented in this paper assumes that all the
servers can be converted to dual-stack (i.e. both IPv4 and IPv6
protocol stacks are installed on the machine), which is a
correct assumption for most cases. Vice-versa, clients can be
either IPv4-only or dual stack. For instance, dual-stack hosts
are considered the best solution at least in the short-medium
period. Dual-stack servers may run both IPv6-compatible
applications (such as the well-known Apache web server) and
IPv4-only ones, with a mix of them installed on the same
machine (e.g. an IPv6-compatible secure shell daemon and an
[Pv4-only mail server). Each application will use its preferred
transport.

The following assumes that the site’s DNS server is able to
handle IPv6 addresses (AAAA records) and contains both an
IPv4 and an IPv6 mapping for each entry related to dual-stack
servers (e.g. myserver .mydomain.com). Notice that the
DNS service is not required to answer to queries by means of
an IPv6 transport.

B. Migrating server applications

This section explains the methods to make the server
infrastructure IPv6-compatibile from the applications point of
view.
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1) TCP/UDP Port Forwarders

This is one of the preferred ways to make an IPv4-only
server application capable of interacting through an IPv6
transport. The server machine needs a TCP/UDP Port
Forwarder (often called Bouncer), that is an (IPv6) server
application waiting for TCP/UDP connections to an IPv6
address and a specific port. The structure of this tool is shown
in Figure 4. The Port Forwarder includes a server module that
opens a server socket waiting for connections on the IPv6
address of the dual-stack server using the same transport
protocol (TCP/UDP) and port of the IPv4 server application.
When a new connection is accepted, a client module
establishes a new connection® (inside the server) toward the
IPv4 application. The IPv4 server application will simply see
a new connection arriving from its own — localhost
(127.0.0.1) — address. The communication path from the
client to the server is split into two connections: an IPv6 one
and an IPv4 one. The Port Forwarder service will forward all
the payload data received from the client on the IPv6
connection to the server on the IPv4 one, and vice versa.

Server Host

IPv4 application

Wait on:

- network protocol IPv4

- transport protocol TCP (or UDP)
-port X

Incoming IPv4 connection
on port X

Port forwarder Client

Connect to:
- host 127.0.0.1
- transport protocol TCP (or UDP)
- portX
%

Port forwarder Server

Wait on:

- network protocol IPv6

- transport protocol TCP (or UDP)
- portX

1Pv6 address IPv4 address

Incoming IPv6 connection on port X Incoming IPv4 connection on port X

Figure 4. Running a TCP/UDP Port Forwarder.

This mechanism has several practical advantages. First, the
intrusiveness is limited to a small server that waits on a
specific port. This allows the coexistence of IPv4-only
applications (which will use the port forwarding service) and
[Pv6-capable ones (which will accept directly IPv6
connections) on the same machine. Second, the overhead of
this solution is fairly limited thanks to the fact that the Port
Forwarder does not change the incoming data. Third, it works
with most of the TCP/UDP applications because it does not
get involved with the data payload (which is application-

3 While TCP actually establishes a connection between two machines, the
term “connection” sounds inappropriate for UDP traffic. However, we can
define a connection for UDP traffic as well, intending all the traffic that is
exchanged between two hosts using the same source and destination ports.
Since UDP does not have a mechanism to tear down a “connection”, a timeout
mechanism will be needed to “tear down” the connection when no traffic is
present for a given amount of time.

dependent).

Its most important limitations are related to some
applications (like FTP servers in “standard mode”) in which
the server opens a new connection toward the client: the Port
Forwarder is unidirectional with respect to the incoming
connections, which must arrive from outside. Other limitations
are related to applications that include network addresses in
their payload. For instance, a web server with virtual hosts
(i.e. a web server that returns different pages according to the
host name contained into the requested URL) is problematic
because both its IPv4 and IPv6 addresses must share the same
host name into the DNS database, otherwise the URL changes
and the server cannot understand which virtual host we are
referring to. Another limitation is due to the masquerading of
the real address of an incoming connection (all the packets
received by the application are coming by the localhost
address), which can be useful particularly for statistics,
accounting and filtering (e.g. access lists). In case some of
these features are needed, the Port Forwarder must include a
statistics module taking care of the necessary accounting when
a session is accepted on it. Finally, some problems are related
to packet fragmentation, which arise particularly with UDP
traffic (e.g. multimedia sources that use the maximum MTU
length). Packet fragmentation may be required to fit a message
coming from the IPv4 application into an IPv6 packet due to
the larger IPv6 header size.

Figure 5 shows a typical deployment scenario of this
mechanism. Although this is the preferred configuration, the
Port Forwarder service can be alternatively installed on a third
machine as well. In that case, it will forward traffic within
IPv4 packets on the network toward the destination server
machine.

IPv4
Server application

Port forwarder
IPV6 > IPv4

A 2001:760:400::1
30.192.19.81

IPv4/IPv6

Client application
PP IPv4

Client application

Figure 5. A TCP/UDP Port Forwarder example of
application migration.

A possible enhancement of this mechanism consists in
making the destination IPv4 address, used to open the second
connection, dynamic according to the idea of the RFC 3142
(An IPv6-to-IPv4 Transport Relay Translator) [4]. In this
proposal the client uses a special IPv6 address that embeds the
IPv4 one in the last 32 bits. A set of Port Forwarders servers
can be deployed throughout the network and will serve all the
“real” servers within a specific domain. This solution has
lower configuration overhead with respect to the traditional
Port Forwarder deployment (a statically configured IPv4
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address of the server to connect to is not needed). However, it
has also a drawback: the Port Forwarder becomes a single
point of failure. This problem does not exist in the original
deployment because both a Port Forwarder and its server
application reside on the same machine.

A well-known Port Forwarder is the 46Bouncer [5] tool,
which is currently being used on several servers in our
University network because of its efficiency and its cross-
platform compatibility.

2) TCP/UDP Relay

The IPv6-to-IPv4 Transport Relay Translator [4] (RFC
3142) mimics the Port Forwarder; the difference is that the
relay is not identified by means of a unique address. When
and IPv6 host attempts to connect to a server that does not
have an IPv6 address, the (modified) DNS returns an IPv6
address in the form
[64_bits_network_prefix]::A.B:C.D., where the
network prefix is the one in which the TCP/UDP relay has
been installed. RFC 3142 does not specify the details of how
this mechanism is implemented: by means of a modified DNS
resolver in the client application, or a modified DNS server, or
other alternatives. The resulting [Pv6 packet is routed toward
the relay, which terminates the first connection and opens a
new one toward the server.

Even though this mechanism is more advanced than the
TCP/UDP Port Forwarder, they share the same principles. A
TCP/UDP Relay may require less configuration effort than a
Port Forwarder (the IPv6 address is derived from the IPv4
host); however the same machine must have several IPv6
addresses (one for each IPv4 machine it is going to serve) and
it may become a single point of failure (in the most common
scenario several servers share the same relay).

3) NAT-PT

The Network Address Translator — Protocol Translator
(NAT-PT) [2] extends the traditional NAT paradigm with
protocol translation, i.e. it transforms an IPv4 packet into an
IPv6 one and vice-versa. Figure 6 shows a possible
deployment scenario: a NAT-PT is used to transform IPv6
packets coming from a client into [Pv4 packets to an [Pv4-
only server.

IPv4
Server application DNS

IPV6 > IPv4

A 2001:760:400::1

server A 30.192.19.81

IPv4/IPv6

Client application
PP IPv4

Client application

Figure 6. A NAT-PT example for application migration.

This technique provides transparent connectivity from IPv6

end-nodes to IPv4 only server applications. This is achieved
using a combination of Protocol Translation based on SIIT
(Stateless IP/ICMP Translation Algorithm) [3] with the
dynamic address translation of NAT and appropriate ALG
(Application Level Gateway).

The scenario shown in Figure 6 is not the typical NAT-PT
deployment scenario. In general, NAT-PT provides
connectivity between an IPv4-only network and an IPv6-only
one, which is not our goal. Figure 6 proposes an adaptation of
the NAT-PT mechanisms for a simpler objective, i.e.
translating IPv6 packets that are arriving at a server into IPv4
packets, which can be delivered to an application running
within the server itself. The NAT-PT mechanism does not
perfectly suit our purposes since it will translate all IPv6
incoming packets, preventing IPv6-capable applications on
the server host from receiving IPv6 packets.

Besides all the other NAT-PT known problems (e.g., it does
not allow to start a connection from the host on which it is
deployed), the above limitation prevents NAT-PT from being
a valid solution to the problem of porting [Pv4 applications
running on dual-stack servers. NAT-PT is more appropriate in
case of an IPv4-only machine communicating through an
IPv6-only network.

4) Bump-In-the-Stack

The Bump-In-the-Stack (BIS) [6] technique can be seen an
evolution of a NAT-PT service, and it is embedded into an
host. The BIS is installed on server hosts and acts basically as
a sophisticated address translator.

In the case a server receiving a connection, the behavior
resembles the NAT-PT one: incoming IPv4 packets are
transferred directly to the application, while incoming IPv6
packets are transformed into IPv4 ones and then transferred to
the application. In the case a server initiating a connection, the
required steps are more elaborate. The application usually
begins by sending a DNS query looking for an A record. The
BIS module intercepts the query and sends two queries out of
the box, one for an A (i.e. an IPv4 address) record and the
other for an AAAA (i.e. an IPv6 address) one. If the DNS reply
contains only an IPv4 address, the application starts
exchanging IPv4 packets. On the other hand, if the reply
reports an IPv6 address, the BIS module maps it onto a local
IPv4 address (taken from a locally defined pool) that is
returned to the IPv4 application. Hence, the application will
start sending packets to such IPv4 address, which are
intercepted by the BIS module, translated into IPv6 packets,
and sent out to the destination.

This technique has the advantage of allowing the server
application to initiate a connection, but it suffers from the
same limitation of the NAT-PT approach: all incoming IPv6
packets are translated into IPv4 ones. Therefore the server
host cannot run IPv6 native applications unless it has two
IPv6 addresses: one to be translated into IPv4, and one bound
to an [Pv6 native stack.
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5) Bump-In-the-API

The Bump-In-the-API (BIA) [7] technique is an evolution
of the previous one in the sense that the implementation of the
socket interface supports old IPv4 structure and functions, but
can generate IPv6 packets. The behavior is almost the same of
BIS, although no packet translation is performed: the modified
socket implementation is able to distinguish if the
communication has to be done toward an IPv4 address or
toward an IPv6 one and generates the packets accordingly. In
the same way, upon receiving an IPv6 packet, the socket
implementation checks if the server waiting on the destination
port is IPv4 or IPv6 and delivers the data appropriately.

The BIA technique is highly efficient and does not suffer
from most of the BIS limitations. However there is only one
implementation (provided by ETRI, Korea) for Windows
2000 of this mechanism at the time of writing, which seems to
be unavailable for general use.

6) SOCKS

The SOCKS-based IPv6/IPv4 gateway mechanism [8] is
based on the SOCKS protocol (SOCKSv5 [9]), which is
designed to provide a framework for client-server applications
in both the TCP and UDP domains to conveniently and
securely use the services of a network firewall. The protocol is
conceptually a “shim-layer” between the application layer and
the transport layer. This proposal is based on a mechanism
that creates two connections (one between the application and
a SOCKS server, and another between the SOCKS server and
the other party) in a way that looks similar to the port
forwarding mechanism. However, this proposal has been
designed with client issues in mind (i.e. an application that
wants to “connect” to a server) instead of server issues (i.e. an
application meant to ‘“accept” incoming connections). It
follows that this mechanism is not the best choice for server
applications.

7) Application-Level gateways

Application-Level Gateways are able to decouple clients
and servers since they act like a server toward the client, and
like a client toward the server. A gateway understands the
semantics of the data exchanged by client and server (and
usually modifies it), while a port forwarder is a transparent
box.

There are several implementations of application-level
gateways (web proxies are the most common ones) in the [Pv4
world and we cannot see any particular problem in creating an
application—level gateway that accepts IPv6 connections from
clients and connects to servers by means of IPv4. The biggest
problem of this mechanism is that a distinct gateway is
required for each application, while the port forwarder is
application-independent. The advantage is that an application
level gateway works also with peculiar applications, e.g. the
ones in which the server opens a connection toward the client.

C. Migrating client applications

Most of the techniques presented in the previous section

can be used to add a partial IPv6 support to IPv4-only
applications, both client and servers. However, clients are
usually opening a connection toward the server, which makes
the deployment scenario different from the one related to
server applications and critical for some of the presented
techniques.

For instance, the TCP/UDP Port Forwarder cannot be
applied to client applications because it statically defines the
address of the host the connection should be terminated to.
This approach works for applications that are going to connect
always to the same server (like mail clients), but it is not
appropriate for other applications that usually open a
connection to different servers (like web browsers). For
instance, an approach based on TCP/UDP Relay is more
appropriate.

While almost all the techniques (but the TCP/UDP port
forwarder) can be used for client-side migration, the Author
does not believe this is a hot topic at present time; furthermore
experience is still missing. An in-depth analysis of these
issues is left for future work.

V. A CASE STUDY: THE POLITECNICO DI TORINO NETWORK

The support for [Pv6 has been introduced in the network
infrastructure of out University several years ago and only a
few secondary sites remain without IPv6 connectivity.

Unfortunately, almost all our server applications do not
support IPv6, with the exception of DNS servers (which
operate with Bind 9). Other services (mail, web, a Shoutcast
server') are being offered over IPv6 transport trough a
TCP/UDP Port Forwarder installed on [Pv6-enabled operating
systems (Linux, Windows 2000 and Compaq Tru64). Finally,
a double entry has been created in the DNS such that two
addresses (one IPv4 and one IPv6) correspond to the same
name. Services running on an old server that does not have an
IPv6 stack are being provided over IPv6 transport by means of
a TCP/UDP Port Forwarder installed on another machine.

The results are interesting: IPv6 clients are able to use [Pv6
to connect to vast majority of the services. Although the
outcome is highly positive (mostly because of the simplicity
and low intrusiveness of the Port Forwarder mechanism,
which can be enabled on a per-TCP/UDP port basis), some
problems have been noticed. A first set of issues stems from
the fact that any connection is originated from the same IPv4
address from the point of view of the server application.
Besides preventing the server application from keeping
statistics about IPv6 connections, some more serious issues
are related to access lists. For instance, our SMTP server is
configured to forward only messages originated from local
IPv4 addresses; unfortunately, all IPv6 connections appear to
be local. To solve this issue (which is essential to avoid spam)
the Port Forwarder had to be configured to accept connections
coming only from IPv6 hosts on our network.

Another issue is related to IPv6 clients trying to connect to

* A Shoutcast server is a multimedia server that broadcasts audio through a
TCP transport.
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a non-existing IPv6 service. For example, in one instance a
Port Forwarder was by mistake not activated on a port used to
manage a web server. The result was an unexpected delay
when opening a connection from a dual-stack client to the
management port, because the client sent an IPv6 request (that
never got an answer) and it switched to IPv4 only after a
timeout.

Finally, one issue arose for the old server that does not have
an IPv6 stack: when trying to connect to the ssh service
through IPv6, the connection was terminated on the “port
forwarder” host. The reason is that the Port Forwarder itself
runs an ssh server. Consequently, an IPv4 address is to be
used when connecting to some services on the old IPv4 only
server that are also active on the host on which the port
forwarder is installed. With respect to this point, the Port
Forwarder runs better when the IPv4-only application and the
Port Forwarder are installed on the same machine.

The port forwarder was successfully deployed for UDP
traffic as well. An MP3 jukebox has been installed that is
sending IPv4 multicast traffic; this is translated into IPv6
multicast. An old DNS server (which supports ARAA records
but not IPv6 transport) was made [Pv6-compatible by means
of a Port Forwarder.

VI. CONCLUSIONS

This paper includes two main contributions. The first one
consists in providing a description and quantitative evaluation
of the effort required to add IPv6 support into an application’s
source code. Although the number of applications we
modified is fairly small, and therefore our results have limited
validity, our findings show that such effort cannot be
considered negligible. Preliminary results show that far more
than 50% of the lines of code related to the network interface
must be modified. Furthermore, some additional parts of the
application (e.g. custom network protocols, input forms,
address “presentation” issues, URL parsing), less obviously
requiring changes and present in applications at largely
varying levels, can significantly impact the cost of the task.

The second contribution relates to the problem of providing
native IPv6 services (web, mail) when the source code of
server applications is not available. Among all the methods
that have been presented, the most important one are the
TCP/UDP Port Forwarding and Bump-In-the-API techniques.
The former is very simple and a few implementations are
widely available, while the latter is more complete, but more
complicated and there are no widely available
implementations.

Finally, a case study of our University information system
has been presented showing that under some constraints
(IPv4/IPv6 network and mainly dual stack servers) the most
important network services have been successfully converted
to IPv6 by means of the TCP/UDP Port Forwarding
mechanism. Some issues arose, but the simplicity, the low
intrusiveness (and the availability) of the Port Forwarder made
it a better solution than other more sophisticated techniques.
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